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Supplementary Fig. 1. SnapTools preprocessing workflow. Demultiplexing: 
SnapTools first de-multiplexes the fastq files by adding the cell barcodes to the beginning 
of each read name; Pre-processing: raw sequencing reads are aligned to the reference 
genome using BWA1 followed by filtration of erroneous alignments. A snap file is 
generated to store indexed reads and multiple cell matrices including cell-by-peak, cell-
by-gene and cell-by-bin matrix for subsequent analysis.  
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Supplementary Fig. 2. Choosing the optimal bin size. a UMAP visualization of 
landmark cell types identified in three benchmarking datasets (Methods section). UMAP 
embedding was computed using cisTopic2 and cell types were manually annotated based 
on the gene accessibility score at canonical marker genes (Methods section). Blue dash 
line highlights the annotated rare cell populations that account for less than 2% of the 
total population. b Relationship between connectivity index (CI) and bin sizes. 
Connectivity index were calculated between landmark cell types in the low dimension 
manifold using function “connectivity” in R package “clv”. A lower CI indicates a better 
separation of landmark cell types. c UMAP representation of three benchmarking 
datasets generated using SnapATAC with bin size of 5kb. Cells colored by read depth to 
illustrate the sequencing depth effect. d Cells are colored by cluster labels identified by 
SnapATAC. Data source is listed in Supplementary Table 1.  
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Supplementary Fig. 3. SnapATAC is robust to sequencing depth. Two 
dimensional UMAP representation of three benchmarking datasets analyzed by four 
methods (a) SnapATAC without normalization; (b) SnapATAC with normalization; (c) 
cisTopic and (d) Latent Sematic Analysis (LSA)3. Cells are colored by log-scaled read 
depth. Read depth bias is quantified by entropy as described in the Methods section. Data 
source is listed in Supplementary Table 1.  
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Supplementary Fig. 4. SnapATAC is robust to multiple sources of potential 
biases. Potential biases in single cell ATAC-seq dataset are projected onto the UMAP 
visualization generated using different analysis methods (a) SnapATAC (b) cisTopic2 and 
(c) LSA3. Duplicate: percentage of fragments that are PCR duplicates. TSS: percentage of 
fragments overlapping or are within 1kb of a TSS. TSS position is based on the 
GENECODE V28 (Ensemble 92). DNase: the percentage of fragments overlapping a 
master DNase peak list. The DNase peak list is created by combining all ENCODE DNase 
peaks from hg19. Blacklist: the percentage of fragments overlapping with the ENCODE 
blacklist. FRiP: the percentage of fragments overlapping with the peaks defined from the 
aggregate signal. Mapping: the percentage of fragments that are uniquely mapped. chrM: 
the percentage of fragments mapped to mitochondria DNA. The source of the dataset used 
in this plot (5k PBMC 10X) is listed in Supplementary Table 1. 
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Supplementary Fig. 5. Ensemble Nyström method improves the scalability 
and stability without sacrificing the performance. a SnapATAC was applied to 
the single cell ATAC-seq dataset3 that contained over 80k cells using different number of 
landmark cells (k) ranging from 1k to 10k. For each k, we performed clustering for n=5 
times using different sets of randomly selected landmarks. A box plot comparing the 
performance of clustering using different k. The performance is evaluated using Adjusted 
Rank Index (ARI). Data are presented as boxplot as median values +/- 25% percentile. b 
A box plot comparing the stability of clustering results between five samplings (pairwise 
comparison n=10). Data are presented as boxplot as median values +/- 25% percentile. c 
To evaluate the sensitivity of identifying rare cell types, we spiked in 1% mouse Pastki cells 
generated using the same protocol in Cusanovich 20154 and this rare cell population was 
recapitulated using 10,000 landmarks (right). d To compare the clustering 
reproducibility between standard and ensemble Nyström5 sampling method, we 
performed clustering using both methods on Cusanovich 20183 for five times with 
different randomly selected landmark cells. The clustering reproducibility quantified by 
ARI (adjusted rank index) between random trails is significantly higher for the ensemble 
Nyström method than the standard Nyström method (two-tailed t-test p = 1e-4). Data are 
presented as 1.5 times interquartile range below 25% percentile, 25% percentile, 50% 
percentile, 75% percentile and 1.5 times interquartile range above 75% percentile.  
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Supplementary Fig. 6. SnapATAC predicts gene and enhancer pairing by 
integrating scATAC-seq and scRNA-seq. a Distribution of cell type prediction score 
for single cell ATAC-seq (5K PBMC 10X) using matched single cell RNA-seq. When 
predicting the cell type for scATAC-seq using corresponding scRNA-seq dataset (10X 
PBMC scRNA-seq), each cell in scATAC-seq was assigned with a prediction score 
indicating the confidence of the prediction. It ranges from 0 to 1, a higher score indicates 
a higher confidence. Using 0.5 as cutoff as suggested in Seurat6, over 98% of cells in 
scATAC-seq are confidently assigned to a cell type defined in scRNA-seq. b Distance 
decay curve for the association (-logPvalue) between regulatory elements and the TSS of 
their putative target genes. (c-d) AUROC and AUPRC between cis-eQTL pairs and 
negative control sets. See Methods section for how the control sets are selected.   
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Supplementary Fig. 7. Evaluation of clustering accuracy of SnapATAC 
relative to alternative methods on simulated datasets. T-SNE visualization of 
clustering results on 1,000 simulated cells sampled from 10 bulk ATAC-seq datasets (see 
Methods section for the simulation) analyzed by five different methods – chromVAR7, 
LSA3, Cicero8, Cis-Topic2 and SnapATAC. Clustering results are compared to the original 
cell type label and the accuracy is estimated using Normalized Mutual Index (nmi). Mono: 
monocyte; Mega: megakaryocyte; GMPC: granulocyte monocyte progenitor cell; MPC: 
megakaryocyte progenitor cell; NPT: neutrophil; G1E: G1E; T cell: regulatory T cell; 
MEPC: megakaryocyte-erythroid progenitor cell; HSC: hematopoietic stem cell.  
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Supplementary Fig. 8. Evaluation of clustering accuracy relative to 
alternative methods on published single cell ATAC-seq datasets. SnapATAC 
(left), CisTopic (middle) and LSA (right) clustering performance on single cell ATAC-seq 
dataset from ten human cell lines generated using Fluidigm C1 platform7,9. a Clustering 
results are visualized using t-SNE and cells are colored by cluster labels identified by each 
of analysis methods. b T-SNE visualization of the human cells colored by the cell type 
labels. Clustering accuracy of each method is estimated by comparing the predicted 
clustering labels to the cell type labels. Blast: acute myeloid leukemia blast cells; LSC: 
acute myeloid leukemia leukemic stem cells; LMPP: lymphoid-primed multipotent 
progenitors; Mono: monocyte; HL60: HL-60 promyeloblast cell line; TF1: TF-1 
erythroblast cell line; GM: GM12878 lymphoblastoid cell line; BJ: human fibroblast cell 
line; H1: H1 human embryonic stem cell line.  
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Supplementary Fig. 9. Gene accessibility score of canonical marker genes 
projected onto t-SNE embedding for snATAC-seq dataset from mouse 
secondary motor cortex. T-SNE is generated using SnapATAC; cell type specific 
marker genes were defined from previous single cell transcriptomic analysis in the adult 
mouse brain10; gene accessibility score is calculated using SnapATAC (Methods section). 
Data source is listed in Supplementary Table 1. 
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Supplementary Fig. 10. Ad hoc evaluation of clustering sensitivity of 
SnapATAC relative to alternative methods on mouse secondary motor cortex 
snATAC-seq. Three methods (cisTopic, LSA and SnapATAC) were used to analyze a 
dataset that contained ~10k single nucleus ATAC-seq profiles from the mouse secondary 
motor cortex generated in this study. Pairwise comparison of the clustering results is 
shown by projecting the cluster label identified using one method onto the t-SNE 
visualization generated by another method (cluster vs. visualization). Black dash line 
circles highlight the rare pollutions (Sst, Pv, L6b and L6.CT) that were only identified by 
SnapATAC. Data source is listed in Supplementary Table 1. 
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Supplementary Fig. 11. Off-peak reads distinguish major cell types in 
heterogenous samples. (a-c) SnapATAC clustering result on three benchmarking 
datasets using all bins versus clustering result only using bins that are not overlapped 
with peaks. Data source is listed in Supplementary Table 1. 
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Supplementary Fig. 12. Off-peak reads reflect higher-order chromatin 
structure. At 500kb bin resolution, profile of compartments identified using Hi-C11 in 
GM12878 overlaid the density of “off-peak” reads for 314 cells from GM12878 10X 
scATAC-seq library. Source of the data used for generating this plot is listed in 
Supplementary Table 1.  
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Supplementary Fig. 13. SnapATAC is robust to technical variation. Two-
dimensional t-SNE visualization of four benchmarking datasets generated using 
SnapATAC. Cells are color by cluster label (left) and sample label (right). a 15k PBMC 
(10X) – a combination of two datasets (PBMC 5k and 10k) publicly available from 10X 
genomics. b MOs (snATAC) – an in-house dataset that contains two biological replicates 
from secondary motor cortex in the adult mouse brain generated using single nucleus 
ATAC-seq. c Mouse Atlas (Cusanovich 2018)3 – a published dataset that contains over 
80K cells from 13 different mouse tissues generated using multiplexing single cell ATAC-
seq. d Mouse Brain (Lareau dscATAC)12 – a published dataset that contains 46,652 cells 
from 8 samples in the adult mouse brain generated using BioRad droplet-based single cell 
ATAC-seq. Source of the datasets used for generating this plot is listed in Supplementary 
Table 1.  
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Supplementary Fig. 14. SnapATAC eliminates batch effect using Harmony13. 
The joint UMAP visualization of two datasets of mouse brain generated using 
combinatorial indexing single nucleus ATAC-seq (MOs-M1 snATAC) and droplet-based 
platform (Mouse Brain 10X) before (a) and after (b) performing batch effect correction 
using Harmony. Data source is listed in Supplementary Table 1. 
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Supplementary Fig. 15. Single nucleus ATAC-seq datasets are reproducible 
between biological replicates. a Illustration of dissection. Posterior view of three 0.6 
mm coronal slices from which the secondary motor cortex (MOs) was dissected. The right 
side on each image depicts the corresponding view from the Allen Brain Atlas. The left 
side correspond to the Nissl staining of the posterior side of each slice. The MOs region 
was manually dissected according to the dashed lines on each slice and following the MOs 
as depicted in plates 27, 33, and 39 of the Allen Brain Atlas (left side images in figure). 
Each slice contains two biological replicates named as A1, A2, M1, M2, P1 and P2 (A: 
Anterior; M: Middle; P: Posterior). In this study, A1, M1 and P1 is combined as replicate 
1 and A2, M2 and P2 are combined as replicate 2. b Genome-browser view of aggregate 
signal for two biological replicates. c Pearson correlation of count per million (CPM) at 
peaks between two replicates. d Insert size distribution and e TSS enrichment score for 
two biological replicates. 
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Supplementary Fig. 16. Barcode selection of MOs. a Cells of unique fragments 
within the range of 1,000-100,000 and fragments in promoter ratio within the range of 
0.2-0.7 were selected. This resulted in 30,409 and 30,205 nuclei for two replicates. b With 
5kb cell-by-bin matrix as input matrix, putative doublets were identified using Scrublets14, 
which predicted 2,555 (8.4%) and 2,467 (8.9%) nuclei to be doublets for each replicate. 
The predicted doublet ratio is similar to the theoretical calculation of doublet ratio for 
multiplexing single cell ATAC-seq experiment4,15. 
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Supplementary Fig. 17. Consensus clustering of MOs. a Five clustering results 
were generated using SnapATAC with different set of landmarks (10,000). b These five 
clustering solutions were combined to create a consensus clustering which identified 20 
clusters in MOs (Methods section). 
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Supplementary Fig. 18. MOs clustering result is reproducible between 
biological replicates. (a-b) T-SNE visualization of cells from two biological replicates. 
c Percentage of 20 major clusters is highly reproducible between two biological replicates 
(Spearman's Rank Correlation Coefficient r=0.99 and P-value = 1.6e-23; n = 20 major 
clusters as shown in Fig. 5a). d T-SNE visualization of cells with color scaled by 
sequencing depth.  
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Supplementary Fig. 19. Gene accessibility score of canonical marker genes 
projected onto MOs t-SNE embedding to guide the cluster annotation. T-SNE 
is generated using SnapATAC for MOs; cell type specific marker genes was defined from 
previous single cell transcriptomic analysis in adult mouse brain10; gene accessibility 
score is calculated using SnapATAC (Methods section) and projected to the t-SNE 
embedding.  
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Supplementary Fig. 20. Iterative clustering identifies 17 GABAergic neuronal 
subtypes. a Iterative clustering of 5,940 GABAergic neurons identified 17 distinct cell 
clusters. b Cluster composition was highly reproducible between two biological replicates 
(n=17). c TSNE visualization of 5,940 GABAergic neurons colored by cell types identified 
in the initial clustering. Black circles mark clusters that are potential doublets, a mixture 
of multiple cell types. d TSNE plot of GABAergic neurons colored by sequencing depth. 
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Supplementary Fig. 21. Gene accessibility score of marker genes projected 
onto t-SNE embedding from GABAergic neurons to guide the cluster 
annotation. Iterative clustering is performed against GABAergic neurons to identify 
subtypes. Twenty eight cell type specific marker genes were defined from previous single 
cell transcriptomic analysis in adult mouse brain10; gene accessibility score is calculated 
using SnapATAC (Methods section).  
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Supplementary Fig. 22.  Genome browser view of aggregate signal for each 
of the major cell populations identified in the adult mouse brain.   
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Supplementary Fig. 23. SnapATAC uncovers novel candidate cis-regulatory 
elements in rare cell types. a Genome browser view of 20Mb region flanking gene 
Vip. Dash lines highlight five regulatory elements specific to Vip subtypes that are under-
represented in the conventional bulk ATAC-seq signal. b Over fifty percent of the 
regulatory elements identified from 20 major cell populations are not detected from bulk 
ATAC-seq data. c Sequence conservation comparison between the new elements and 
randomly chosen genomic regions (n=212,730; Wilcoxon Rank Sum p < 1e-22). Data are 
presented as 1.5 times interquartile range below 25% percentile, 25% percentile, 50% 
percentile, 75% percentile and 1.5 times interquartile range above 75% percentile. d Top 
seven motifs enriched in Pv-specific new elements (poisson p computed by HOMER16). e 
Examples of four new elements that were previously tested positive in transgenic mouse 
assays (image from VISTA database17) with enhancer ID below. Bulk: Bulk ATAC-seq; 
Asc: aggregated signal from astrocyte population (ASC) in the adult mouse brain as shown 
in Fig. 5. 
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Supplementary Fig. 24. Joint embedding for query (Mouse Brain 10X) and 
reference dataset (MOs snATAC). The query dataset (10X) is projected onto the low 
dimension embedding space precomputed for the reference dataset (snATAC). Batch 
effect is corrected using Harmony. Pairwise plot of the first four dimentions in which cells 
are colored by dataset - red for query cells (Mouse Brain 10X) and black for reference cells 
(MOs snATAC). Data source as listed in Supplementary Table 1.  
  



 34 

 
 
Supplementary Fig. 25. SnapATAC is robust for supervised annotation of 
datasets containing cell types missing in the reference atlas. a Two-dimensional 
t-SNE visualization of the reference dataset MOs (snATAC). b A five-fold cross validation 
is performed to this reference dataset. For each fold, we introduce perturbation to the 80% 
training dataset by randomly dropping one cell type (Asc, Mgc, L2/3b, CGE and L6.IT). 
We then predict on the 20% test dataset using the model learned from the perturbed 
training dataset. The prediction accuracy for each fold is shown in b and cell type removed 
from the training dataset are highlighted by the dash-line circles. 
 
 
  



 35 

 
Supplementary Fig. 26. Doublets detection using Scrublet14. a T-SNE 
representation of a dataset (hgmm_1k 10X) that contained 1,000 human (GM12878) and 
mouse (A20) cells.  Cells are colored by species determined based on the alignment ratio 
between human and mouse genome. Orange: A20; blue: GM12878; green: putative 
doublets. b Distribution of doublet score for putative doublets and simulated doublets 
estimated using Scrublet14. c Doublets are predicted using cell-by-peak and cell-by-bin 
matrix separately. Venn diagram shows the overlap between Scrublet-predicted doublets 
using peak or bin matrix and doublets identified based on alignment ratio. d Doublets 
scores projected onto the UMAP embedding. 
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Supplementary Fig. 27. Nuclei sorting strategy. Gating strategy for nuclei sorting 
in snATAC-seq after tagmentatioon. 
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Abbreviation Data Source URL 

5K PBMC (10X) 10X genomics 

https://support.10xgenomics.com/single-
cell-
atac/datasets/1.2.0/atac_pbmc_5k_nextgem 

15K PBMC (10X) 10X genomics 

https://support.10xgenomics.com/single-
cell-
atac/datasets/1.2.0/atac_pbmc_10k_nextge
m 

10K PBMC  (10X 
scRNA) 10X genomics 

http://cf.10xgenomics.com/samples/cell-
exp/3.0.0/pbmc_10k_v3/pbmc_10k_v3_filt
ered_feature_bc_matrix.h5 

Embryonic Mouse 
Brain (10X) 10X genomics 

https://support.10xgenomics.com/single-
cell-
atac/datasets/1.2.0/atac_v1_E18_brain_fres
h_5k 

Schep 2017 (C1) Schep 20187 
https://www.ncbi.nlm.nih.gov/geo/query/ac
c.cgi?acc=GSE99172 

Mos-A1 (snATAC) this study 
https://www.ncbi.nlm.nih.gov/geo/query/ac
c.cgi?acc=GSE126724 

Mos-A2 (snATAC) this study 
https://www.ncbi.nlm.nih.gov/geo/query/ac
c.cgi?acc=GSE126724 

Mos-M1 (snATAC) this study 
https://www.ncbi.nlm.nih.gov/geo/query/ac
c.cgi?acc=GSE126724 

Mos-M2 (snATAC) this study 
https://www.ncbi.nlm.nih.gov/geo/query/ac
c.cgi?acc=GSE126724 

Mos-P1 (snATAC) this study 
https://www.ncbi.nlm.nih.gov/geo/query/ac
c.cgi?acc=GSE126724 

Mos-P2 (snATAC) this study 
https://www.ncbi.nlm.nih.gov/geo/query/ac
c.cgi?acc=GSE126724 

Mos (snATAC) this study 
A combination of Mos-A1, Mos-A2, Mos-M1, 
Mos-M2, Mos-P1, Mos-P2 

Mouse Brain (10X) 10X genomics 

https://support.10xgenomics.com/single-
cell-
atac/datasets/1.1.0/atac_v1_adult_brain_fre
sh_5k 

Mouse Atlas 
(Cusanovich 
sciATAC) 

Cusanovich 
Cell 2018 

https://www.ncbi.nlm.nih.gov/geo/query/ac
c.cgi?acc=GSE111586 

Mouse Brain 
(Lareau BioRad) 

Lareau Nature 
Biotechnology 
2019 

https://www.ncbi.nlm.nih.gov/geo/query/ac
c.cgi?acc=GSE123581 

Pastki cells 
(Cusanovich 
sciATAC) 

Cusanovich 
Science 2015 

https://www.ncbi.nlm.nih.gov/geo/query/ac
c.cgi?acc=GSE67446 

Human mouse 
mixture 1k (10X)  10X genomics 

https://support.10xgenomics.com/single-
cell-
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atac/datasets/1.2.0/atac_hgmm_1k_nextge
m 

Human Bonne 
Marrow (Lareau 
2019) 

Lareau et al. 
Nature 
Biotechnology 
(2019) 

https://www.ncbi.nlm.nih.gov/geo/query/ac
c.cgi?acc=GSE123581 

BCC TME (Satpathy 
2019) 

Satpathy et. Al. 
Nature 
Biotechnology 
(2019) 

https://www.ncbi.nlm.nih.gov/geo/query/ac
c.cgi?acc=GSE129785 

 
Supplementary Table 1. Source of single cell datasets used in this study. 
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ENCODE INDEX Cell Type Name 
ENCFF199ZJX erythroblast 
ENCFF655PLY granulocyte monocyte progenitor cell 
ENCFF250YAL hematopoietic stem cell 
ENCFF647NFF megakaryocyte 
ENCFF471OUM megakaryocyte progenitor cell 
ENCFF901IMU megakaryocyte-erythroid progenitor cell 
ENCFF437VEJ monocyte 
ENCFF606PRC G1E 
ENCFF366SLO neutrophil 
ENCFF053CGD regulatory T cell 

 
Supplementary Table 2. Source of ENCODE bulk ATAC-seq used for 
generating the simulated single cell ATAC-seq datasets. 
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name 
Total 

Fragments 
Uniquely 
Mapped 

Properly 
Paired 

Unique 
Fragments 

ChrM 
fragments 

Library 
Efficiency 

A1 68,822,246 
64,182,717 

(93%) 
64,100,432 

(99%) 
49,557,725 

(77%) 
524,164 
(1.0%) 72% 

A2 55,030,523 
51,348,532 

(93%) 
51,291,913 

(99%) 
40,270,010 

(78%) 
468,994 

(1.1%) 73% 

M1 73,706,903 
68,778,680 

(93%) 
68,628,077 

(99%) 
49,250,682 

(71%) 
416,721 
(0.8%) 66% 

M2 88,766,084 
83319732 

(94%) 
83,318,989 

(99%) 
60,990,045 

(74%) 
394,825 
(0.6%) 68% 

P1 85,104,213 
79,249,561 

(93%) 
79,010,287 

(99%) 
58,341,065 

(74%) 
477,236 
(0.8%) 68% 

P2 79,673,741 
74,065,766 

(93%) 
73,869,579 

(99%) 
49,283,602 

(66%) 
565,863 
(1.1%) 61% 

 
Supplementary Table 3. Quality control metric for single nucleus ATAC-seq 
libraries. A1= anterior rep1; A1= anterior rep1; M1= middle rep1; M2 = middle rep1; P1 
= posterior rep1; P2 = posterior rep 2. 
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ID Index Sequence 
T5_9 TTCGGAAG 
T5_10 AGGCTGGT 
T5_11 GGAAGACT 
T5_12 GAACGCAT 
T5_13 TGCTGGTA 
T5_14 CATTCAGT 
T5_15 ACAAGGAT 
T5_16 TGTCAGCT 
T7_12 CTATTAGG 
T7_13 CATGTCAG 
T7_14 CTCATACA 
T7_15 AGATCTTC 
T7_16 AGAGCAGT 
T7_17 AGACGGAG 
T7_18 TGTGCAAC 
T7_19 ACATTGGC 
T7_20 TGTTACCA 
T7_21 GCTCTAAG 
T7_22 TATCGGTT 
T7_23 CAGTTGCA 

  
Supplementary Table 4. Index sequences used in the single nucleus ATAC-
seq.  
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Name Num 
Total number of molecules sequenced 75,925,182 
Read count from sequencer 151,850,364 
Read count successfully aligned 150,315,670 
Read count after filtering for mapping quality 136,555,794 
Read count after removing duplicate reads 130,680,670 
Read count after removing mitochondrial reads 129,415,200 
Final number of fragments 64,707,600 

 
Supplementary Table 5. Quality control metrics for bulk ATAC-seq library.  
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