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Supplementary Information

Mathematical model

SIR model with subdivision — We model the epidemic spreading dynamics by considering n

separate groups or sub-populations with internal SIR dynamics1 and coupling between the groups.

Let S j and I j with j ∈ 1 . . .n denote the number of susceptible and infected individuals in group j,

respectively, and N j the group size. Let

S =
n

∑
j=1

S j, I =
n

∑
j=1

I j, N =
n

∑
j=1

N j (1)

be the corresponding population totals. As in the original SIR model, we assume that individuals

have a certain total infectious contact rate b = κν , where κ is the number of contacts with a

random other individual per unit time and ν is the probability of infection for a contact between

a susceptible and an infected individual. We denote by α j(I j, I) the probability per unit time for a

single susceptible individual in group j to become infected, and call this quantity the infection rate

in group j in the following. The removal of a single infected individual happens with a constant

rate, k, and can be due to recovery, death or quarantine. We define a leakiness ξ to characterize the

coupling between local groups: a fraction ξ of an individual’s contacts take place with the entire

population, whereas the remaining fraction of 1−ξ contacts are restricted to the local group. For

this scenario (without containment measures), we therefore have an infection rate for group j of

α j = b[(1−ξ )I j/N j +ξ I/N], j ∈ 1 . . .n. (2)
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For ξ = 0, sub-populations are completely decoupled (no cross-infections between groups occur),

whereas for ξ = 1, the original SIR model for the population totals S and I is recovered.

Mean field evolution — In a large population with a large number of infected individuals in all

sub-populations, deterministic mean field equations capture the dynamics of the epidemic, such

that, for all j ∈ 1 . . .n

dS j

dt
=−α j(I j, I)S j (3)

dI j

dt
= α j(I j, I)S j− k I j. (4)

Given a homogeneous initial condition, i.e. with S j/N j = S/N and infected I j/N j = I/N for all

j, α j reduces to bI/N, such that the population totals S and I follow classical SIR dynamics and

homogeneity among the groups is preserved, independent of the value of ξ . For ξ = 1, α j also

reduces to bI/N, i.e. the subdivision structure becomes irrelevant. Since, by definition, the total

infectious contact rate of an individual is always b, it is intuitive that the reproductive number is

R0 = b/k as in the original SIR model, and disease invasion takes place above a critical value of

R0 > 1.

This can be seen rigorously by calculating the average number of infections a single infected indi-

vidual causes in a fully susceptible population. Let l be the group in which the infected individual

resides. Then Il = 1 and I j = 0 for j 6= l. During some time T , the number of secondary infections
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caused directly by this one infected individual therefore is

RT
0 = T ∑

j
α j(I j, I)S j = T b

([
1−ξ

Nl
+

ξ

N

]
Sl +∑

j 6=l

ξ

N
S j

)
(5)

= T b

(
(1−ξ )

Sl

Nl
+ξ ∑

j

S j

N

)
= T b. (6)

In the last step, we took the large-population limit, where full susceptibility implies S j/N j→ 1 for

all j (for j 6= l the equality holds even for finite populations). With the average duration of a single

infection, 〈T 〉= 1/k, we get

R0 = 〈RT
0 〉T =

b
k
. (7)

Applying other ‘threshold theorem’ formalisms for subdivided populations2, 3 leads to the same

result.

Local lockdown — During a local lockdown, we assume a reduced contact rate of bl = q2b,

where 0 < q < 1 is a ‘presence factor’ that indicates the effective availability of an individual

for interactions with other individuals during a lockdown. The purpose of this definition of q is

to be able to associate the reduction in contacts with each class, i.e. susceptibles and infected,

individually, as one of them might be in lockdown, while the other one is not, in the case of cross-

group infections. During a local lockdown of group j, the effective number of susceptible and

infected individuals available for contacts will therefore be reduced to qS j and qI j, respectively.

Group-local interactions between them lead to a contribution

(1−ξ )b(qS j)(qI j/N j) (8)

4



to the infection rate, which simply reduces to (1−ξ )blS jI j/N j as expected. To be able to express

the effect of local lockdowns on cross-group infections represented by the second term of Eq. (2),

we further differentiate between the total number of infected Il in all groups that are currently in

lockdown and the corresponding total I f in all groups that are currently free, with I = I f + Il . This

leads to an overall rate of infections in group j of

α jS j =


bqS j [(1−ξ )qI j/N j +ξ (I f +qIl)/N] if group j is in lockdown

bS j [(1−ξ )I j/N j +ξ (I f +qIl)/N] if group j is not in lockdown.

(9)

When a group goes into local lockdown, the reduced availability of its susceptible and infected

members therefore has two effects: (1) for internal contacts, b is reduced to bl , and (2) for cross-

infections to/from other groups, the effective rate is reduced and takes an intermediate value be-

tween bl and b, which depends on the lockdown state of other groups.

Consequently, if the whole population is in lockdown (Il = I, I f = 0), we have α j = bl[(1−

ξ )I j/N j + ξ I/N], identical to Eq. (2), with b replaced by bl as intended. Thus, we can associate

the reduced contact rate with a reproduction number

Rl = q2R0 =
bl

k
(10)

during a population-wide lockdown.

Numerical simulation We carry out exact, stochastic Gillespie simulations4 of the infection

dynamics in the subdivided population, where susceptible and infected individuals in each group

are treated as a separate species, i.e. for a total of 2n species. The rate for the infection reaction
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with (∆S j,∆I j) = (−1,1) is α jS j according to Eq. (9), the rate for the removal reaction with ∆I j =

−1 is kI j. Local lockdown is initiated in group j when I j continuously exceeds the lockdown

threshold Θ j for 14 days, to account for detection uncertainties and reporting delay (see main

text). For relative lockdown thresholds θ specified as the infected fraction of the population, we

set Θ j = θN j. For absolute thresholds, we set Θ j = Θ for all j with a universal absolute number

of active infections Θ. The lockdown in group j is lifted when I j stays continuously below Θ j

for a specified amount of time τsafety which we call the safety margin. While τsafety has a certain

minimum value because of the same unavoidable processes that delay the detection of a local

outbreak and initiation of lockdown, further increasing τsafety can be an element of the containment

strategy and is therefore up to the policy makers. For the population-wide lockdown strategy, the

threshold and delay criteria are applied to the total number of infected individuals I and lockdown

is initiated/lifted in all groups simultaneously.

Data sources and parameter estimation

Estimation of Rl — During the initial period of the pandemic, many countries enforced a nation-

wide lockdown for multiple weeks. Infection data for this time frame allows for a straight forward

estimation of the reproduction factor Rl with mitigation strategies in place. We employ the software

EpiEstim5 along with daily case data (up until June 12, 2020) for a time-resolved estimate of

the reproduction number. For Germany, the infection data is retrieved from the Robert-Koch-

Institute6 using the REST api7. Data for Italy and England were available on respective government

websites8, 9 and for the US we used data provided by the Johns Hopkins University10. We assume
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a gamma distribution for the serial interval for COVID-19 to make use of the EpiEstim method

parametric_si. The mean and standard deviation of (5.8± 4.7)days for this gamma distribution

were obtained from the fit to the data provided in Ref.11. For daily estimates of R a 14-day interval

is considered. As is illustrated in Supp. Fig. 2, to extract a reasonable value for Rl we use the

lowest 10-day average of the daily estimates.

Initial conditions and group sizes — To simulate approximations of real countries we gather

official census data on a county level resolution for England12, Italy13, the US14 and Germany15 to

set up the sub-populations. These data are then combined with the infection numbers (as of June

12, 2020) to compute the current sizes of the susceptible and infected parts of the population in each

county. Where no information about recoveries is available we approximate the number of active

cases to be equal to all new infections reported within the previous 14 days (a conservative estimate

given our assumed infectious time of 1/k = 7days, see main text). For more fine-grained control

when investigating the size-dependent effects in the mitigation strategy, the counties are optionally

further subdivided such that no individual group exceeds a certain number of individuals. Infected

individuals are randomly assigned to one of the equally sized sub-groups in the splitting process.
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Supplementary Figure 1 Regional structure of the five countries. Histograms show the distribution of

county sizes that were used as sub-population sizes N j in the mathematical model.



Supplementary Figure 2 Estimation of the reproduction number during lockdown. Time evolution of

14-day estimates (using the method of Ref.5) for the reproduction number of COVID-19 in different locations.

In all cases, the reproduction number drops as mitigation strategies are put in place. The lowest 10-day

average is used to estimate Rl , the effective reproduction factor during lockdown, as is highlighted in red.



a b

c

Supplementary Figure 3 Reducing leakiness causes a transition to low required restriction time for

local measures. (a) Number of days the average person in the population will have to spend in lockdowns

within the next 5 years for the full spectrum of leakiness values, using the county structure and current

active case numbers from Germany. Reproduction of Fig. 1d. Parameters identical to those used in Fig. 1b

for the lower value of R0 = 1.14. Error bars indicate standard deviation across members of the population in

a single simulation (averaged across 20 realizations), shading around lines indicates standard deviation of

the average across realizations. (b) The same as in panel a, but for the higher value of R0 = 1.29 in Fig. 1b.

(c) The same as in panel a, but for Rl = 0.95 during lockdown, substantially higher than the value achieved

during the actual country-wide lockdown in Germany (cf. Supp. Fig. 2).
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Supplementary Figure 4 Evolution of infections individual sub-populations for different strategies.

Parameters identical to those shown in Fig. 1b, for the lower value of R0. (a) Population-wide control and

strong exchange (ξ = 32%). (b) Population-wide control and weak exchange (ξ = 1%). (c) Local control and

strong exchange (ξ = 32%). (d) Local control and weak exchange (ξ = 1%).
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Supplementary Figure 5 Absolute comparison of different strategies for Germany. All data repre-

sent averages from 20 simulations. (a) Number of days the average person in the population will have to

spend under restrictions within the next 5 years under the population-wide control strategy, using the county

structure and current active case numbers from Germany without further subdivision. Data normalized by

the data for ξ = 1, i.e. a fully interconnected population without subdivision. (b) Same as in panel a, but for

the local control strategy.
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Supplementary Figure 6 Strategy comparison for Germany for all simulated parameters. All data



represent averages from 20 simulations. (a) Number of days the average person in the population will

have to spend under restrictions within the next 5 years under the local control strategy, using the county

structure and current active case numbers from Germany without further subdivision. Data normalized

by the corresponding values for population-wide control of restrictions. (b) Same as in panel a, but with

counties further subdivided into sub-populations of at most 200,000 (c) Same as in panel a, but with counties

further subdivided into sub-populations of at most 100,000
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Supplementary Figure 7 Strategy comparison for Italy for all simulated parameters. Otherwise as



in Supp. Fig. 6. (a) without subdivision (b) 200k subdivision (c) 100k subdivision
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Supplementary Figure 8 Strategy comparison for England for all simulated parameters. Otherwise



as in Supp. Fig. 6. (a) without subdivision (b) 200k subdivision (c) 100k subdivision
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Supplementary Figure 9 Strategy comparison for New York State for all simulated parameters.



Otherwise as in Supp. Fig. 6. (a) without subdivision (b) 200k subdivision (c) 100k subdivision
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Supplementary Figure 10 Strategy comparison for Florida for all simulated parameters. Otherwise



as in Supp. Fig. 6. (a) without subdivision (b) 200k subdivision (c) 100k subdivision
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Supplementary Figure 11 Cumulative infections after 5 years. Values obtained from the local strategy



are normalized by the corresponding measurement using the population-wide strategy. All data represent

averages from 20 simulations. (a) Germany (b) Italy (c) England
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Supplementary Figure 12 Cumulative infections after 5 years. As in Supp. Fig. 11, but for (a) New

York State (b) Florida


