## **Supplementary Information**



Supplementary Fig. 1. Hypoxia-induced HIFAL expression in breast cancer cell lines, related to Fig 1.

**a**, The kinetics of HIF-1 $\alpha$  protein level under hypoxia, determined by immunoblotting, was not parallel with that of its target gene transcription revealed by qRT-PCR in MCF-7 cells.

**b**, The chromatin associated HIF-1 $\alpha$  levels within the longation of hypoxic time.

c, HIF1 mRNA level declines with time following hypoxia. MDA-MB-231 cells were cultured under hypoxia and harvested at indicated time points for RNA preparation. HIF-1 $\alpha$  mRNA level was measured by qRT-PCR and was normalized to  $\beta$ -actin mRNA level..

**d**,Differential expression of lncRNAs in MDA-MB-231 under normoxia and hypoxia. Experiments were performed three times, assayed by qRT-PCR.

e, Schematic graph for HIFAL as well as other HIF-1 $\alpha$  antisense lncRNAs in HIF-1 $\alpha$  genomic loci from UCSC browser.

**f-h,** HIFAL expression in breast cell lines under normoxia or hypoxia, assayed by northern blotting (f) and quantified in (g, h). The samples were derived from the same experiment and that gels/blots were processed in parallel.

**i-l**, Subcellular distribution of NEAT1 and 18S RNA, which shows that NEAT1 RNA is mostly localized in the nuclei and 18S RNA is mostly localized in the cytoplasm, demonstrating the quality of cytoplasmic or nuclear fractionation. The total RNA was prepared when cells were cultured in normoxia or hypoxia. The level of the indicated RNA was quantified by qRT-PCR and normalized to cel-miR, which was directly added

in to the prepared total RNA from cytoplasmic or nuclear fraction as an independent control. (i,j) for MCF-7 cells, ( k,l) for MDA-MB-231 cells.

**m,n,** Confocal FISH images showing the localization of HIFAL in MCF7 (m) and MDA-MB-231(n) cells under normoxia and hypoxia. Scale bars, 10 m.

o, HIFAL knockdown is maintained during the time course of hypoxic condition.

**p**, The HIF-2 $\alpha$  inhibitor (CAS882268-69-1) suppresses the protein levels of HIF-2 $\alpha$ .

**q,r,** The knockdown and inhibitor of HIF-2 $\alpha$  does not stimulate glycolytic gene expression in MDA-MB-231. ITPR as positive control.

s, HIFAL knockout does not affect the mRNA stability of the HIF-1 target genes. The RNA was prepared following indicated time points. qPCR was used to determine the mRNA levels of indicated genes.

For **a**, **c**, **d**, **g-l**, **o**, **q-s**, *p* values were determined by two-sided unpaired t-test. Graphs show means  $\pm$  SD of experimental triplicates. \*\*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001. Source data are provided as a Source Data file.



Supplementary Fig. 2. HIFAL binds to PKM2 and PHD3 under hypoxia, related to Fig. 2.

**a**, RNA pulldown shows that HIFAL specifically binds with PKM2, PHD3. The MDA-MB-231 cells were cultured under hypoxia and the cell lysates were prepared for RNA pulldown assay, followed by immunoblotting of PKM2 and PHD3.  $\alpha$ -tubulin was used as controls.

b, In vitro interaction between HIFAL and PKM2, or PHD3, shown by RNA pulldown.Purified PKM2 and PHD3 were used in this assay.

c, The HIFAL levels in the HIFAL KO MDA-MB-231 cells transfected with exogenous HIFAL or HIFAL LNAs.

**d**, Knockdown of HIFAL reduces the binding of PKM2 to PHD3. Cells were transiently transfected with HIFAL-LNAs and then cultured under hypoxia and lysed for PKM2 precipitation. The precipitation was probed with anti-PHD3 or PKM2 antibodies by western blotting.

**e**, Knockdown of HIFAL decreases the cytoplasmic interaction of PHD3 with PKM2. Cells were transiently transfected with HIFAL-LNAs for 48 hours, and then cultured under hypoxia, cytoplasmic and nuclear protein was extracted. The PKM2 precipitation using cytoplasmic fraction was probed with PHD3 or PKM2 antibodies by western blotting.

f, Quantified HIFAL levels in (d) and (e).

**g**, Knockdown of PHD3 reduces the hydroxylation of PKM2. Cells were transiently transfected with shPHD3 for 48 hours, and then cultured under hypoxia and lysed for

PKM2 precipitation. The precipitation was probed with anti-hydroxylation or PKM2 antibodies by western blotting.

**h**, Enforced expression of HIFAL extremely increases prolyl hydroxylation of the purified PHD3 towards PKM2. HIFAL plasmid was transiently transfected into HIFAL KO MDA-MB-231cells for 48 hours, and then cultured under hypoxia and lysed for PKM2 precipitation.

**i**, The purified recombinant PKM2 and PHD3 mixture was incubated without/with HIFAL and were analyzed by mass spectrometry. The fragmentation spectrum of 401LAPITSDPTEATAVGAVEASFK422 revealed the hydroxylation of Pro-408 within this peptide.

**j**, HIFAL recruits PHD3 to promotes the proxyl hydroxylation of Pro408 in PKM2. Hela cells were transfected with Flag-PKM2 WT or mutant (P403A, P408A, P403/408A) and HIFAL.

**k-m,** mRNA levels of PKM2, PHD3 and HIF-1 $\alpha$  following HIFAL knockdown in MDA-MB-231 cells under hypoxia for 48 hr. Experiments were performed three times, assayed by qRT-PCR.

**n**, Protein expression of PKM2, PHD3 and HIF-1 $\alpha$  in HIFAL knockdown MDA-MB-231 cells under hypoxia for 48 hr.

o, Protein expression of PKM2, PHD3 and HIF-1 $\alpha$  in HIFAL knockout or WT MDA-MB-231 cells under hypoxia for 48 hr.

**p**, The mRNA level of GLUT1, HK2, LDHA, PDK1 and HIF-1α in PKM2 knockdown or PKM1 overexpression MDA-MB-231 cells under hypoxia for 48 hr.

**q**, **r**, Knockdown of PKM2 (q) or PHD3 (r) does not reduce the binding of HIFAL to PHD3 or PKM2. Cells were transiently transfected with siRNA targeting PKM2 or PHD3 for 48 hours, and then cultured under hypoxia and lysed for HIFAL RNA pulldown. The precipitation was probed with anti-PHD3 or PKM2 antibodies by western blotting as indicated.

For c,g, k-m, o, p, p values were determined by two-sided unpaired t-test. Graphs show means  $\pm$  SD of experimental triplicates. Source data are provided as a Source Data file



Supplementary Fig. 3. HIFAL binds to PKM2/PHD3 and promotes the translocation of PKM2/PHD3 into the nucleus, related to Fig. 2 and 3.

**a,** RNA immunoprecipitation assay shows that HIFAL fragment (nt 1-60) binds to PKM2. MCF-7 cells were transiently transfected with HIFAL fragment nt 1-60, and then cultured under hypoxia. Cell lysates were immunoprecipitated with anti-PKM2 antibody. The level of HIFAL fragment in the precipitate was examined by qRT-PCR.

**b**, RNA EMSA shows the interaction of HIFAL fragment (nt 1-60) with PKM2. HIFAL:PKM2 indicates the molar ratio of HIFAL vs PKM2.

**c**, RNA EMSA demonstrating the binding capacity of PKM2 to mutant HIFAL segments (nt 1-60) deleting hairpin A or hairpin B. HIFAL:PKM2 indicates molar ratio.

**d,** RNA immunoprecipitation assay demonstrates that HIFAL fragment (nt 501-560) binds toPHD3. MCF-7 cells were transiently transfected with HIFAL fragment, and then cultured under hypoxia. Cell lysates were immunoprecipitated with anti-PHD3 antibody. The level of HIFAL fragment in the precipitate was examined by qRT-PCR.

**e**, RNA EMSA demonstrates the interaction of HIFAL fragment (nt 501-560) with PHD3. HIFAL:PHD3 indicates the molar ratio of HIFAL vs PHD3.

**f**, RNA EMSA demonstrating the binding capacity of PHD3 to mutant HIFAL (nt 501-560) deleting hairpin C. HIFAL:PHD3 indicates molar ratio.

**g**, **h**, HIFAL promotes the translocation of PKM2 and PHD3 into the nucleus. MDA-MB-231 cell were immunostained with anti-PKM2 (g) or anti-PHD3 (h) (red), anti-digoxin for HIFAL probe (green) and DAPI (blue) at indicated time points following hypoxia. Scale bars, 10 μm. i, Quantification of nuclear and cytoplasmic distribution of PKM2 and PHD3 in HIFAL knockdown and control cells in the immunofluorescence experiment. Error bars shows mean  $\pm$  SD of fifteen random fields. *P* values were determined by two-sided unpaired t-test

**j**, **k**, Knockdown of PKM2 (j) or PHD3 (k) does not affect the nuclear translocation of HIFAL. Cells were transiently transfected with PKM2 or PHD3-siRNAs for 48 hours, and then cultured under hypoxia. The upper panel shows the knockdown efficiency of PKM2 or PHD3. Scale bars,  $10 \mu$ M.

l, m, Correlation of nuclear HIFAL expression with nuclear PKM2 (l) and PDH3 (m).

**n**, **o**, Silencing JMJD5 does not affect the nuclear translocation of HIFAL. Cells were transiently transfected with JMJD5-siRNAs for 48 hours, and then cultured under hypoxia. The immunostaining of JMJD5 and HIFAL hybridized with digoxin labeled probes was shown in (n) and knockdown efficiency of JMJD5 was shown in (o). Scale bars, 10 μM.

**p**, The HIFAL levels in the HIFAL WT or null MDA-MB-231 cells transfected with exogenous WT HIFAL or Mutant HIFAL RNAs (deletion of nt 240-300).

For a, d, p, p values were determined by two-sided unpaired t-test. Error bars shows mean  $\pm$  SD of experimental triplicates. Source data are provided as a Source Data file



Supplementary Fig. 4. HIFAL promotes the translocation of PKM2 and PHD3 to the nucleus, related to Fig. 4.

**a, b,** RNA pulldown and RNA immunoprecipitation assay demonstrates that hnRNPK binds with WT HIFAL but not mutated HIFAL without nuclear translocation domain (without nt 240-300). Bar graphs represent means  $\pm$  SD of experimental triplicates. *p*< 0.0001 versus IgG precipitation. two-sided unpaired t-test.

**c,** The binding of PKM or PHD3 with hnRNPK depends on HIFAL. The immunoprecipitation of hnRNPK with PKM2 or PHD3 was performed in HIFAL WT cells or HIFAL null MDA-MB-231 cells. hnRNPK does not bind with PKM2 or PHD3 in HIFAL-null MDA-MB-231 cells.

**d,** hnRNPK expression and nuclear translocation does not rely on hypoxia. MDA-MB-231 cells were cultured under normoxia or hypoxia and then the cytoplasmic or nuclear fractions were prepared. Western blot showed that nuclear hnRNPK was upregulated under hypoxia.

**e**, **f**, Immunoblotting for hnRNPF (e) and hnRNPK (f) expression in MDA-MB-231 cells transfected with siRNAs.

**g**, HIFAL nuclear translocation is not affected by silencing hnRNPK. MDA-MB-231 cells were transiently transfected with hnRNPK-siRNAs for 24 hours, and then cultured under hypoxia for 48 hours. HIFAL (green) was detected by digoxin labeled probes. hnRNPK were immunostained in red with antibodies. Nuclei were stained with DAPI (blue). Scale bars, 10 μM.

h, RNA EMSA shows the interaction of HIFAL fragment (nt 240-300) with hnRNPF.

HIFAL: hnRNPF indicates the molar ratio of HIFAL vs hnRNPF.

i, The hnRNPF levels in the hnRNPF WT or KO MDA-MB-231 cells are determined by immunoblotting. Source data are provided as a Source Data file



Supplementary Fig. 5. The exogenous HIFAL can be translocated into the nucleus in MDA-MB-231 WT cells, related to Fig. 4.

**a, b,** The exogenous HIFAL were transfected into hnRFNP WT (a) or knockout (b) MDA-MB-231 cells and cultured under hypoxia for indicated hours. HIFAL (green) was detected by biotin labeled probes. hnRFNP was immunostained in red with antibodies. Nuclei were stained with DAPI (blue). Scale bars, 10  $\mu$ M. Source data are provided as a Source Data file.



Supplementary Fig. 6. The binding affinity of HIF1 $\alpha$ , PKM2 to HIF1 $\alpha$  target genes and the glycolysis and proliferation of breast cancer cells were affected by HIFAL, related to Figure 6.

**a**, HIF-1 $\alpha$  ChIP experiments demonstrate that HIF-1 $\alpha$  does not effectively enrich the promoter of  $\beta$ -actin, which is not affected by knocking down HIFAL as well. CTL vs LNA-1 *p*=0.98, CTL vs LNA-2 *p*=0.97, two-sided unpaired t-test.

**b-e,**Silencing PKM2 or PHD3 results in the decreased enrichment of HIF-1 $\alpha$  to its target genes. MDA-MB-231cells were transiently transfected with siPKM2 or siPHD3 and cultured under hypoxia for 48 hours, and then collected for ChIP analyses. Real-time PCR data were calibrated to IgG control and normalized with sample inputs of chromatin harvested prior to immunoprecipitation. The PKM2 or PHD3 levels are shown in the upper panel of (b) and (d).

**f**, PKM2 (K270M) increases HIF-1 $\alpha$  transcriptional activity similarly to WT PKM2. HIFAL WT or KO MDA-MB-231 cells were co-transfected with pGL-vector or pGL-HRE, HIFAL, PKM2 WT or PKM2(K270M) and were exposed to 20% or 0.6% O2 for 24h.

g, The mutation of Pro408A and the double mutation of Pro403/408A significantly reduce the HIFAL-mediate HIF-1 $\alpha$  transactivation, whereas the mutation of Pro403A does not. HIFAL WT or KO MDA-MB-231 cells were co-transfected with pGL-vector or pGL-HRE, HIFAL, PKM2 WT or PKM2 (P403A, P408A, P403/408A) and were exposed to 20% or 0.6% O2 for 24h.

h, The binding capacity of HIF-1 $\alpha$  to PKM2 and PHD3 does not significantly increase

with time following hypoxia upon HIFAL knockout. Co-immunoprecipitation (Co-IP) of HIF-1 $\alpha$  with PKM2 or PHD3 was performed at indicated time points following hypoxia in the HIFAL-null MDA-MB-231 cells, and normalized by the corresponding HIF-1 $\alpha$  protein levels. PKM2 0h vs 64h p=0.0143, PHD3 0h vs 64h p=0.0585.

i, The interaction of HIFAL with HIF-1 $\alpha$  in nucleus and cytoplasm under hypoxic condition.

**j**, Knockdown of PKM2 decreased the interaction of HIFAL with HIF-1 $\alpha$  in nucleus.

**k**, Knockdown of PKM2 decreased the interaction of HIFAL with the promoter of HIF-1 $\alpha$  targeting genes GLUT1, HKII, LDHA and PDK1. PKM2 were silenced in HIFAL KO MDA-MB-231 cells. Then the biotin labeled HIFAL were transfected into MDA-MB-231 cells and cultured under hypoxia for 48hs, and collected for HIF1 $\alpha$  target gene promoter ChIP-PCR analyses with anti-biotin antibody or control IgG.

l, HIFAL-negative/HIF1a-positive genes (up) and eight HIFAL/HIF1a-double positive genes (down) in ChIP-seq assays were chosen to validate the binding of HIFAL or HIF-1 $\alpha$  with indicated genes promoters using ChIP-PCR.

**m,n,** HIFAL knockdown decreases glucose uptake and lactate secretion in MDA-MB-231 cells under hypoxia condition. Cells were transfected with LNAs and cultured under hypoxia for 24 hr. Levels of glucose uptake and lactate secretion into the culture media were measured and normalized to cell number. The relative HIFAL levels are shown in (n).

**o,p,** HIFAL knockdown decreases glucose uptake and lactate secretion under hypoxia conditions in BT474. Cells were transfected with LNAs and cultured under normoxia

and hypoxia for 24 hr. Levels of glucose uptake and lactate secretion into the culture media were measured and normalized to cell number. The relative HIFAL levels are shown in (**o**)..

**q**, **r**, HIFAL overexpression increases glucose uptake and lactate secretion in MCF-7 cells under hypoxia. MCF-7 cells were transfected by the HIFAL plasmid, and the expression of HIFAL WT or mutant was detected by qRT-PCR (**r**). Levels of glucose uptake and lactate secretion into the culture medium were measured and normalized to cell number.

**s**, The cell viability of MDA-MB-231 decreases upon HIFAL knockdown under hypoxia but is not affected under normoxia. Cells were cultured under normoxic or hypoxic condition and measured by MTT assay at 0hr, 24hr, and 48hr.

t, HIFAL overexpression does not affect the viability of MCF-7 cells under normoxia.

For **a-h**, **k-t**, *p* values were determined by unpaired two-tailed *t* test. Graphs show means  $\pm$  SD of experimental triplicates. \**p*<0.05,\*\**p*<0.01, \*\*\**p*<0.001. Source data are provided as a Source Data file



## Supplementary Fig. 7. Inhibiting HIFAL and HIF-1α synergistically reduces tumor burden in nude mice, related to Fig. 7.

**a-d,** HIFAL expression in different subtypes of breast cancer in TCGA breast cancer dataset. (**a**: no TNBC n=644, TNBC n=84; **b**: ER negative n=174, ER positive n=598; **c**: HER2 negative n=424, HER2 positive n=127; **d**: PR negative n=244, PR positive n=524). Alteration of expression is shown as box plot presentations, with the y axis indicating HIFAL expression.

e, High HIFAL expression correlates with poor survival in the TCGA breast cancer dataset (N=837, p=0.034, Kaplan–Meier, log-rank test).

**f-h,** Enforced expression of wild-type, but not mutant HIFAL, promotes the growth of MCF-7 xenografts. MCF-7 cells with ectopic expression of HIFAL antisense control(antisense), wild-type (WT) or mutant (MT) HIFAL with the PKM2 binding motif (hairpin A or B) deleted were implanted subcutaneously into the mammary fat pads of nude mice (n=8 per group). Data shown are mean  $\pm$  SD (n = 8 per group).*P* values were determined by two-sided unpaired t-test.

**i-k,** Knockdown of HIFAL suppresses the growth of MDA-MB-231 xenografts. MDA-MB-231 cells were implanted subcutaneously into the mammary fat pads of nude mice. Mice (n=8 per group) were treated with intraperitoneal injection of LNAs (CTL, LNA-1, LNA-2) after the tumor volumes reached 100 mm<sup>3</sup>. Data shown are mean  $\pm$  SD. *P* values were determined by two-sided unpaired t-test.

**l-n**, HIF-1 $\alpha$ -LNA synergistically suppresses the growth of MDA-MB-231 xenografts with HIFAL knockout or knockdown. Mice (n=8 per group) were treated with LNA

CTL(CTL), HIF-1 $\alpha$ -LNA HIFAL null (HIFAL null) or/and HIF-1 $\alpha$ -LNA (HIFAL null+HIF-1 $\alpha$ -LNA) after the tumor volumes reached 100 mm<sup>3</sup>. Data shown are mean  $\pm$  SD (n = 8 per group). *P* values were determined by one-way ANOVA+ Dunnett's post hoc tests.

o, Representative images for the in-situ hybridization of HIFAL and immunostaining of HIF-1 $\alpha$  on the paraffin-embedded sections of xenografts. Scale bars, 20  $\mu$ m. Source data are provided as a Source Data file.

Supplementary Table 1. Sequences of HIFAL, siRNAs, LNAs, primers sgRNAs and mutants

HIFAL sequence characterized by RACE

TCATGTAGCGCCAGCCACACCAGGAACAGAAGGGTGCCGGGTACCTTCCGCATGCTTGG TATTCTCCCCGCGGGGCTCTGACCGCTGCCGCTCTCAGGCACCTGTCTTTCCTCCGTC CCAGAATGGAGCCAAGACAAGGGAATAAACGAAATTCAATAGTACACGGAGATCGGGT GTCTGGGCAGCGTCTTGGAAAAACTATCCACTACAGGCTGGAGTGCAATGGCGAGATCT TGGTTCGCTGCAACCTCCGCTTCCCGGGTTCAAGCGGTTCTCCTGCCTCAGCCTCCTGA GTAGCTGGGATTGAGTACAGGTCAAGTGAAGTTCTTCTGCTGATATGTTCTGCTACTGCA TAAGAGACGGAATCTATGTTGCCTCGACTGGTCCTGAACTCCTGGGCTAAAGCGATCCT TCTGCCTTGGCCTCCCAAAGTGCGAGGATTATAGGTGTGAGCCACCCAACCTGGCCTTT GCCAGTATTTTTAAATCCAAACACCTATGCATGGTGCTTACTAATAACACAGTGGTATTCT AAACATTTTTCACCTATTATTTAATCTTTATTATCACCATGTTACAGATAAGGACCCTG GCTAAATAGCTTACCCAACATTACTCCGTTAATAAATGGTAGAACCTGTATTTCACTCAAA AA

| siRNA sense                                     |                             | sense                              | antisense                 |  |  |
|-------------------------------------------------|-----------------------------|------------------------------------|---------------------------|--|--|
| siHIF-1α-1 CGAGGAAGAACUAUGAACATT                |                             | CGAGGAAGAACUAUGAACATT              | UGUUCAUAGUUCUUCCUCGTT     |  |  |
| siHIF-1a-2                                      |                             | GAUGAAAGAAUUACCGAAUTT              | AUUCGGUAAUUCUUUCAUCTT     |  |  |
| siPKM2-1                                        |                             | GGCUGGACUACAAGAACAUTT              | AUGUUCUUGUAGUCCAGCCTT     |  |  |
| siPKM2-2                                        |                             | GUGGUGAUCUAGGCAUUGATT              | UCAAUGCCUAGAUCACCACTT     |  |  |
| siPHD3-1                                        |                             | GGGAAAUGGAACAGGUUAUTT              | AUAACCUGUUCCAUUUCCCTT     |  |  |
| siPHD3-2                                        |                             | GCAUCUACUAUCUGAACAATT              | UUGUUCAGAUAGUAGAUGCTT     |  |  |
| siJMJD5-1                                       |                             | GAUUUGAGCUUCUCGGUCATT              | UGACCGAGAAGCUCAAAUCTTUG   |  |  |
| siJMJD5-2                                       |                             | AAGUUGGUUCGAGGUACATT               | UACCUCGAACCAACUUCTT       |  |  |
| siHNRNPK-1                                      |                             | GGGUUGUAGAGUGCAUAAATT              | UUUAUGCACUCUACAACCCTT     |  |  |
| siHNRNPK-2                                      | 2                           | GUCAGCGGAUUAAACAAAUTT              | AUUUGUUUAAUCCGCUGACTT     |  |  |
| siHNRNPF-1                                      |                             | CCGCAGGUGUCCAUUUCAUTT              | AUGAAAUGGACACCUGCGGTT     |  |  |
| siHNRNPF-2                                      |                             | GGUACAUUGAGGUGUUCAATT              | UUGAACACCUCAAUGUACCTT     |  |  |
| siHIF-2α-1 C                                    |                             | CUCCUCAGUUUGCUCUGAATT              | UUCAGAGCAAACUGAGGAGTT     |  |  |
| siHIF-2α-2 CAGAACUGAUUGGUUACCATT UGGUAACCAAUCAG |                             |                                    | UGGUAACCAAUCAGUUCUGTT     |  |  |
| LNA Gapme                                       | R s                         | equences for the knockdown of HIFA | L and HIF-1α              |  |  |
| HIFAL LNA1                                      | HIFAL LNA1 CATTCTGGGACGGAGA |                                    |                           |  |  |
| HIFAL LNA2 GTAACATGGTGATAAT                     |                             |                                    |                           |  |  |
| HIF1α-1 LNA TGGCAAGCATC                         |                             | TGGCAAGCATCCTGTA                   |                           |  |  |
| Control LNA AACACGTCTATACGC                     |                             | AACACGTCTATACGC                    |                           |  |  |
| Primers for o                                   | q <b>R</b> 7                | -PCR                               |                           |  |  |
| Name                                            | F                           | orward (5'-3')                     | <b>Reverse</b> (5'-3')    |  |  |
| Actin                                           | Α                           | ACTCCATCATGAAGTGTGACG              | GATCCACATCTGCTGGAAGG      |  |  |
| HIF-1a TO                                       |                             | CACCACAGGACAGTACAGGATG             | CCAGCAAAGTTAAAGCATCAGGTTC |  |  |
| С                                               |                             |                                    |                           |  |  |
| HIFAL                                           | G                           | TACACGGAGATCGGGTGTC                | GGAGTTCAGGACCAGTCGAG      |  |  |
| Neat1                                           | G                           | CTGGAGTCTTGGGCACGGC                | TCAACCGAGGCCGCTGTCTC      |  |  |
| ENST00000                                       | С                           | TCTTCCGGGGAAGTCTGA'                | AAGAAGGGCAGCAAATTCAC      |  |  |

| 563924                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ENST00000                                                                                                                                                                        | GCCAGAAACCCCAATAACCT                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TTCGTTTAAGGGTCGGAATG                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 554566                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ENST00000                                                                                                                                                                        | AGTCCTGGAGGCCGTATTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CCATATTCCATTCCCCACTG                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 513626                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ENST00000                                                                                                                                                                        | AGGATCCTGTGGAAGGGTCT                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CAGCTCCAGCTATCCACCTC                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 392668                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ENST00000                                                                                                                                                                        | TGCACTTTTCCAGCACAAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AAGATGCTGCTGTTGCTCCT                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 511918                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ARRDC3-1                                                                                                                                                                         | CTCCGTTTTCCTCCATTTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ACCTTGAAGGAGGTGGGACT                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| GLUT1                                                                                                                                                                            | TGGCATCAACGCTGTCTTCT                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CTAGCGCGATGGTCATGAGT                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| PKM2                                                                                                                                                                             | GTCTGGGAGGAAAGTCGCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GGCGGAAGGACACAGATTCA                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| PHD3                                                                                                                                                                             | CCTGTCTGCACGAGGCAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GCACTTCGTGTGGGGTTCCTA                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| PDK1                                                                                                                                                                             | TGCTGTATGGCCTGCAAGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ACATTCTGGCTGGTGACAGG                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| HKII                                                                                                                                                                             | GCAACTACCTGGAACCTGCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AGTCATGCACAGGGTTGGTAGA                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| LDHA                                                                                                                                                                             | GGAGGACCCAGCAATTAGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GCCATTAACTGCCACAAAGC                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 18S                                                                                                                                                                              | GCCGCTAGAGGTGAAATTCTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CTTTCGCTCTGGTCCGTCTT                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Neat1                                                                                                                                                                            | CAGGGTGTCCTCCACCTTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AAACCAGCAGACCCCTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Cel-miR-39                                                                                                                                                                       | TCACCGGGTGTAAATCAGCTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UNIVERSAL REVERSE PRIMER                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| HIF-2a                                                                                                                                                                           | GTGCTCCCACGGCCTGTA                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TTGTCACACCTATGGCATATCACA                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| ITPR1                                                                                                                                                                            | GTGACAGGAAACATGCAGACTC                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CAGCAGTTGCACAAAGACAGGC                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| PRIMERS F                                                                                                                                                                        | OR CHIP ASSAY (5'-3')                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Name                                                                                                                                                                             | Forward (5'-3')                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DEVEDCE $(5, 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 1.0000                                                                                                                                                                           | 101 ward (5 -5 )                                                                                                                                                                                                                                                                                                                                                                                                                                                        | REVERSE (5 - 5 )                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| HIFAL(B)                                                                                                                                                                         | CGTACACGAAAGTCGCCTT                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GCTACATGATGAGGATGCGAAA                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| HIFAL(B)<br>HFAL(A)                                                                                                                                                              | CGTACACGAAAGTCGCCTT<br>TTTCGCATCCTCATCATGTA                                                                                                                                                                                                                                                                                                                                                                                                                             | GCTACATGATGAGGATGCGAAA<br>TTATTCTTACCTGTAGTGGATA                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| HIFAL(B)<br>HFAL(A)<br>HIFAL(C)                                                                                                                                                  | CGTACACGAAAGTCGCCTT<br>TTTCGCATCCTCATCATGTA<br>AAGTATTATATAACTAACCA                                                                                                                                                                                                                                                                                                                                                                                                     | GCTACATGATGAGGATGCGAAATTATTCTTACCTGTAGTGGATATTTGTCTTCTGGGACTTGTCAAA                                                                                                                                                                                                                                                                                                                                                                                 |  |
| HIFAL(B)<br>HFAL(A)<br>HIFAL(C)<br>LDHA(A)                                                                                                                                       | CGTACACGAAAGTCGCCTT<br>TTTCGCATCCTCATCATGTA<br>AAGTATTATATAACTAACCA<br>TTGGAGGGCAGCACCTTACTTAGA                                                                                                                                                                                                                                                                                                                                                                         | GCTACATGATGAGGATGCGAAA<br>TTATTCTTACCTGTAGTGGATA<br>TTTGTCTTCTGGGACTTGTCAAA<br>GCCTTAAGTGGAACAGCTATGCTGA                                                                                                                                                                                                                                                                                                                                            |  |
| HIFAL(B)<br>HFAL(A)<br>HIFAL(C)<br>LDHA(A)<br>LDHA(B)                                                                                                                            | CGTACACGAAAGTCGCCTT<br>TTTCGCATCCTCATCATGTA<br>AAGTATTATATAACTAACCA<br>TTGGAGGGCAGCACCTTACTTAGA<br>CGTCTCTACTAAAAATTACAA                                                                                                                                                                                                                                                                                                                                                | REVERSE (5 - 5 )GCTACATGATGAGGATGCGAAATTATTCTTACCTGTAGTGGATATTTGTCTTCTGGGACTTGTCAAAGCCTTAAGTGGAACAGCTATGCTGATTGAAACGGAGTCGCTCTGTC                                                                                                                                                                                                                                                                                                                   |  |
| HIFAL(B)<br>HFAL(A)<br>HIFAL(C)<br>LDHA(A)<br>LDHA(B)<br>LDHA(C)                                                                                                                 | CGTACACGAAAGTCGCCTT<br>TTTCGCATCCTCATCATGTA<br>AAGTATTATATAACTAACCA<br>TTGGAGGGCAGCACCTTACTTAGA<br>CGTCTCTACTAAAAATTACAA<br>CAGAGATTGAAGTGAGCCAAGAT                                                                                                                                                                                                                                                                                                                     | REVERSE (5 - 5 )GCTACATGATGAGGATGCGAAATTATTCTTACCTGTAGTGGATATTTGTCTTCTGGGACTTGTCAAAGCCTTAAGTGGAACAGCTATGCTGATTGAAACGGAGTCGCTCTGTCATACGCTTTATAGCTGTGTCCAAC                                                                                                                                                                                                                                                                                           |  |
| HIFAL(B)<br>HFAL(A)<br>HIFAL(C)<br>LDHA(A)<br>LDHA(B)<br>LDHA(C)<br>PDK1                                                                                                         | CGTACACGAAAGTCGCCTT<br>TTTCGCATCCTCATCATGTA<br>AAGTATTATATAACTAACCA<br>TTGGAGGGCAGCACCTTACTTAGA<br>CGTCTCTACTAAAAATTACAA<br>CAGAGATTGAAGTGAGCCAAGAT<br>CGCGTTTGGATTCCGTG                                                                                                                                                                                                                                                                                                | REVERSE (5 - 3 )GCTACATGATGAGGATGCGAAATTATTCTTACCTGTAGTGGATATTTGTCTTCTGGGACTTGTCAAAGCCTTAAGTGGAACAGCTATGCTGATTGAAACGGAGTCGCTCTGTCATACGCTTTATAGCTGTGTCCAACCCAGTTATAATCTGCCTTCCCTATC                                                                                                                                                                                                                                                                  |  |
| HIFAL(B)<br>HFAL(A)<br>HIFAL(C)<br>LDHA(A)<br>LDHA(B)<br>LDHA(C)<br>PDK1<br>GLUT1                                                                                                | CGTACACGAAAGTCGCCTT<br>TTTCGCATCCTCATCATGTA<br>AAGTATTATATAACTAACCA<br>TTGGAGGGCAGCACCTTACTTAGA<br>CGTCTCTACTAAAAATTACAA<br>CAGAGATTGAAGTGAGCCAAGAT<br>CGCGTTTGGATTCCGTG<br>CTCAGTGGCTCACGCCTGTAAT                                                                                                                                                                                                                                                                      | REVERSE (5 - 5 )GCTACATGATGAGGATGCGAAATTATTCTTACCTGTAGTGGATATTTGTCTTCTGGGACTTGTCAAAGCCTTAAGTGGAACAGCTATGCTGATTGAAACGGAGTCGCTCTGTCATACGCTTTATAGCTGTGTCCAACCCAGTTATAATCTGCCTTCCCTATCCCTCCCGAGTAGCTGGGATTACA                                                                                                                                                                                                                                           |  |
| HIFAL(B)<br>HFAL(A)<br>HIFAL(C)<br>LDHA(A)<br>LDHA(B)<br>LDHA(C)<br>PDK1<br>GLUT1<br>HKII                                                                                        | CGTACACGAAAGTCGCCTT<br>TTTCGCATCCTCATCATGTA<br>AAGTATTATATAACTAACCA<br>TTGGAGGGCAGCACCTTACTTAGA<br>CGTCTCTACTAAAAATTACAA<br>CAGAGATTGAAGTGAGCCAAGAT<br>CGCGTTTGGATTCCGTG<br>CTCAGTGGCTCACGCCTGTAAT<br>GCCCCGCAGGTAGTCAGG                                                                                                                                                                                                                                                | REVERSE (5 - 3 )GCTACATGATGAGGATGCGAAATTATTCTTACCTGTAGTGGATATTTGTCTTCTGGGACTTGTCAAAGCCTTAAGTGGAACAGCTATGCTGATTGAAACGGAGTCGCTCTGTCATACGCTTTATAGCTGTGTCCAACCCAGTTATAATCTGCCTTCCCTATCCCTCCCGAGTAGCTGGGATTACAGACCACGATTCTCCCACG                                                                                                                                                                                                                         |  |
| HIFAL(B)<br>HFAL(A)<br>HIFAL(C)<br>LDHA(A)<br>LDHA(B)<br>LDHA(C)<br>PDK1<br>GLUT1<br>HKII<br>VEGFA                                                                               | CGTACACGAAAGTCGCCTT<br>TTTCGCATCCTCATCATGTA<br>AAGTATTATATAACTAACCA<br>TTGGAGGGCAGCACCTTACTTAGA<br>CGTCTCTACTAAAAATTACAA<br>CAGAGATTGAAGTGAGCCAAGAT<br>CGCGTTTGGATTCCGTG<br>CTCAGTGGCTCACGCCTGTAAT<br>GCCCCGCAGGTAGTCAGG<br>ATCCATCCTGTCTTGATATAGAA                                                                                                                                                                                                                     | REVERSE (5 - 5 )GCTACATGATGAGGATGCGAAATTATTCTTACCTGTAGTGGATATTTGTCTTCTGGGACTTGTCAAAGCCTTAAGTGGAACAGCTATGCTGATTGAAACGGAGTCGCTCTGTCATACGCTTTATAGCTGTGTCCAACCCAGTTATAATCTGCCTTCCCTATCCCTCCCGAGTAGCTGGGATTACAGACCACGATTCTCTCCACGAACAGCTCTCTCCTGTCCTC                                                                                                                                                                                                    |  |
| HIFAL(B)<br>HFAL(A)<br>HIFAL(C)<br>LDHA(A)<br>LDHA(B)<br>LDHA(C)<br>PDK1<br>GLUT1<br>HKII<br>VEGFA<br>VEGFB                                                                      | CGTACACGAAAGTCGCCTT<br>TTTCGCATCCTCATCATGTA<br>AAGTATTATATAACTAACCA<br>TTGGAGGGCAGCACCTTACTTAGA<br>CGTCTCTACTAAAAATTACAA<br>CAGAGATTGAAGTGAGCCAAGAT<br>CGCGTTTGGATTCCGTG<br>CTCAGTGGCTCACGCCTGTAAT<br>GCCCCGCAGGTAGTCAGG<br>ATCCATCCTGTCTTGATATAGAA<br>ATTGCAGGAAGGTGAAGCAGAT                                                                                                                                                                                           | REVERSE (5 - 3 )GCTACATGATGAGGATGCGAAATTATTCTTACCTGTAGTGGATATTTGTCTTCTGGGACTTGTCAAAGCCTTAAGTGGAACAGCTATGCTGATTGAAACGGAGTCGCTCTGTCATACGCTTTATAGCTGTGTCCAACCCAGTTATAATCTGCCTTCCCTATCCCTCCCGAGTAGCTGGGATTACAGACCACGATTCTCCCACGAACAGCTCTCTCCTGTCCCTTTGTCGCTCCTGCTGAAGGAT                                                                                                                                                                                |  |
| HIFAL(B)<br>HFAL(A)<br>HIFAL(C)<br>LDHA(A)<br>LDHA(B)<br>LDHA(C)<br>PDK1<br>GLUT1<br>HKII<br>VEGFA<br>VEGFB<br>VEGFC                                                             | CGTACACGAAAGTCGCCTT<br>TTTCGCATCCTCATCATGTA<br>AAGTATTATATAACTAACCA<br>TTGGAGGGCAGCACCTTACTTAGA<br>CGTCTCTACTAAAAATTACAA<br>CAGAGATTGAAGTGAGCCAAGAT<br>CGCGTTTGGATTCCGTG<br>CTCAGTGGCTCACGCCTGTAAT<br>GCCCCGCAGGTAGTCAGG<br>ATCCATCCTGTCTTGATATAGAA<br>ATTGCAGGAAGGTGAAGCAGAT<br>TATCATGAAGACACTGATCTTT                                                                                                                                                                 | REVERSE (5 - 3 )GCTACATGATGAGGATGCGAAATTATTCTTACCTGTAGTGGATATTTGTCTTCTGGGACTTGTCAAAGCCTTAAGTGGAACAGCTATGCTGATTGAAACGGAGTCGCTCTGTCATACGCTTTATAGCTGTGTCCAACCCAGTTATAATCTGCCTTCCCTATCCCTCCCGAGTAGCTGGGATTACAGACCACGATTCTCTCCACGAACAGCTCTCTCCTGTCTTGTCGCTCCTGCTGAAGGATTGATTCACTTGGTCATAAATT                                                                                                                                                             |  |
| HIFAL(B)<br>HFAL(A)<br>HIFAL(C)<br>LDHA(A)<br>LDHA(B)<br>LDHA(C)<br>PDK1<br>GLUT1<br>HKII<br>VEGFA<br>VEGFB<br>VEGFC<br>ADAM29                                                   | CGTACACGAAAGTCGCCTT<br>TTTCGCATCCTCATCATGTA<br>AAGTATTATATAACTAACCA<br>TTGGAGGGCAGCACCTTACTTAGA<br>CGTCTCTACTAAAAATTACAA<br>CAGAGATTGAAGTGAGCCAAGAT<br>CGCGTTTGGATTCCGTG<br>CTCAGTGGCTCACGCCTGTAAT<br>GCCCCGCAGGTAGTCAGG<br>ATCCATCCTGTCTTGATATAGAA<br>ATTGCAGGAAGGTGAAGCAGAT<br>TATCATGAAGACACTGATCTTT<br>TTAGTAATGTGGTAACCTGGACT                                                                                                                                      | REVERSE (5 - 3 )GCTACATGATGAGGATGCGAAATTATTCTTACCTGTAGTGGATATTTGTCTTCTGGGACTTGTCAAAGCCTTAAGTGGAACAGCTATGCTGATTGAAACGGAGTCGCTCTGTCATACGCTTTATAGCTGTGTCCAACCCAGTTATAATCTGCCTTCCCTATCCCTCCCGAGTAGCTGGGATTACAGACCACGATTCTCCCACGAACAGCTCTCTCCTGTCCCTTTGTCGCTCCTGCTGAAGGATTGATTCACTTGGTCATAAATTTTTCATATAGCTTCATCA                                                                                                                                         |  |
| HIFAL(A)<br>HIFAL(A)<br>HIFAL(C)<br>LDHA(A)<br>LDHA(B)<br>LDHA(C)<br>PDK1<br>GLUT1<br>HKII<br>VEGFA<br>VEGFA<br>VEGFC<br>ADAM29<br>ITGB1                                         | CGTACACGAAAGTCGCCTT<br>TTTCGCATCCTCATCATGTA<br>AAGTATTATATAACTAACCA<br>TTGGAGGGCAGCACCTTACTTAGA<br>CGTCTCTACTAAAAATTACAA<br>CAGAGATTGAAGTGAGCCAAGAT<br>CGCGTTTGGATTCCGTG<br>CTCAGTGGCTCACGCCTGTAAT<br>GCCCCGCAGGTAGTCAGG<br>ATCCATCCTGTCTTGATATAGAA<br>ATTGCAGGAAGGTGAAGCAGAT<br>TATCATGAAGACACTGATCTTT<br>TTAGTAATGTGGTAACCTGGACT<br>GAGAGATAATAGGAAAACAAGCT                                                                                                           | REVERSE (5 - 3 )GCTACATGATGAGGATGCGAAATTATTCTTACCTGTAGTGGATATTTGTCTTCTGGGACTTGTCAAAGCCTTAAGTGGAACAGCTATGCTGATTGAAACGGAGTCGCTCTGTCATACGCTTTATAGCTGTGTCCAACCCAGTTATAATCTGCCTTCCCTATCCCTCCCGAGTAGCTGGGATTACAGACCACGATTCTCCCACGAACAGCTCTCCTGTCCTGTCTTGTCGCTCCTGCTGAAGGATTGATTCACTTGGTCATAAATTTTTCATATATGCTTCATCTAAATCTCTATCTCCATTATCTCCT                                                                                                                |  |
| HIFAL(B)<br>HIFAL(A)<br>HIFAL(C)<br>LDHA(A)<br>LDHA(B)<br>LDHA(C)<br>PDK1<br>GLUT1<br>HKII<br>VEGFA<br>VEGFB<br>VEGFC<br>ADAM29<br>ITGB1<br>MMP13                                | CGTACACGAAAGTCGCCTT<br>TTTCGCATCCTCATCATGTA<br>AAGTATTATATAACTAACCA<br>TTGGAGGGCAGCACCTTACTTAGA<br>CGTCTCTACTAAAAAATTACAA<br>CAGAGATTGAAGTGAGCCAAGAT<br>CGCGTTTGGATTCCGTG<br>CTCAGTGGCTCACGCCTGTAAT<br>GCCCCGCAGGTAGTCAGG<br>ATCCATCCTGTCTTGATATAGAA<br>ATTGCAGGAAGGTGAAGCAGAT<br>TATCATGAAGACACTGATCTTT<br>TTAGTAATGTGGTAACCTGGACT<br>GAGAGATAATAGGAAAACAAGCT                                                                                                          | REVERSE (5 - 3 )GCTACATGATGAGGATGCGAAATTATTCTTACCTGTAGTGGATATTTGTCTTCTGGGACTTGTCAAAGCCTTAAGTGGAACAGCTATGCTGATTGAAACGGAGTCGCTCTGTCATACGCTTTATAGCTGTGTCCAACCCAGTTATAATCTGCCTTCCCTATCCCTCCCGAGTAGCTGGGATTACAGACCACGATTCTCTCCACGAACAGCTCTCTCCTGTCTCCTTTGTCGCTCCTGCTGAAGGATTGATTCACTTGGTCATAAATTTTTCATATATGCTTCATCTAAATCTCTATCTCCATTATCCTTTCTCTAGAATAACTACAGAGA                                                                                          |  |
| HIFAL(B)<br>HIFAL(A)<br>HIFAL(C)<br>LDHA(A)<br>LDHA(B)<br>LDHA(C)<br>PDK1<br>GLUT1<br>HKII<br>VEGFA<br>VEGFB<br>VEGFC<br>ADAM29<br>ITGB1<br>MMP13<br>EPO                         | Forward (E-S)CGTACACGAAAGTCGCCTTTTTCGCATCCTCATCATGTAAAGTATTATATAAACTAACCATTGGAGGGCAGCACCTTACTTAGACGTCTCTACTAAAAATTACAACAGAGATTGAAGTGAGCCAAGATCGCGTTTGGATTCCGTGCTCAGTGGCTCACGCCTGTAATGCCCCGCAGGTAGTCAGGATCCATCCTGTCTTGATATAGAAATGCAGGAAGACACTGATCTTTTTAGTAATGTGGTAACCTGGACTGAGAGATAATAGGAAAACAAGCTTTCTACCTCTGTCTGAATCTGTATGGTCAATAAGGTGGCTCCATT                                                                                                                          | REVERSE (5 - 3 )GCTACATGATGAGGATGCGAAATTATTCTTACCTGTAGTGGATATTTGTCTTCTGGGACTTGTCAAAGCCTTAAGTGGAACAGCTATGCTGATTGAAACGGAGTCGCTCTGTCATACGCTTTATAGCTGTGTCCAACCCAGTTATAATCTGCCTTCCCTATCCCTCCCGAGTAGCTGGGATTACAGACCACGATTCTCCCACGAACAGCTCTCTCCTGTCTCCTTTGTCGCTCCTGCTGAAGGATTGATTCACTTGGTCATAAATTTTTCATATATGCTTCATCTAAATCTCTATCTCCATTATCTCCTTTCTCTAGAATAACTACAGAGAAGAGACCAAAGAAGAGGCAGAAA                                                                  |  |
| HIFAL(B)<br>HIFAL(A)<br>HIFAL(C)<br>LDHA(A)<br>LDHA(B)<br>LDHA(C)<br>PDK1<br>GLUT1<br>HKII<br>VEGFA<br>VEGFB<br>VEGFC<br>ADAM29<br>ITGB1<br>MMP13<br>EPO<br>EGFR                 | CGTACACGAAAGTCGCCTT<br>TTTCGCATCCTCATCATGTA<br>AAGTATTATATAACTAACCA<br>TTGGAGGGCAGCACCTTACTTAGA<br>CGTCTCTACTAAAAATTACAA<br>CAGAGATTGAAGTGAGCCAAGAT<br>CGCGTTTGGATTCCGTG<br>CTCAGTGGCTCACGCCTGTAAT<br>GCCCCGCAGGTAGTCAGG<br>ATCCATCCTGTCTTGATATAGAA<br>ATTGCAGGAAGGTGAAGCAGAT<br>TATCATGAAGAACACTGATCTTT<br>TTAGTAATGTGGTAACCTGGACT<br>GAGAGATAATAGGAAAACAAGCT<br>TTCTACCTCTGTCTGAATCTGTA<br>TGGTCAATAAGGTGGCTCCATT<br>TAAGCATCTATACTAGCCTGGTAT                         | REVERSE (5 - 3 )GCTACATGATGAGGATGCGAAATTATTCTTACCTGTAGTGGATATTTGTCTTCTGGGACTTGTCAAAGCCTTAAGTGGAACAGCTATGCTGATTGAAACGGAGTCGCTCTGTCATACGCTTTATAGCTGTGTCCAACCCAGTTATAATCTGCCTTCCCTATCCCTCCCGAGTAGCTGGGATTACAGACCACGATTCTCTCCACGAACAGCTCTCTCCTGTCTCCTTTGTCGCTCCTGCTGAAGGATTGATTCACTTGGTCATAAATTTTTCATATATGCTTCATCAAATCTCTATCTCCATTATCCTTTCTCTAGAATAACTACAGAGAAGAGACCAAAGAAGAGGCAGAAATTCCAGGTCTCCTCAGGCAGGA                                              |  |
| HIFAL(B)<br>HIFAL(A)<br>HIFAL(C)<br>LDHA(A)<br>LDHA(B)<br>LDHA(C)<br>PDK1<br>GLUT1<br>HKII<br>VEGFA<br>VEGFB<br>VEGFC<br>ADAM29<br>ITGB1<br>MMP13<br>EPO<br>EGFR<br>RNF4         | CGTACACGAAAGTCGCCTT<br>TTTCGCATCCTCATCATGTA<br>AAGTATTATATAACTAACCA<br>TTGGAGGGCAGCACCTTACTTAGA<br>CGTCTCTACTAAAAATTACAA<br>CAGAGATTGAAGTGAGCCAAGAT<br>CGCGTTTGGATTCCGTG<br>CTCAGTGGCTCACGCCTGTAAT<br>GCCCCGCAGGTAGTCAGG<br>ATCCATCCTGTCTTGATATAGAA<br>ATTGCAGGAAGATGAAGCAGAT<br>TATCATGAAGACACTGATCTTT<br>TTAGTAATGTGGTAACCTGGACT<br>GAGAGATAATAGGAAAACAAGCT<br>TTCTACCTCTGTCTGAATCTGTA<br>TGGTCAATAAGGTGGCTCCATT<br>TAAGCATCTATACTAGCCTGGTAT<br>AACCAAGGAGCTGTCTGCTCA | REVERSE (5 - 3 )GCTACATGATGAGGATGCGAAATTATTCTTACCTGTAGTGGATATTTGTCTTCTGGGACTTGTCAAAGCCTTAAGTGGAACAGCTATGCTGATTGAAACGGAGTCGCTCTGTCATACGCTTTATAGCTGTGTCCAACCCAGTTATAATCTGCCTTCCCTATCCCTCCCGAGTAGCTGGGATTACAGACCACGATTCTCCCACGAACAGCTCTCTCCTGTCTCCTTTGTCGCTCCTGCTGAAGGATTGATTCACTTGGTCATAAATTTTTCATATATGCTTCATCAAATCTCTATCTCCATTATCTCCTTTCTCTAGAATAACTACAGAGAAGAGACCAAAGAAGAGGCAGAAATTCCAGGTCTCCTCAGGCAGGAAGTGCTGACTCCCACTCAGA                         |  |
| HIFAL(A)<br>HIFAL(A)<br>HIFAL(C)<br>LDHA(A)<br>LDHA(B)<br>LDHA(C)<br>PDK1<br>GLUT1<br>HKII<br>VEGFA<br>VEGFB<br>VEGFC<br>ADAM29<br>ITGB1<br>MMP13<br>EPO<br>EGFR<br>RNF4<br>BMP7 | Forward (E-S)CGTACACGAAAGTCGCCTTTTTCGCATCCTCATCATGTAAAGTATTATATAACTAACCATTGGAGGGCAGCACCTTACTTAGACGTCTCTACTAAAAATTACAACAGAGATTGAAGTGAGCCAAGATCGCGTTTGGATTCCGTGCTCAGTGGCTCACGCCTGTAATGCCCCGCAGGTAGTCAGGATCCATCCTGTCTTGATATAGAAATTGCAGGAAGGTGAAGCAGATTATCATGAAGAACACTGATCTTTTTAGTAATGTGGTAACCTGGACTGAGAGATAATAGGAAAACAAGCTTGGTCAATAAGGTGGCTCCATTTAAGCATCTATAACTAGCTGGTATAAGCAAGGAGCTGTCTGCTCATAGGCTCGACTACAAAGGTCCT                                                        | REVERSE (5 - 3 )GCTACATGATGAGGATGCGAAATTATTCTTACCTGTAGTGGATATTTGTCTTCTGGGACTTGTCAAAGCCTTAAGTGGAACAGCTATGCTGATTGAAACGGAGTCGCTCTGTCATACGCTTTATAGCTGTGTCCAACCCAGTTATAATCTGCCTTCCCTATCCCTCCCGAGTAGCTGGGATTACAGACCACGATTCTCTCCACGAACAGCTCTCTCTCTGTCTCCTTTGTCGCTCCTGCTGAAGGATTGATTCACTTGGTCATAAATTTTTCATATATGCTTCATCTAAATCTCTATCTCCATTATCTCCTTTCTCTAGAATAACTACAGAGAAGAGACCAAAGAAGAGGCAGAAATTCCAGGTCTCCTCAGGCAGGAAGTGCTGACTCCACTCAGAATTTGCACTGGACAGTGTCAGC |  |

| SMAD3        | AGATATACCTTGACCAATGATGT                                | AATGGCACTGCAGAGATAGCAT        |  |  |  |  |
|--------------|--------------------------------------------------------|-------------------------------|--|--|--|--|
| HDAC6        | AAGGCAAGAAAACTAGCAGGAAG                                | AG TTGAGCTGCCAAAGCAATTCTCA    |  |  |  |  |
| CK19         | AGATTTAGTTTTCTTTCTACTC                                 | CTCTACCATGTAGTTGCTGTGT        |  |  |  |  |
| PDGFRB       | TTAACTGTGTGAAGGCTGGTT                                  | AATTTGAATTTGTTGAACT           |  |  |  |  |
| JAG2         | TTCTCCATTGTATTGAGCCA                                   | AGTCATGGTGTACACGACTCCTCA      |  |  |  |  |
| Primers for  | 5' RACE and 3'RACE (5'-3')                             |                               |  |  |  |  |
| 5'-1         | CCAGGGTCCTTATCTGT                                      |                               |  |  |  |  |
| 5'-2         | TTCGTTTATTCCCTTGTCTTGGCT                               |                               |  |  |  |  |
| 3'-1         | ATGGAGCCAAGACAAGGGAATAA                                |                               |  |  |  |  |
| 3'-2         | GGCAGCGTCTTGGAAAAACTATC                                |                               |  |  |  |  |
| 3'-3         | ACAGATAAGGACCCTGGCTAAAT                                |                               |  |  |  |  |
| LNA probe    | for FISH, ISH and northern blot                        |                               |  |  |  |  |
| HIFAL        | ACGGAGTAATGTTGGGTAAGCT                                 |                               |  |  |  |  |
| Sequences    | of ΔmA, ΔmB, ΔmC                                       |                               |  |  |  |  |
| ΔmA          | TCAGCCACCAGGAACAGAAGGGTG                               | CCGGGTACTTCCGCATGCTTGGT       |  |  |  |  |
| ΔmB          | TCATGTAGCGCCAGCCACACCAGGA                              | ACAGTACCTGGT                  |  |  |  |  |
| ΔmC          | TGCATGTCTAAACATTTTTCACCTAT                             | ГАТТТААТС                     |  |  |  |  |
| Sequences    | of sgRNA for the knockout of HIFAL                     |                               |  |  |  |  |
| SgRNA1       | CACCGGAAGTTTCTCGGGTTGGCTT                              |                               |  |  |  |  |
| SgRNA2       | CACCGGCTCGGGAAGTTTCTCGGGT                              |                               |  |  |  |  |
| SgRNA3       | CACCGCTGCGCCCGAGCACGTACTG                              |                               |  |  |  |  |
| SgRNA4       | A4 CACCGATTTGCTTGGGAATTTCGGG                           |                               |  |  |  |  |
| The sequence | ce of mutant HIFAL without PKM2 binding                | motif                         |  |  |  |  |
|              | TCAGCCACCAGGAACAGTACCTGGT                              | ATTCTCCCCGCGGGGGCTCTGACCGCT   |  |  |  |  |
|              | GCCGCTCTCAGGCACCTGTCTTTCCTCTCCGTCCCAGAATGGAGCCAAGAC    |                               |  |  |  |  |
|              | AAGGGAATAAACGAAATTCAATAGTACACGGAGATCGGGTGTCTGGGCAG     |                               |  |  |  |  |
|              | CGTCTTGGAAAAACTATCCACTACAGGCTGGAGTGCAATGGCGAGATCTTGG   |                               |  |  |  |  |
|              | TTCGCTGCAACCTCCGCTTCCCGGGTTCAAGCGGTTCTCCTGCCTCAGCCTCCT |                               |  |  |  |  |
|              | GAGTAGCTGGGATTGAGTACAGGTCA                             | AGTGAAGTTCTTCTGCTGATATGTTC    |  |  |  |  |
|              | TGCTACTGCATAAGAGACGGAATCT                              | ATGTTGCCTCGACTGGTCCTGAACTC    |  |  |  |  |
|              | CTGGGCTAAAGCGATCCTTCTGCCT                              | IGGCCTCCCAAAGTGCGAGGATTATA    |  |  |  |  |
|              | GGTGTGAGCCACCCAACCTGGCCTT                              | TGCCAGTATTTTTAAATCCAAACACC    |  |  |  |  |
|              | TATGCATGGTGCTTACTAATAACACA                             | AGTGGTATTCTAAACATTTTTCACCT    |  |  |  |  |
|              | АТТАТТТААТСТТТАТТАТТАТСАСС                             | ATGTTACAGATAAGGACCCTGGCTAA    |  |  |  |  |
|              | ATAGCTTACCCAACATTACTCCGTTA                             | ATAAATGGTAGAACCTGTATTTCACT    |  |  |  |  |
|              | CAAAAA                                                 |                               |  |  |  |  |
| The sequence | ce of hnRNPF mutant                                    |                               |  |  |  |  |
| D RRM        | ATGATGCTGGGCCCTGAGGGAGGTGAA                            | GGCTTTGTGGTCAAGCTCCGTGGCCTGCC |  |  |  |  |
|              | CTGGTCCTGCTCTGTTGAGGACGTGCAG                           | GAACTTCCTCTCTGACTGCACGATTCATG |  |  |  |  |
|              | ATGGGGCCGCAGGTGTCCATTTCATCTA                           | CACTAGAGAGGGGCAGGCAGAGTGGTGA  |  |  |  |  |
|              | GGCTTTTGTTGAACTTGGATCAGAAGAT                           | GATGTAAAAATGGCCCTGAAAAAAGAC   |  |  |  |  |
|              | AGGGAAAGCATGGGACACAAGTCCCAC                            | AGAACCGAGATGGATTGGGTGTTGAAGC  |  |  |  |  |
|              | ACAGTGGTCCCAACAGTGCCGACAGCG                            | CCAACGATGGCTTCGTGCGGCTTCGAGG  |  |  |  |  |

|    | ACTCCCATTTGGATGCACAAAGGAAGAAATTGTTCAGTTCTTCTCAGGGTTGGAAA  |
|----|-----------------------------------------------------------|
|    | TTGTGCCAAACGGGATCACATTGCCTGTGGACCCCGAAGGCAAGATTACAGGGGA   |
|    | AGCGTTCGTGCAGTTTGCCTCGCAGGAGTTAGCTGAGAAGGCTCTAGGGAAACAC   |
|    | AAGGAGAGGATAGGGCACAAGAGCAGCCAGGAGGAAGTTAGGTCATACTCAGAT    |
|    | CCCCCTCTGAAGTTCATGTCCGTGCAGCGGCCAGGGCCCTATGACCGGCCCGGGAC  |
|    | TGCCAGGAGGTACATTGGCATCGTGAAGCAGGCAGGCCTGGAAAGGATGAGGCCT   |
|    | GGTGCCTACAGCACAGGCTACGGGGGGCTACGAGGAGTACAGTGGCCTCAGTGATG  |
|    | GCTACGGCTTCACCACCGACCTGTTCGGGAGAGACCTCAGCTACTGTCTCCCGGA   |
|    | ATGTATGACCACAGATACGGCGACAGTGAGTTCACAGTGCAGAGCACCACAGGCC   |
|    | ACTGTGTCCACATGAGGGGCCTGCCGTACAAAGCGACCGAGAACGACATTTACAA   |
|    | CTTCTTCTCCTCTCAACCCTGTGAGAGTCCATATTGAGATTGGCCCAGATGGAA    |
|    | GAGTGACGGGTGAAGCAGATGTTGAGTTTGCTACTCATGAAGAAGCTGTGGCAGC   |
|    | TATGTCCAAAGACAGGGCCAATATGCAGCACTTGAATTCAACAACAGGGGCCAGC   |
|    | AATGGGGGCGTATAGCAGCCAGGTGATGCAAGGCATGGGGGGTGTCTGCTGCCCAGG |
|    | CCACTTACAGTGGCCTGGAGAGCCAGTCAGTGAGTGGCTGTTACGGGGCCGGCTA   |
|    | CAGTGGGCAGAACAGCATGGGTGGCTATGACTAG                        |
| D1 | ATGATGCTGGGCCCTGAGGGAGGTGAAGGCTTTGTGGTCAAGCTCCGTGGCCTGCC  |
|    | CTGGTCCTGCTCTGTTGAGGACGTGCAGAACTTCCTCTGACTGCACGATTCATG    |
|    | ATGGGGCCGCAGGTGTCCATTTCATCTACACTAGAGAGGGCAGGCA            |
|    | GGCTTTTGTTGAACTTGGATCAGAAGATGATGTAAAAATGGCCCTGAAAAAAGAC   |
|    | AGGGAAAGCATGGGACAC                                        |
| D2 | AAGTCCCACAGAACCGAGATGGATTGGGTGTTGAAGCACAGTGGTCCCAACAGTG   |
|    | CCGACAGCGCCAACGATGGCTTCGTGCGGCTTCGAGGACTCCCATTTGGATGCACA  |
|    | AAGGAAGAAATTGTTCAGTTCTTCTCAGGGTTGGAAATTGTGCCAAACGGGATCAC  |
|    | ATTGCCTGTGGACCCCGAAGGCAAGATTACAGGGGAAGCGTTCGTGCAGTTTGCCT  |
|    | CGCAGGAGTTAGCTGAGAAGGCTCTAGGGAAACACAAGGAGAGAGA            |
| D3 | AAGAGCAGCCAGGAGGAAGTTAGGTCATACTCAGATCCCCCTCTGAAGTTCATGTC  |
|    | CGTGCAGCGGCCAGGGCCCTATGACCGGCCCGGGACTGCCAGGAGGTACATTGGC   |
|    | ATCGTGAAGCAGGCAGGCCTGGAAAGGATGAGGCCTGGTGCCTACAGCACAGGCT   |
|    | ACGGGGGGCTACGAGGAGTACAGTGGCCTCAGTGATGGCTACGGCTTCACCACCGA  |
|    | CCTGTTCGGGAGAGACCTCAGCTACTGTCTCTCCGGAATGTATGACCACAGATACG  |
|    | GCGACAGTGAGTTCACAGTGCAGAGCACCACAGGCCACTGTGTCCACATGAGGGG   |
|    | CCTGCCGTACAAAGCGACCGAGAACGACATTTACAACTTCTTCTCTCTC         |
|    | CTGTGAGAGTCCATATTGAGATTGGCCCAGATGGAAGAGTGACGGGTGAAGCAGA   |
|    | TGTTGAGTTTGCTACTCATGAAGAAGCTGTGGCAGCTATGTCCAAAGACAGGGCCA  |
|    | ATATGCAGCACTTGAATTCAACAACAGGGGCCAGCAATGGGGCGTATAGCAGCCA   |
|    | GGTGATGCAAGGCATGGGGGTGTCTGCTGCCCAGGCCACTTACAGTGGCCTGGAG   |
|    | AGCCAGTCAGTGAGTGGCTGTTACGGGGCCGGCTACAGTGGGCAGAACAGCATGG   |
|    | GTGGCTATGACTA                                             |
| D4 | AAGTCCCACAGAACCGAGATGGATTGGGTGTTGAAGCACAGTGGTCCCAACAGTG   |
|    | CCGACAGCGCCAACGATGGCTTCGTGCGGCTTCGAGGACTCCCATTTGGATGCACA  |
|    | AAGGAAGAAATTGTTCAGTTCTTCTCAGGGTTGGAAATTGTGCCAAACGGGATCAC  |
|    | ATTGCCTGTGGAC                                             |
| D5 | ATCACATTGCCTGTGGACCCCGAAGGCAAGATTACAGGGGAAGCGTTCGTGCAGT   |

|         | TTGCCTCGCAGGAGTTAGCTGAGAAGGCTCTAGGGAAACACAAGGAGAGAGA     |
|---------|----------------------------------------------------------|
|         | GCAC                                                     |
| D6      | ATGATGCTGGGCCCTGAGGGAGGTGAAGGCTTTGTGGTCAAGCTCCGTGGCCTGCC |
|         | CTGGTCCTGCTCTGTTGAGGACGTGCAGAACTTCCTCTCTGACTGCACGATTCATG |
|         | ATGGGGCCGCAGGTGTCCATTTCATCTACACTAGAGAGGGCAGGCA           |
|         | GGCTTTTGTTGAACTTGGATCAGAAGATGATGTAAAAATGGCCCTGAAAAAAGAC  |
|         | AGGGAAAGCATGGGACACCGGTACATTGAGGTGTTCAAGTCCCACAGAACCGAGA  |
|         | TGGATTGGGTGTTGAAGCACAGTGGTCCCAACAGTGCCGACAGCGCCAACGATGG  |
|         | CTTCGTGCGGCTTCGAGGACTCCCATTTGGATGCACAAAGGAAGAAATTGTTCAGT |
|         | TCTTCTCAGGGTTGGAAATTGTGCCAAACGGGAGGTACATTGAGGTGTTTAAGAGC |
|         | AGCCAGGAGGAAGTTAGGTCATACTCAGATCCCCCTCTGAAGTTCATGTCCGTGCA |
|         | GCGGCCAGGGCCCTATGACCGGCCCGGGACTGCCAGGAGGTACATTGGCATCGTG  |
|         | AAGCAGGCAGGCCTGGAAAGGATGAGGCCTGGTGCCTACAGCACAGGCTACGGGG  |
|         | GCTACGAGGAGTACAGTGGCCTCAGTGATGGCTACGGCTTCACCACCGACCTGTTC |
|         | GGGAGAGACCTCAGCTACTGTCTCCCGGAATGTATGACCACAGATACGGCGACA   |
|         | GTGAGTTCACAGTGCAGAGCACCACAGGCCACTGTGTCCACATGAGGGGGCCTGCC |
|         | GTACAAAGCGACCGAGAACGACATTTACAACTTCTTCTCTCTC              |
|         | GAGTCCATATTGAGATTGGCCCAGATGGAAGAGTGACGGGTGAAGCAGATGTTGA  |
|         | GTTTGCTACTCATGAAGAAGCTGTGGCAGCTATGTCCAAAGACAGGGCCAATATGC |
|         | AGCACAGATATATAGAACTCTTCTTGAATTCAACAACAGGGGCCAGCAATGGGGC  |
|         | GTATAGCAGCCAGGTGATGCAAGGCATGGGGGGTGTCTGCTGCCCAGGCCACTTAC |
|         | AGTGGCCTGGAGAGCCAGTCAGTGAGTGGCTGTTACGGGGCCGGCTACAGTGGGC  |
|         | AGAACAGCATGGGTGGCTATGACTAG                               |
| HIFAL   | ATGATGCTGGGCCCTGAGGGAGGTGAAGGCTTTGTGGTCAAGCTCCGTGGCCTGCC |
| binding | CTGGTCCTGCTCTGTTGAGGACGTGCAGAACTTCCTCTCTGACTGCACGATTCATG |
| mut     | ATGGGGCCGCAGGTGTCCATTTCATCTACACTAGAGAGGGCAGGCA           |
|         | GGCTTTTGTTGAACTTGGATCAGAAGATGATGTAAAAATGGCCCTGAAAAAAGAC  |
|         | AGGGAAAGCATGGGACACCGGTACATTGAGGTGTTCAAGTCCCACAGAACCGAGA  |
|         | TGGATTGGGTGTTGAAGCACAGTGGTCCCAACAGTGCCGACAGCGCCAACGATGG  |
|         | CTTCGTGCGGCTTCGAGGACTCCCATTTGGATGCACAAAGGAAGAAATTGTTCAGT |
|         | TCTTCTCAGGGTTGGAAATTGTGCCAAACGGGATCACATTGCCTGTGGACAGGTAC |
|         | ATTGAGGTGTTTAAGAGCAGCCAGGAGGAAGTTAGGTCACCTCTGAAGTTCATGTC |
|         | CGTGCAGCGGCCAGGGCCCTATGACCGGCCCGGGACTGCCAGGAGGTACATTGGC  |
|         | ATCGTGAAGCAGGCAGGCCTGGAAAGGATGAGGCCTGGTGCCTACAGCACAGGCT  |
|         | ACGGGGGGCTACGAGGAGTACAGTGGCCTCAGTGATGGCTACGGCTTCACCACCGA |
|         | CCTGTTCGGGAGAGACCTCAGCTACTGTCTCTCCGGAATGTATGACCACAGATACG |
|         | GCGACAGTGAGTTCACAGTGCAGAGCACCACAGGCCACTGTGTCCACATGAGGGG  |
|         | CCTGCCGTACAAAGCGACCGAGAACGACATTTACAACTTCTTCTCTCCTCTCAACC |
|         | CTGTGAGAGTCCATATTGAGATTGGCCCAGATGGAAGAGTGACGGGTGAAGCAGA  |
|         | TGTTGAGTTTGCTACTCATGAAGAAGCTGTGGCAGCTATGTCCAAAGACAGGGCCA |
|         | ATATGCAGCACAGATATATAGAACTCTTCTTGAATTCAACAACAGGGGCCAGCAAT |
|         | GGGGCGTATAGCAGCCAGGTGATGCAAGGCATGGGGGGTGTCTGCTGCCCAGGCCA |
|         | CTTACAGTGGCCTGGAGAGCCAGTCAGTGAGTGGCTGTTACGGGGCCGGCTACAG  |
|         | TGGGCAGAACAGCATGGGTGGCTATGACTAG                          |

| Sequences of | of sgRNA for the knockout of hnRNPF |
|--------------|-------------------------------------|
| SgRNA1       | CACCGAGTGCCGACAGCGCCAACGA           |

| Variable                 | HR (95% CI)        | $\frac{\chi^2}{\chi^2}$ | P value |
|--------------------------|--------------------|-------------------------|---------|
| Univariate analysis      |                    |                         |         |
| Tumor size               |                    |                         |         |
| <u>≤2</u>                | 1.655(1.067-2.565) | 5.066                   | 0.024   |
| >2                       |                    |                         |         |
| HIFLA                    | 1.875(1.201-2.927) | 7.646                   | 0.006   |
| SI≤3                     |                    |                         |         |
| SI>3                     |                    |                         |         |
| Her2                     | 1.326(0.852-2.063) | 1.567                   | 0.211   |
| (-)                      |                    |                         |         |
| (+)                      |                    |                         |         |
| Ki67                     | 1.195(0.751-1.902) | 0.568                   | 0.451   |
| ≤14%                     |                    |                         |         |
| >14%                     |                    |                         |         |
| PCNA                     | 1.544(0.938-2.541) | 2.92                    | 0.087   |
| ≤50%                     |                    |                         |         |
| >50%                     |                    |                         |         |
| Histological grade       | 1.347(1.015-1.789) | 4.242                   | 0.039   |
| I-II                     |                    |                         |         |
| III                      |                    |                         |         |
| Stage                    | 1.406(1.062-1.862) | 5.651                   | 0.017   |
| I-II                     |                    |                         |         |
| III                      |                    |                         |         |
| LN metastasis            | 1.228(1.05-1.437)  | 6.575                   | 0.01    |
| (-)                      |                    |                         |         |
| (+)                      |                    |                         |         |
| Mutivariate analysis     |                    |                         |         |
| HIFAL(SI>3 or $\leq 3$ ) | 1.702(1.081-2.68)  | 5.265                   | 0.022   |
| LN metastasis            | 1.182(1.007-1.387) | 4.201                   | 0.04    |

Supplementary Table 2. Univariate and multivariate Cox proportional hazard analysis of prognostic variables in 493 cases of invasive breast cancer patients

|                    | •         |      | HIFAL |        |          |
|--------------------|-----------|------|-------|--------|----------|
| Variables          | All cases | SI≤3 | SI>3  | χ2     | P value* |
| Tumor size (cm)    |           |      |       | 5.169  | 0.023    |
| ≤2                 | 299       | 170  | 129   |        |          |
| >2                 | 194       | 90   | 104   |        |          |
| Stage              |           |      |       | 40.469 | 0.000    |
| Ι                  | 219       | 149  | 70    |        |          |
| II                 | 182       | 81   | 101   |        |          |
| III                | 92        | 30   | 62    |        |          |
| Histological grade |           |      |       | 30.901 | 0.000    |
| Ι                  | 234       | 153  | 81    |        |          |
| II                 | 180       | 80   | 100   |        |          |
| III                | 79        | 27   | 52    |        |          |
| ER                 |           |      |       | 2.732  | 0.098    |
| (-)                | 201       | 97   | 104   |        |          |
| (+)                | 292       | 163  | 129   |        |          |
| Her2               |           |      |       | 0.662  | 0.416    |
| (-)                | 295       | 160  | 135   |        |          |
| (+)                | 198       | 100  | 98    |        |          |
| Ki67               |           |      |       | 7.147  | 0.008    |
| ≤14%               | 187       | 113  | 74    |        |          |
| >14%               | 306       | 147  | 159   |        |          |
| PCNA               |           |      |       | 5.327  | 0.021    |
| $\leq 50\%$        | 163       | 98   | 65    |        |          |
| >50%               | 330       | 162  | 168   |        |          |
| LN metastasis      |           |      |       | 9.327  | 0.009    |
| 0                  | 158       | 93   | 65    |        |          |
| 1-3                | 226       | 123  | 103   |        |          |
| 4                  | 109       | 44   | 65    |        |          |
| Metastasis         |           |      |       | 8.239  | 0.004    |
| (-)                | 466       | 253  | 213   |        |          |
| (+)                | 27        | 7    | 20    |        |          |

Supplementary Table 3. Correlation of HIFLA expression with clinicopathologic status in 493 cases of patients with invasive breast cancer

|                    |           |      | HIFLA |        |                      |
|--------------------|-----------|------|-------|--------|----------------------|
| Variables          | All cases | SI≤3 | SI>3  | χ2     | P value <sup>*</sup> |
| Tumor size (cm)    |           |      |       | 4.353  | 0.037                |
| ≤2                 | 178       | 108  | 70    |        |                      |
| >2                 | 114       | 55   | 59    |        |                      |
| Stage              |           |      |       | 16.354 | 0.000                |
| Ι                  | 126       | 87   | 39    |        |                      |
| II                 | 115       | 55   | 60    |        |                      |
| III                | 51        | 21   | 30    |        |                      |
| Histological grade |           |      |       | 13.822 | 0.001                |
| Ι                  | 140       | 93   | 47    |        |                      |
| II                 | 103       | 51   | 52    |        |                      |
| III                | 49        | 19   | 30    |        |                      |
| Ki67               |           |      |       | 4.659  | 0.031                |
| ≤14%               | 113       | 72   | 41    |        |                      |
| >14%               | 179       | 91   | 88    |        |                      |
| PCNA               |           |      |       | 6.821  | 0.009                |
| ≤50%               | 96        | 64   | 32    |        |                      |
| >50%               | 196       | 99   | 97    |        |                      |
| LN metastasis      |           |      |       | 9.079  | 0.011                |
| 0                  | 91        | 60   | 31    |        |                      |
| 1-3                | 130       | 73   | 57    |        |                      |
| 4                  | 71        | 30   | 41    |        |                      |
| Metastasis         |           |      |       | 5.916  | 0.016                |
| (-)                | 279       | 160  | 119   |        |                      |
| (+)                | 13        | 3    | 10    |        |                      |

Supplementary Table 4. Correlation of HIFLA expression with clinicopathologic status in 292 cases of patients with luminal invasive breast cancer

|                    |           |      | HIFLA |        |                                    |
|--------------------|-----------|------|-------|--------|------------------------------------|
| Variables          | All cases | SI≤3 | SI>3  | χ2     | <b><i>P</i></b> value <sup>*</sup> |
| Tumor size (cm)    |           |      |       | 8.614  | 0.003                              |
| ≤2                 | 62        | 39   | 23    |        |                                    |
| >2                 | 37        | 12   | 25    |        |                                    |
| Stage              |           |      |       | 17.146 | 0.000                              |
| Ι                  | 40        | 30   | 10    |        |                                    |
| II                 | 37        | 16   | 21    |        |                                    |
| III                | 22        | 5    | 17    |        |                                    |
| Histological grade |           |      |       | 16.227 | 0.000                              |
| Ι                  | 33        | 26   | 7     |        |                                    |
| II                 | 44        | 19   | 25    |        |                                    |
| III                | 22        | 6    | 16    |        |                                    |
| Ki67               |           |      |       | 4.55   | 0.033                              |
| ≤14%               | 33        | 22   | 11    |        |                                    |
| >14%               | 66        | 29   | 37    |        |                                    |
| PCNA               |           |      |       | 3.607  | 0.058                              |
| ≤50%               | 34        | 22   | 12    |        |                                    |
| >50%               | 65        | 29   | 36    |        |                                    |
| LN metastasis      |           |      |       | 8.677  | 0.013                              |
| 0                  | 24        | 12   | 12    |        |                                    |
| 1-3                | 50        | 32   | 18    |        |                                    |
| 4                  | 25        | 7    | 18    |        |                                    |
| Metastasis         |           |      |       | 6.639  | 0.01                               |
| (-)                | 87        | 49   | 38    |        |                                    |
| (+)                | 12        | 2    | 10    |        |                                    |

Supplementary Table 5. Correlation of HIFLA expression with clinicopathologic status in 99 cases of patients with basal-like invasive breast cancer