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Supplementary Figures 

 
Supplementary Figure 1: Example estograms and Cᵦ l-DDT score prediction from DeepAccNet Standard, Bert 
and MSA. ​Model predictions for the same set of decoys from Figure 2 (3lhnA, 4gmqA, 3hixA; size 108, 92 and 94 
respectively). The first column shows true maps of errors, the second to fourth columns show predicted maps of 
errors, and the last column shows predicted and true Cᵦ l-DDT scores. The i, j element of the error map is the 
expectation of actual or predicted estograms between residues i and j in the model and native structure. Red and 
blue indicate that the pair of residues are too far apart and too close, respectively. The color density shows the 
magnitude of expected errors.  
 



 
Supplementary Figure 2. a​) Comparison of the variants of DeepAccNet and distance-only network on predicted 
estograms (top) and Cᵦ l-DDT scores (bottom). Each dot represents the loss for a single protein averaged over all 
decoys. Lower loss values indicate better performance. Estograms are evaluated by cross-entropy loss, and per 
residue Cᵦ l-DDT scores are evaluated by mean-squared error. ​b​) Test estogram loss plotted against four conditions; 
sequence separation, input distance, input variability (standard deviation of input distance across decoys from the 
same target), and output variability (entropy of true estogram across decoys from the same target). The loss values 
are binned in terms of x-axis properties. The mean value at each bin is shown on the y-axis, and the range of one 
z-score is shown with the shaded area. ​cd​) Dependence of Cᵦ l-DDT score loss on true Cᵦ l-DDT per-model (​c​) and 



per residue (​d​). Loss values are binned in terms of the true Cᵦ l-DDT scores. The mean of loss values at each bin is 
shown on the y-axis as a solid line, and the range of one Z-score is shown with the shaded area. ​e​) Dependence of 
estogram (left) and Cᵦ l-DDT score per residue (right) loss on protein size. Each dot is an average loss value for a 
single target protein over all decoys. 
 
 
 
 

 
Supplementary Figure 3. ab​) Predicted Cᵦ I-DDT by DeepAccNet-Bert (​a​) and DeepAccNet-MSA (​b​) correlates with 
resolutions for X-ray structures (left; Spearman-r 0.43 and 0.44 with p-value < 0.0001 for the Bert and MSA variants, 
respectively), X-ray structures of transmembrane proteins (middle; Spearman-r 0.73 and 0.74 with p-value < 0.0001 
for the Bert and MSA variants, respectively), and cryoEM structures (right; Spearman-r 0.82 and 0.84 with p-value < 
0.0001 for the Bert and MSA variants, respectively).  ​cd​) X-ray structures have higher predicted I-DDT values by 
DeepAccNet-Bert and -MSA than NMR structures. 



 
Supplementary Figure 4. DAN-Bert and DAN-Standard outperform DAN-MSA when protein has no 
homologous sequence information. a​) Global EMA results of 6 targets from CASP14 which had no homologous 
sequence (UniClust30 ​1​ January 2020). For each target, Spearman-r between the predicted and the actual Cᵦ l-DDT 
across 150 models generated by CASP14 participants is shown. left) DAN-MSA versus DAN-Standard, right) 
DAN-MSA versus DAN-Bert; DAN-MSA on the x-axis and the other on the y-axis. ​b​) Scatter plots of EMA results by 
DAN-variants on a CASP14 EMA target T1043 (highlighted by purple circles in the panel (a).  

https://paperpile.com/c/LNUIv0/aO6cB


 
Supplementary Figure 5. Comparison of the performance of single model accuracy estimation (EMA) 
methods on CAMEO data.​ (Top, middle) Performance of local accuracy estimation measured by the mean of area 
under receiver operator characteristic (ROC, top) curve and precision-recall curve (PR, middle) for predicting 
mis-modeled residues per sample (all-atom l-DDT< 0.6). Error bars show standard deviation. (Bottom) Performance 
of global accuracy estimation measured by the mean of the Spearman correlation coefficient (​r​-value) of predicted 
and actual global l-DDT scores. Since the number of models per target was small, correlation was measured globally 
across all targets. The blue horizontal lines show the value of DeepAccNet-Standard. The methods to the left of the 
dotted line do not use coevolutionary information. Quasi-single models are shown in pink. 



 
Supplementary Figure 6. Performances of the methods on CASP13 refinement category targets. 
Improvements in all-atom l-DDT scores over starting models are shown. Two leading groups in CASP13, Feig and 
Baker, are brought in for the comparison against refinement with DeepAccNet; Feig group ran long MD simulations, 
while BAKER group ran the non-DL refinement method presented in the main text with subsequent short MD 
simulations. Net all-atom l-DDT changes for both of these groups range within 3~4%, compared to 7% by 
DeepAccNet-guided refinement. 9 targets from the CASP13 refinement category are removed from the analysis for 
which the native structures contain heavy oligomeric contacts or are determined at low resolutions (>3Å). 
 
 
 
 
 
 
 
 
 



 
Supplementary Figure 7. Detailed analyses of refinement results.​ ​a​)​ ​Actual and predicted model accuracy 
improvements throughout the refinement trajectory. Model quality (actual in blue and predicted in gray, Cᵦ l-DDT is 
used for direct comparison), averaged over 73 benchmark cases, is shown through the refinement process. Points 
and bars show the model1 quality and the quality range of 50 models in the pool, respectively.  ​b​)​ ​3-state secondary 
structure type at the reconstructed regions (H:helix, E:extended, C:coil). Residue-wise fractions of each type are 
plotted according to the native structure (left) and to the starting model structure (middle), respectively. (right) 
Pre-refinement l-DDT values at reconstructed regions and the rest preserved regions, shown in red and blue colors, 
respectively (average by circles; standard deviations by error bars). ​c​) Breakdown of accuracy improvements by 
secondary structure types. Light colored boxes represent improvements without DeepAccNet-Standard, while darker 
regions of the boxes represent additional improvements gained with DeepAccNet-Standard; these are calculated over 
the complete benchmark set. (left panel) Similar improvements are observed across secondary structure types. (right 
panel) Improvements in model secondary structure accuracy are evaluated on 3- or 8-states following DSSP 
annotations ​2​; improvements are evident in both 3 state and 8 state local structure prediction. (bottom panel)​ d​) 
Correlation between refinement performance and highest structural/sequence similarity of the target to the training 
set proteins. (left panel). Correlation between the maximum structural similarity (x-axis) versus the starting/refined 
model quality (y-axis) shown in TM-score ​3​. (right panel) Correlation between the maximum sequence identity (%) 
versus the refinement performance (in l-DDT change). In both panels, targets highlighted in Figure 4 are shown in 
colored arrows. 

https://paperpile.com/c/LNUIv0/GvcwK
https://paperpile.com/c/LNUIv0/A3pat


 
Supplementary Figure 8. Breakdown of Figure 4d: Comparison of refinement performances by EMA methods 
or extra information utilized. a​) Refinement performance with different EMA methods taken during refinement, 
compared to that of our baseline approach (x-axis) ​4,5​ using model consensus for 1D (region detection) and 2D 
(residue pair confidence) and Rosetta energy for 0D (global ranking).  ​b​) Refinement performance gained by 
providing extra input from Bert and MSA features, compared to DeepAccNet without such extra input features 
(x-axis).  

https://paperpile.com/c/LNUIv0/NWQ6z+P87Bm


 
Supplementary Figure 9. The model quality of the final iteration structural pool and the selected one from the 
refinement runs using DeepAccNet-Standard, -Bert, and -MSA.​ 1st and 3rd quartile of the model qualities in the 
final iteration models shown in cyan bars, their mean in red dots, selected by DeepAccNet (without structural 
averaging) in blue dots, and individual values in gray crosses.  
 
 
 
 
 
 
 
 



 
Supplementary Figure 10. Numbers of samples that participated in loss analysis based on starting l-DDT 
scores.  
 
 
 

 
Supplementary Figure 11. Assessment of binary correct/incorrect predictions. ​Actual error values were 
grouped into correct and incorrect bins. In each panel, a distance is counted as correct if the actual distance error 
(from that of the native structure) is within a certain range, while a prediction is counted correct if the sum of 
probability over the given range in the estogram is above the threshold value (x-axis). Error range definitions are 
[-0.5, 0.5], [-1, 1] , [-2, 2], and [-4, 4] Å from the left to the right panel. The dotted lines show recall values and solid 
lines show precision values. The grey lines visualize the thresholding of 0.7 used in the downstream refinement 
process. 
 



Supplementary Tables 
 

 
Supplementary Table 1: ​Performance of the variants of distance-based networks trained with and without a certain 
class of features. Performance is measured by cross-entropy for estograms and masks and mean squared error for 
Cᵦ l-DDT scores. For each setting, we ensembled the prediction from four models with the best validation 
performance from the same training trajectory (see Methods). Columns 2-4 report the quality of the three predictions 
averaged over all held-out decoy structures. Columns 5-7 report the quality of the predictions on decoys with low true 
quality (global Cᵦ l-DDT < 0.7). Columns 8-10 report the quality of the predictions on decoys with high true quality 
(global Cᵦ l-DDT > 0.7). The decoys used for evaluation in columns 5-10 are subsets of the decoys used in columns 
2-4. 
 
 

 
Supplementary Table 2:​ ​List of X-ray native structures with low C​ ​β-lddt despite their high experimental 
resolution. 
 
 
 
 
 
 
 
 

Models 
Held-out proteins 
(# proteins=285) 

True global  
Cᵦ l-DDT < 0.7 

True global  
Cᵦ l-DDT > 0.7 

Esto Mask l-DDT Esto Mask l-DDT Esto Mask l-DDT 

(i) DAN-Standard 1.805 0.200 0.012 1.939 0.250 0.014 1.567 0.110 0.009 

(ii)  DAN-Bert 1.697 0.171 0.009 1.781 0.208 0.010 1.548 0.106 0.009 

(iii) DAN-MSA 1.557 0.135 0.008 1.594 0.158 0.009 1.489 0.094 0.008 

(iv) Cᵦ distance 1.901 0.217 0.017 2.022 0.270 0.017 1.685 0.123 0.016 

(v) 3D conv 1.808 0.200 0.012 1.936 0.250 0.013 1.581 0.111 0.010 

(vi) Bert 1.761 0.181 0.012 1.836 0.217 0.012 1.628 0.115 0.012 

(vii) 3D+Bert 1.714 0.175 0.010 1.794 0.211 0.010 1.570 0.110 0.010 

(viii) Rosetta 1.854 0.209 0.013 1.986 0.262 0.015 1.617 0.115 0.011 

(ix) AA-related 1.863 0.208 0.014 1.977 0.258 0.014 1.659 0.119 0.014 

(x) Sec struct 1.922 0.222 0.017 2.049 0.275 0.018 1.695 0.127 0.015 

(xi) Angles and 
orientations 

1.870 0.212 0.015 2.006 0.266 0.017 1.627 0.117 0.012 

6B17, 3URO, 3TWG, 5DYR, 6HR0, 1P9G, 4G4L, 6EWN, 4HB6, 5JQF, 4U2W, 4HB8, 1MBN, 4HAJ, 1CYC, 
1VXB, 3H4N, 2SBT, 1NXB, 4HBF, 1G7V, 2EWI, 1J0O, 2SNS, 4HDL, 3SJ4, 3H34, 4D5M, 1MBS, 1OS6, 2EWU, 
1LWK, 1LYZ, 3TRV, 3SJ0, 4Z0W, 1ACX, 1PMK, 3TJW, 1HH5, 1M1R, 6DK5, 2ZVS, 3D6T, 2AOA, 3SEL, 6FM8, 
5YP8, 4EFX, 1TGL, 3SJ1, 1TIA, 2EWK, 2XJI, 5HDD, 6CDX, 5VBD, 4HC3, 3NIR, 2YYX, 1HGU 



 

 
Supplementary Table 3: ​Significant tests to compare among the DeepAccNet variants. Wilcoxon signed-rank test 
was used to analyze *1~6 as the distribution of the difference between two variants's means is not assumed to be 
normally distributed. All differences in means are statistically significant between variants. For *7, we only have one 
r-value per variant unlike *6. Thus, we applied Fisher's Z transformation and analyzed the statistical significance 
based on the observed z test statistic.  
  

 Standard vs. Bert Bert vs. MSA Standard vs. MSA 

Test set (MSE loss of 
Cᵦ l-DDT) ​*1 

p-value < 0.0001 p-value < 0.0001 p-value < 0.0001 

Test set (Cross-entropy 
loss of Estogram)​ *2 

p-value < 0.0001 p-value < 0.0001 p-value < 0.0001 

CASP13 (ROC AUC) ​*3 p-value < 0.0001 p-value < 0.0001 p-value < 0.0001 

CASP13 (Spearman r) ​*4 p-value < 0.0001 p-value < 0.0001 p-value < 0.0001 

CAMEO (ROC AUC) ​*5 p-value < 0.0001 p-value < 0.0001 p-value < 0.0001 

CAMEO (PR AUC) ​*6 p-value < 0.0001 p-value < 0.0001 p-value < 0.0001 

CAMEO (Spearman r) ​*7 p-value = 0.069 p-value = 0.0003 p-value = 0.080 



 

 
Supplementary Table 4:​ ​Generated features for all 9 major feature classes. ​Some features are scaled and 
normalized to a reasonable range. Please refer to the code available at github for further details on the normalization 
scheme. 
  

Distance-based i) Cᵦ to Cᵦ distance map, Cɑ is taken for GLY, ii) Cɑ to Tip-atom distance map and its 
transpose, iii) Tip-atom to Tip-atom distance map, and iv) sequence separation map. 
The distance maps (i~iv) go through a variance reduction process with ​arcsinh(x).​ See 
Supplementary Table 6 for the definition of tip atoms. 

Amino acid 
properties 

i) One-hot encoded amino acids. ii) Blosum62 scores ​6​. iii) Per amino-acid feature sets 
from Meiler et al ​7​. 

Rosetta energy 
terms 

i) Two-body energy terms: fa_atr, fa_rep, fa_sol, lk_ball_wtd, fa_elec, hbond_bb_sc, 
and hbond_sc. ii) One-body energy terms: p_aa_pp, rama_prepro, omega, fa_dun. iii) 
Presence of backbone-to-backbone hydrogen bonds. 

Backbone angles 
and lengths 

i) Phi, Psi, and Omega angles. ii) Standardized length between backbone atoms. 

residue-residue 
orientations 

i) Full 6 degrees of freedom of translation and rotation. ii) cosine and sine of dihedral 
and planar angles defined by Yang et al ​8​. 

Secondary 
structures 

1-hot encoded representation of three state secondary structures given by DSSP 
solver. 

Local atomic 
environments 

24 by 24 by 24 voxels of size 0.8​Å. In total, it covers an area of size 19.2Å by 19.2Å by 
19.2Å. There are 20 channels for 20 atom types defined by Rosetta. The coordinate 
frame is fixed based on backbone N,Ca,C atoms ​9​.  

Multiple sequence 
alignment 

Inter-residue distance (30 by N by N, where N is protein size) predictions from trRosetta 
8​ gives indirect access to evolutionary multiple sequence alignments  

Bert embeddings Attention heads from the last attention layer of the ProtBert-BFD100 model ​10​ (16 by N 
by N, where N is protein size) 

https://paperpile.com/c/LNUIv0/TP6u2
https://paperpile.com/c/LNUIv0/1LAOT
https://paperpile.com/c/LNUIv0/xlij4
https://paperpile.com/c/LNUIv0/hkgt
https://paperpile.com/c/LNUIv0/xlij4
https://paperpile.com/c/LNUIv0/B7Ttm


 

 
Supplementary Table 5:​ ​Model architectures for the DeepAccNet. ​Please refer to the code available at github for 
further details on the implementation. 
 

 
Supplementary Table 6:​ ​Definitions of tip atoms for each residue. 
 
 
 
 
 
 
 
 
 
 
 

Layers groups Descriptions 

3D convolution layers This group has four layers of 3D convolution operations with 20, 20, 30, and 20 filters 
with sizes of 1, 3, 4, 4, respectively. Elu activation is used. Mean pooling of filter size 4 
with stride 4 was performed at the end. 

Feature merging  This operation merges flattened 3D conv outputs, 2D, and 1D features (​see 
Methods​). One layer of 2D convolution with 32 filters of size 1 and instance 
normalization are applied. Elu activation is then used. Finally, the output is upsampled 
to 256 channels for the following ResNet operations. 

Residual blocks 1 Each residual block consists of (i) elu activation, (ii) projection down to 128 channels, 
(iii) elu activation layer (iv) 3 by 3 convolution, (V) elu activation, (vi) projection up to 
256 channels. Instance normalization operations are applied. Residual connection 
adds inputs to (i) with outputs of (vi). 20 residual blocks are stacked. Dilation is 
applied to (iv) with a cycling dilation size of 1,2,4,8.  

Residual blocks 2 for 
estograms and masks 

Two arms of four residual blocks are applied to predict estograms and masks. The 
same numbers of channels (256-->128-->256) are used. 

Cᵦ l-DDT calculation 
layers 

Cᵦ l-DDT values are calculated within gpu memory based on predicted estograms and 
masks (​see Methods)​.  

Loss (i) Estograms are evaluated with categorical cross-entropy loss. (ii) Masks are 
evaluated with binary cross-entropy loss. (iii) l-DDT values are evaluated with mean 
squared loss. Global loss is defined and shown in Method. 

amino 
acid 

ALA CYS ASP ASN GLU GLN PHE HIS ILE GLY 

tip 
atom 

CB SG CG CG CD CD CZ NE2 CD1 CA 

amino 
acid 

LEU MET ARG LYS PRO VAL TYR TRP SER THR 

tip 
atom 

CG SD CZ NZ CG CB OH CH2 OG OG1 



Supplementary References 

1. Mirdita, M. ​et al.​ Uniclust databases of clustered and deeply annotated protein sequences and 

alignments. ​Nucleic Acids Res.​ 45, D170–D176 (2017). 

2. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of 

hydrogen-bonded and geometrical features. ​Biopolymers​ 22, 2577–2637 (1983). 

3. Zhang, Y. & Skolnick, J. TM-align: a protein structure alignment algorithm based on the TM-score. 

Nucleic Acids Res.​ 33, 2302–2309 (2005). 

4. Park, H. ​et al.​ High-accuracy refinement using Rosetta in CASP13. ​Proteins: Structure, Function, and 

Bioinformatics​ vol. 87 1276–1282 (2019). 

5. Park, H., Ovchinnikov, S., Kim, D. E., DiMaio, F. & Baker, D. Protein homology model refinement by 

large-scale energy optimization. ​Proc. Natl. Acad. Sci. U. S. A.​ 115, 3054–3059 (2018). 

6. Henikoff, S. & Henikoff, J. G. Amino acid substitution matrices from protein blocks. ​Proc. Natl. Acad. Sci. 

U. S. A.​ 89, 10915–10919 (1992). 

7. Meiler, J., Zeidler, A., Schmaschke, F. & Muller, M. Generation and evaluation of dimension-reduced 

amino acid parameter representations by artificial neural networks. ​Journal of Molecular Modeling​ vol. 7 

360–369 (2001). 

8. Yang, J. ​et al.​ Improved protein structure prediction using predicted interresidue orientations. ​Proc. Natl. 

Acad. Sci. U. S. A.​ 117, 1496–1503 (2020). 

9. Pagès, G., Charmettant, B. & Grudinin, S. Protein model quality assessment using 3D oriented 

convolutional neural networks. ​Bioinformatics​ 35, 3313–3319 (2019). 

10. Elnaggar, A. ​et al.​ ProtTrans: Towards Cracking the Language of Life’s Code Through Self-Supervised 

Deep Learning and High Performance Computing. doi:​10.1101/2020.07.12.199554​. 

 

http://paperpile.com/b/LNUIv0/aO6cB
http://paperpile.com/b/LNUIv0/aO6cB
http://paperpile.com/b/LNUIv0/aO6cB
http://paperpile.com/b/LNUIv0/aO6cB
http://paperpile.com/b/LNUIv0/aO6cB
http://paperpile.com/b/LNUIv0/aO6cB
http://paperpile.com/b/LNUIv0/GvcwK
http://paperpile.com/b/LNUIv0/GvcwK
http://paperpile.com/b/LNUIv0/GvcwK
http://paperpile.com/b/LNUIv0/GvcwK
http://paperpile.com/b/LNUIv0/A3pat
http://paperpile.com/b/LNUIv0/A3pat
http://paperpile.com/b/LNUIv0/A3pat
http://paperpile.com/b/LNUIv0/NWQ6z
http://paperpile.com/b/LNUIv0/NWQ6z
http://paperpile.com/b/LNUIv0/NWQ6z
http://paperpile.com/b/LNUIv0/NWQ6z
http://paperpile.com/b/LNUIv0/NWQ6z
http://paperpile.com/b/LNUIv0/NWQ6z
http://paperpile.com/b/LNUIv0/P87Bm
http://paperpile.com/b/LNUIv0/P87Bm
http://paperpile.com/b/LNUIv0/P87Bm
http://paperpile.com/b/LNUIv0/P87Bm
http://paperpile.com/b/LNUIv0/TP6u2
http://paperpile.com/b/LNUIv0/TP6u2
http://paperpile.com/b/LNUIv0/TP6u2
http://paperpile.com/b/LNUIv0/TP6u2
http://paperpile.com/b/LNUIv0/1LAOT
http://paperpile.com/b/LNUIv0/1LAOT
http://paperpile.com/b/LNUIv0/1LAOT
http://paperpile.com/b/LNUIv0/1LAOT
http://paperpile.com/b/LNUIv0/1LAOT
http://paperpile.com/b/LNUIv0/xlij4
http://paperpile.com/b/LNUIv0/xlij4
http://paperpile.com/b/LNUIv0/xlij4
http://paperpile.com/b/LNUIv0/xlij4
http://paperpile.com/b/LNUIv0/xlij4
http://paperpile.com/b/LNUIv0/xlij4
http://paperpile.com/b/LNUIv0/hkgt
http://paperpile.com/b/LNUIv0/hkgt
http://paperpile.com/b/LNUIv0/hkgt
http://paperpile.com/b/LNUIv0/hkgt
http://paperpile.com/b/LNUIv0/B7Ttm
http://paperpile.com/b/LNUIv0/B7Ttm
http://paperpile.com/b/LNUIv0/B7Ttm
http://paperpile.com/b/LNUIv0/B7Ttm
http://dx.doi.org/10.1101/2020.07.12.199554
http://paperpile.com/b/LNUIv0/B7Ttm

