Supplementary Material

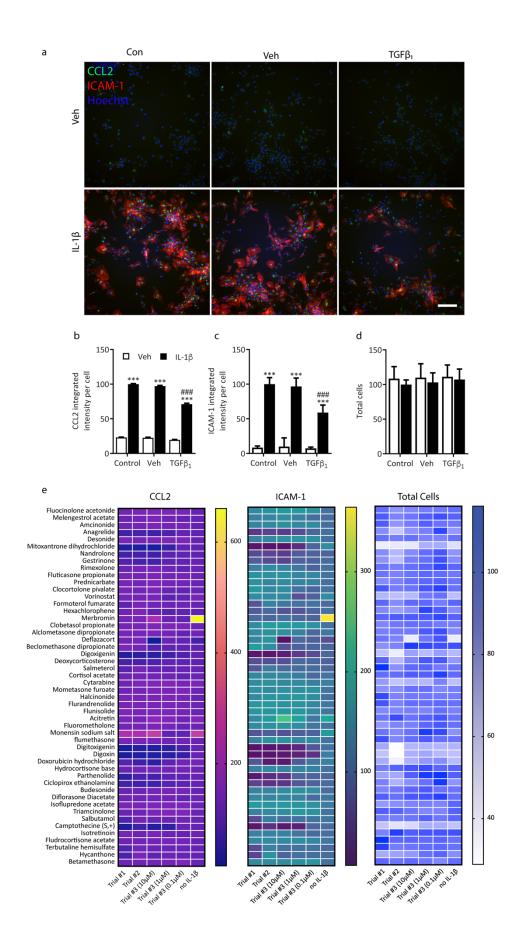


Fig. S1. Consistency of hits and controls across drug screen trials in pericytes. (a-d) Validation of controls used for drug screen shows TGF β_1 (10 ng/mL), a known inhibitor of CCL2 and ICAM-1 expression in pericytes is consistent across all drug plates , ***p< 0.001, compared to control, vehicle treated ###p< 0.001, compared to control, IL-1 β treated. Case used : H239 e) Potential drug hits from three trials (including trial 3, at three concentrations, and one trial with no IL-1 β treatment) by immunocytochemical analysis of CCL2, ICAM-1 and total cell counts, normalized to IL-1 β treatment for Trial 1, 2, and 3, and no IL-1 β trial normalized to vehicle (DMSO) control. Case used: H238.

We also performed Z-Score analyses to determine the degree of plate variability for our pericyte inflammatory screening using CCL2 and ICAM1 (data below). We analyzed the normalized data sets of Vehicle and Vehicle + IL1 β for CCL2 (Z-score = 0.43) and ICAM1 (Z-score = 0.15). This analysis shows that CCL2 expression is more consistent across plates than ICAM1, and therefore a superior assay measure. Despite this difference in Z-scores when we correlated (using Pearson's correlation coefficient) the normalized intensity values for CCL2 against ICAM1 for all drug treatments across all plates we observed a very strong positive correlation of r=0.9508, P<0.0001, suggesting that both measures were strongly associated with each other. Although these Z-scores are low, this may reflect the "wild-type" nature of primary cells compared with artificially generated immortalized cell lines. The raw data for this analysis is provided in Dataset 15 raw data for supplementary figure 1.

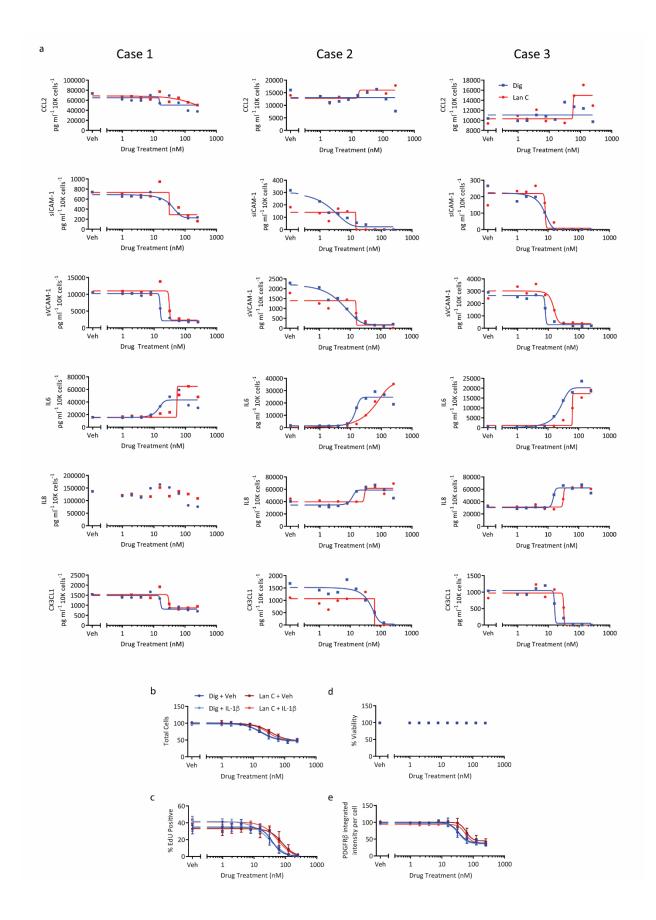
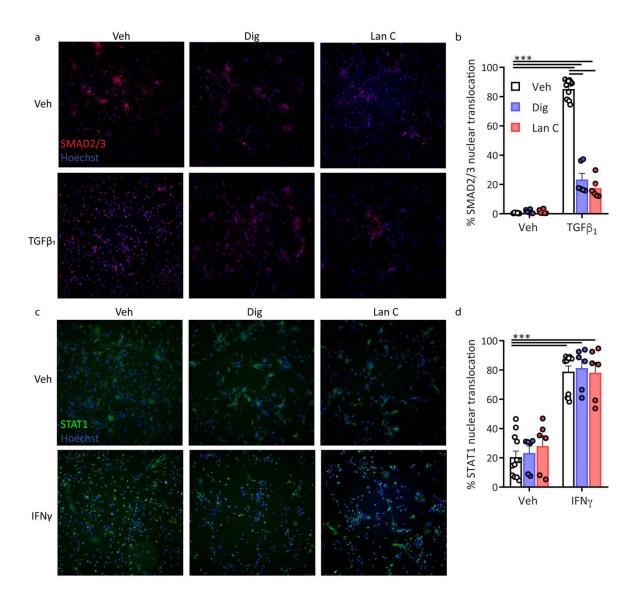



Fig. S2. Concentration response of pericytes to digoxin or lanatoside C in the presence of IL-1 β . a) Pericytes were pretreated with digoxin or lanatoside for 24 hours prior to IL-1 β stimulation. Secretions were quantified with cytometric bead array and normalized to total cells. Case 1 E213, Case 2 E215, Case 3 E216. b) Cells treated as above were assessed for proliferation (EdU), viability (LDH), and PDGFR β expression. Cases used: E206, E213, E214.

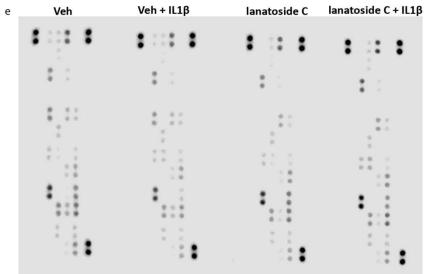


Fig. S3. Pericytes pre-treated with digoxin (0.1 μ M) or lanatoside C (1 μ M) for 24 hours were treated with TGF β_1 (1 ng/mL) for one hour and stained for SMAD2/3 (a) or IFN γ (1 ng/mL) for one hour and stained for STAT1 (b). Quantification of nuclear translocation of SMAD 2/3 (c) or STAT1 (d), mean \pm S.E.M. ***p<0.001, (n=3, cases used E203, E204, E213). (e) Blots from NF κ B profiler arrays, quantified in Figure 2.

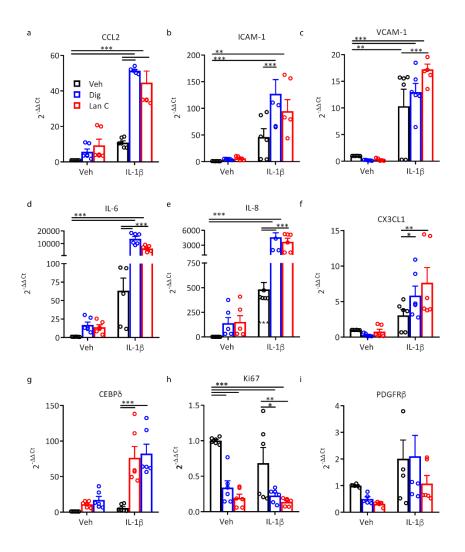
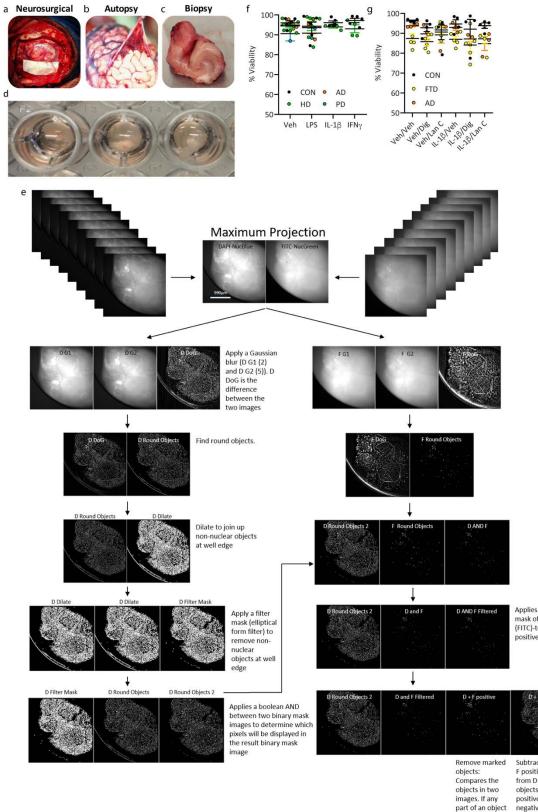



Fig S4. Cardiac glycosides do not block transcriptional activation of IL-1 β -dependent inflammatory responses in pericytes. Cells were treated for 24 hours with digoxin (0.1 μ M) or lanatoside C (1 μ M) then treated with IL-1 β for 24 hours. Statistical analysis performed using two-way ANOVA (n=3 cases, 2 experimental replicates), ***p<0.001, **p<0.01, *p<0.05. Cases used: E206, E213, E214.

Subtracts the D + F positive image from D Round objects to get D positive, F negative objects overlaps in both images, the object from the

source image is removed

mask of the dead cell image (FITC)-to get nuclei that are positive for both stains

Applies a boolean to make

Fig S5. Development of leptomeningeal/choroid plexus explant cultures for ex vivo pharmacological studies. a-c) meninges are sourced from neurosurgeries for the treatment of epilepsy, autopsy or tumour biopsies. Tissue is diced into 2 mm² and placed into cell culture dishes with DMEM/F12 (d), 10% FBS, 1% PSG (penicillin 100U/ml, streptomycin 100 μ g/ml, L-glutamine 0.29 mg/ml)) at 37 °C with 5% CO₂. e) Viability analysis was performed using the custom module editor function of MetaXpress software to quantify live and dead cells from Z-stacks of explants. f-g) Quantification of explants viability after treatment with cytokines for 24 hours (10 ng/mL), or with pretreatment of digoxin or lanatoside C (10 μ M) for 24 hours, followed by IL-1 β (10 ng/mL) for 24 hours. Cases used f) H253, HC171, PD85, AZ133, g) H253, FTD6, AZ133.

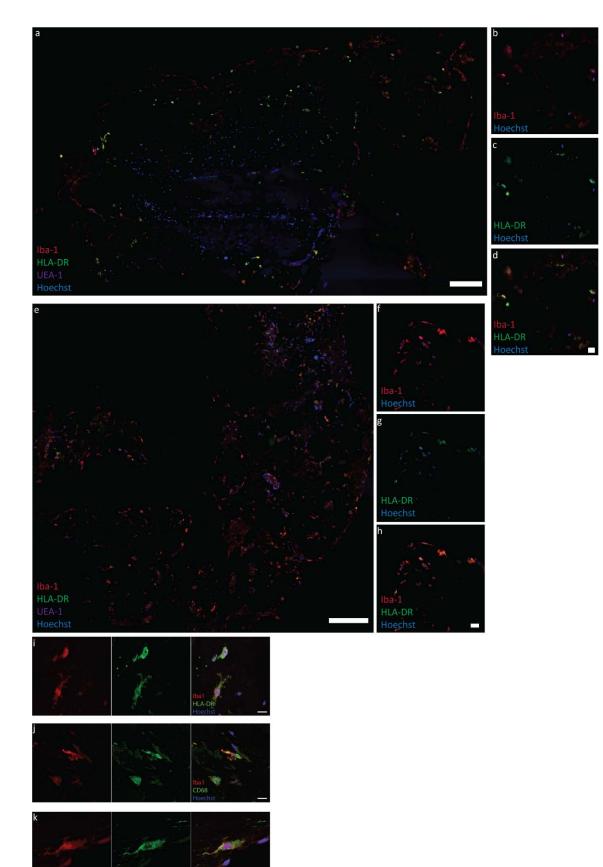
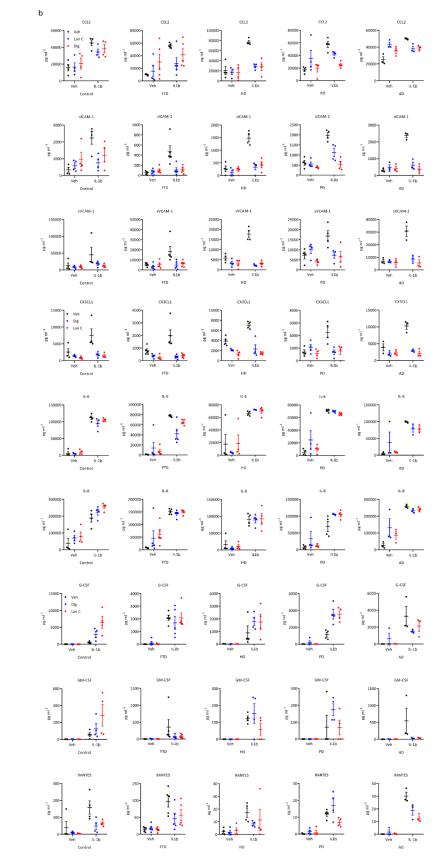



Fig. S6. Microglia/macrophage presence in leptomeningeal and choroid plexus explants. Immunohistochemical staining of microglial/macrophage markers in leptomeningeal explants (a-b) (scale 200 μ m (a) and 20 μ m (b-d), and in choroid plexus explants (e-h) (scale = 200 μ m (e) and 20 μ m (F-H). i-k) confocal images demonstrating co-expression of Iba-1 with HLA-DR and CD68 (scale = 10 μ m).

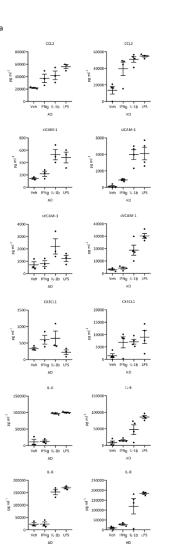
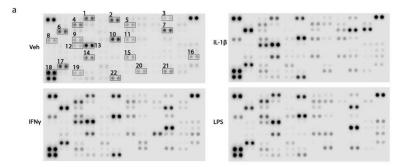



Fig S7. a) Raw cytokine concentration from leptomeningeal explants (LME) from two different donors treated with vehicle, IFN γ , IL-1 β , or LPS (10 ng/mL), for 24 hours. Cases used H250, AZ133. b) Raw cytokine concentrations from meningeal explants from five different donors LME cases treated with digoxin or lanatoside C (10 μ M) for 24 hours then IL-1 β (10 ng/mL) for 24 hours. Each point is a single explant. Cases used: H253, FTD6, HC166, PD85, AZ133. (Control- neurologically normal, FTD - frontotemporal dementia, HD -Huntington's disease, PD -Parkinson's disease, AD -Alzheimer's disease). Cases used, H253, FTD6, HC166, PD85, AZ133.

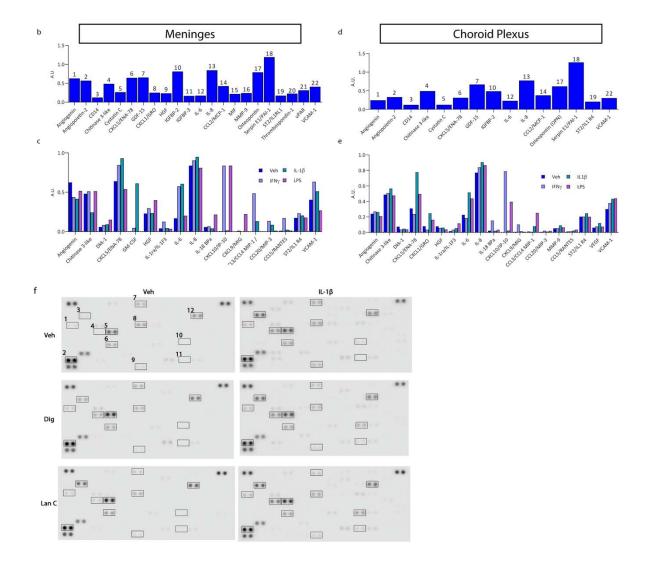


Fig S8. Human cytokine proteome profiler original blots and select hits comparison.

a) Representative blots of LME conditioned media (from Figure 5) exposed to vehicle (Veh), IFN γ , IL-1 β , or LPS after 24 hours. Normalized intensity values above an arbitrary threshold under basal conditions in LME (b) or CPE (d). Select secreted proteins that are modified by cytokine treatment in LME (d), or CPE (e). f) Proteome profilers were used to characterise the IL-1 β (10 ng/mL) induced changes in secretions from meningeal explants in response with either digoxin or lanatoside pre-treatment (10 μ M),

representative blots from one case, pooled secretions from 5 explants. (1-CXCL1, 2- SerpinE1, 3-CXCL5, 4-IL-6, 5-IL-8, 6-CCL2, 7-Ang-2, 8-IGFBP2, 9-VCAM-1, 10-MIP1 α , 11-TNF α , 12-GDF-15).

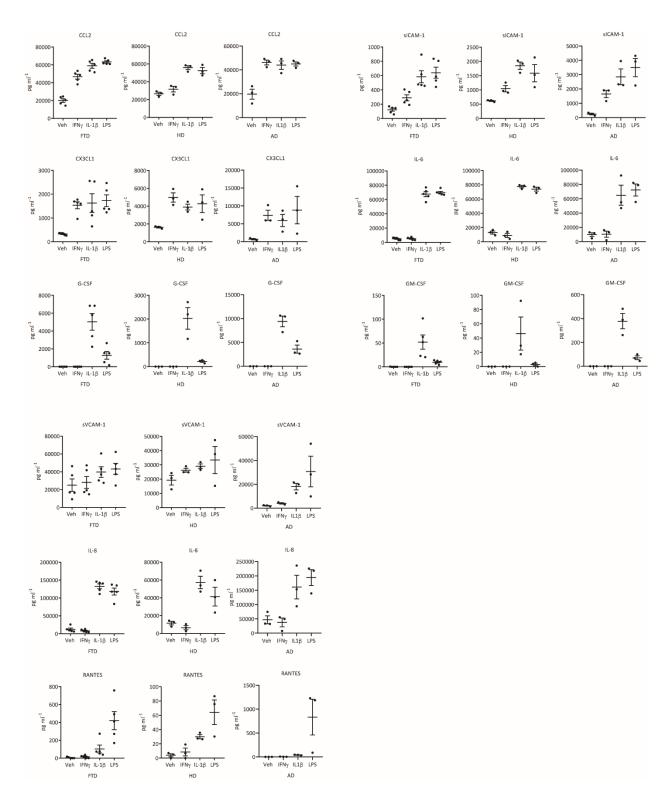


Fig. S9: Raw CBA data from analysis of choroid plexus secretions.

Raw cytokine concentrations from choroid plexus explants from three individual donors (n=3 explants per case) that were treated with vehicle, IFN γ , IL-1 β or LPS (10 ng/mL), for 24 hours. Cases used: FTD6, HC166, AZ133.

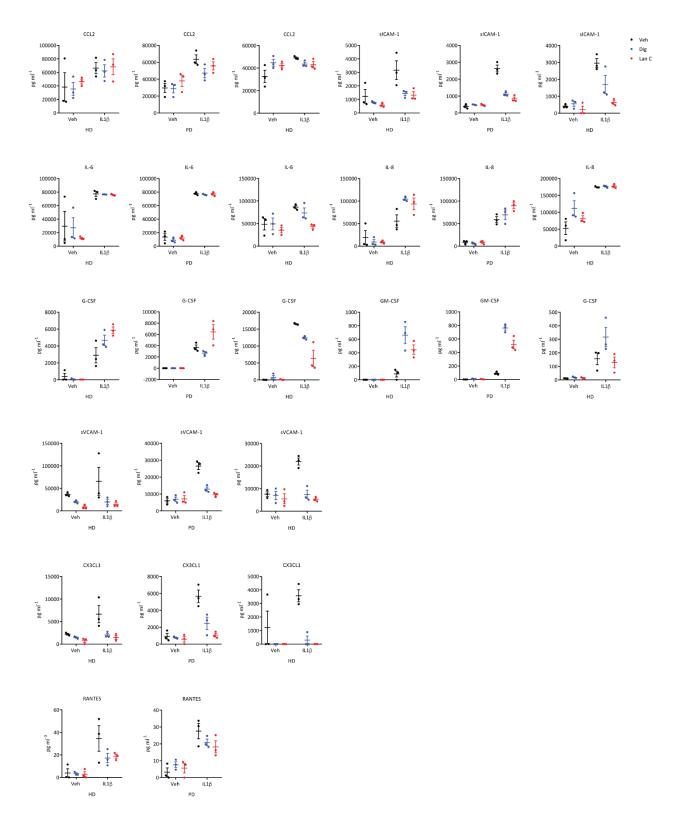


Figure S10: Raw CBA data from analysis of choroid plexus explant secretions (from Figure 8) treated with vehicle, digoxin or lanatoside C (both 10 μ M) for 24 hours followed by IL1 β (10 ng/mL) for 24 hours.

Case	Tissue source	Confirmed diagnosis	Age	Sex	PMD	Experiment	Time in
					(hr)		culture
E203	MTG	Temporal lobe epilepsy	46	F	<1	ML	Passage 4-9
E204	MTG	Temporal lobe epilepsy	45	F	<1	ML	Passage 4-9
E206	MTG	Temporal lobe epilepsy	29	F	<1	ML	Passage 4-9
E208	MTG	Temporal lobe epilepsy	52	F	<1	ML	Passage 4-9
E211	MTG	Temporal lobe epilepsy	51	F	<1	ML	Passage 4-9
E213	MTG	Temporal lobe epilepsy	23	М	<1	ML	Passage 4-9
E214	MTG	Temporal lobe epilepsy	35	F	<1	ML	Passage 4-9
E215	MTG	Temporal lobe epilepsy	29	F	<1	ML	Passage 4-9
E216	MTG	Temporal lobe epilepsy	38	М	<1	ML	Passage 4-9
SS37	TL	Paediatric epilepsy	9	М	<1	ML	Passage 1
SS42	TL	Paediatric epilepsy	8	М	<1	ML	Passage 1
SS48	TL	Paediatric epilepsy	10	F	<1	ML	Passage 1
SS50	TL	Paediatric epilepsy	3	F	<1	ML	Passage 1
SS54	TL	Paediatric epilepsy	25w	М	<1	ML	Passage 1
H238	MTG	normal	63	F	16	ML, LME	Passage 4-9
H239	MTG	normal	64	М	15.5	ML, LME	Passage 4-9
H250	meninges	normal	93	F	19	LME	7 weeks
H253	meninges	normal	96	М	24	LME, CPE	14 weeks
FTD6	Meninges, ChP	Frontotemporal	76	М	7	LME, CPE	8 weeks
		dementia					-
HC166	Meninges, ChP	Huntington's disease	84	F	22.5	LME, CPE	9 weeks
HC171	Meninges, ChP	Huntington's disease	51	М	24	LME, CPE	5 weeks
PD85	meninges/ChP	Parkinson's disease	73	М	4	LME, CPE	9 weeks
AZ129	meninges	Alzheimer's disease	81	М	4.5	LME	9 weeks
AZ133	meninges/ChP	Alzheimer's disease	96	М	21	LME, CPE	5 weeks

MTG-middle temporal gyrus, ML-monolayer cultures, ChP-choroid plexus, LME-leptomeningeal explants, CPE-choroid plexus explants

Antibody (species)	Catalogue Number (Source)	Dilution	
αSMA (mouse)	IS611 (Dako)	1/100 IHC	
CCL2 (MCP-1) (Rabbit)	ab-9669 (Abcam)	1/500 ICC	
CD31 (mouse)	M0823 (Dako)	1/500 ICC, 1/100 IHC	
CD68 (KP1)(mouse)	Ab-955(Abcam)	1/500 IHC	
CEBPδ (mouse)	sc-365546 (Santa Cruz)	1/500 ICC	
Claudin-5 (rabbit)	ab131259 (Abcam)	1/5000 ICC	
COL1A1 (mouse)	sc-293182 (Santa Cruz)	1/50 IHC	
HLA-DR (mouse)	M0775 (Dako)	1/1000 IHC	
IBA1 (goat)	ab-5076 (Abcam)	1/500 IHC	
ICAM-1 (mouse)	sc-107 (Santa Cruz)	1/500 ICC	
IL-6 (goat)	AF-206 (R&D Systems)	1/2000 ICC	
KCNJ8/Kir6.1 (rabbit)	PA5-56628	1/100 IHC	
NFĸBp65 (rabbit)	sc-107 (Santa Cruz)	1/500 ICC	
PDGFRβ (goat)	AF-385 (R&D Systems)	1/2000 ICC	
		1/200 IHC	
PDGFRβ (rabbit)	3169 (Cell Signalling)	1/100 IHC	
PDLIM3 (rabbit)	PA5-52099 (Thermo Fisher Scientific)	1/50 IHC	
PU.1 (rabbit)	2258 (Cell Signalling)	1/500 ICC	
SMAD2/3 (mouse)	sc-133098 (Santa Cruz)	1/500 ICC	
STAT1 (rabbit)	14994 (Cell Signalling)	1/500 ICC	
Streptavidin Alexa Fluor 647	S21374 (Invitrogen)	2 mg/mL (1/500)	
Transthyretin /Pre-albumin	A0002 (Dako)	1/1000	
(rabbit)			
ZO-1 (mouse)	339100 (Invitrogen)	1/500 ICC	
Lectin (UEA-1)	L8262 (SIGMA)	1/1000 IHC	
Hoechst 33258	SIGMA	1/500 ICC	
		1/10000 IHC	

Table S2. Antibodies and stains used in this study.

IHC-immunohistochemistry, ICC-immunocytochemistry

Gene		Sequence	Amplicon Length
CEBPδ	Fw	TTCAGCGCCTACATCGACTC	80 bp
	Rv	TTGAAGAGGTCGGCGAAGAG	
CCL2	Fw	CAGCCAGATGCAATCAATGCC	190 bp
	Rv	TGGAATCCTGAACCCACTTCT	
CX3CL1	Fw	ATTCTTTCCTGAGGCTGGGC	74 bp
	Rv	GGTCTTGGAGGGCAGAGAAC	
GAPDH	Fw	CATGAGAAGTATGACAACAGCCT	113 bp
	Rv	AGTCCTTCCACGATACCAAAGT	
ICAM-1	Fw	GAACCAGAGCCAGGAGACAC	84 bp
	Rv	GAGACCTCTGGCTTCGTCAG	
IL-6	Fw	TTCGGTCCAGTTGCCTTCTC	77 bp
	Rv	TCTTCTCCTGGGGGTACTGG	
IL-8	Fw	CAGAGACAGCAGAGCACACA	70 bp
	Rv	GTGAGATGGTTCCTTCCGGT	
Ki67	Fw	AGCGGAAGCTGGACGCAGAA	79 bp
	Rv	TCCAGGGGTTGGGCCTTTTCCT	
PDGFRb	Fw	CGCAAAGAAAGTGGGCGGCT	101 bp
	Rv	TGCAGGATGGAGCGGATGTGGT	
VCAM-1	Fw	TTGACTTGCAGCACCACAGG	85 bp
	Rv	TCGTCACCTTCCCATTCAGTG	

Table S3: Primers used for qPCR in this study.