Author & Year [Ref.]	Country	Number of animals	Effects of waste milk feeding	Feeding groups	Antimicrobials assessed in feed	Sampling	Waste milk - natural or artificially spiked with antimicrobials
Awosile et al, (2018) [20]	Canada	488 calves	Salmonella enterica isolated in 3.3% of samples, all were susceptible to all antimicrobials tested. Faecal carriage of <i>E.coli</i> with reduced susceptibility to cephalosporins (ESC) reported at frequency of 81.2% using selective culture. All tested isolates were multi-drug resistant. Feeding of unpasteurised nonsaleable milk associated with faecal recovery of ESC.	Unpasteurised waste milk was fed on these farms	Ceftiofur most commonly used (but not assessed here)	Faecal samples from calves 1) Between day 2-15 2) Between day 42 and 56	Natural
Calderon- Amor & Gallo (2020) [22]	Chile	700 calves	Factors associated with diarrhoea included using milk replacer or untreated waste milk compared to pasteurised/acidified waste milk	Waste milk was fed on these farms -	(Survey)	Survey of management. Calf health assessed at one on farm visit	Natural

				1) untreated bulk			
				milk (UBM)			
			Differences in microbial richness	2) acidified waste	Various (mixture)	12 calves randomly euthanised	
			(taxonomic groups) of bacteria;	milk (AWM)	including &-Lactams,	on day 21: Mucosa and digesta	
Deng et al,	China	84 calves	Increased prevalence of pathogenic	3) pasteurised	Aminoglycoside,	samples	Natural
(2017) [23]			bacteria; expression of genes related	waste milk	Tetracycline,	(rumen, caecum, colon, faeces),	
			to metabolic diseases;	(PMW)	Macrolide	3 animals per feeding group	
				4) untreated waste			
				milk (UWM)			
				1) Pasteurised			
			No statistically significant difference	waste milk			
F1 · · · ·			with respect to the excretion (yes/no)	(PWM); 128			
Edrington et		011 1	of Salmonella spp.; differences with	monella spp.; differences with calves;	WM & faecal samples:		
al, (2018)	USA	211 calves	the serotypes	2) Nonpasteurised	Not known	weekly at 1-4 weeks of age, & at	Natural
[24]			Majority susceptible to all	waste milk		weaning.	
			antimicrobials tested	(NPWM); 83			
				calves			
			No effect on bacterial cell function				
			categories -except in the "phage,	1) Pasteurised			
			prophage and transposable elements"	whole milk			
Feng et al,	I IC A	10	category, which indicates increased	2) Pasteurised	Pirlimycin (0.2mg/L)	Faecal Samples on day 1, 42 and	Artificial
(2020) [25]	USA	10 carves	susceptibility of the calf microbiome	whole milk with	(day 2 to 50)	84 before feeding	
			to the transfer of antimicrobial	pirlimycin added			
			resistance;				

Foutz et al. (2018) [26]	USA	74 calves	Calves fed MMR and PNM more frequently excreted multi-resistant bacteria, overall resistance levels fell over time, no difference between feeds at 16 weeks.	1) PNM (pasteurised nonsaleable milk) 2) MMR (medicated milk replacer) 3) NMR (nonmedicated milk replacer)	MMR contained: neoterramycin, neomycin, oxytetracycline, chlortetracycline. PNM contained ampicillin, cephapirin, penicillin, ceftiofur	Faecal samples (week 1, 3, 5, 16)	Natural/Medicated MR
Horton et al, (2016) [27]	UK	250 Cows and 40 unweaned Calves	93 % of the faecal samples (calves, cows) contained <i>E.coli</i> isolates with CTX-M genes, 100% of the unweaned calves carried CTX-M <i>E.coli</i> , prevalence of CTX-M <i>E.coli</i> decreased with age	Waste milk was fed on this farm	Most frequently detected were cefquinome and cefalexin in waste milk	Faecal samples, waste milk samples, environmental samples; six visits with longitudinal sampling of calves (n=20), follow up 1 year later	natural
Li et al, (2019) [28]	China	20 bull calves	No difference seen in the diversity of the microbiome, no effect on liveweight. lower incidence of diarrhoea in spiked milk replacer group. Stimulated development of ruminal papillae.	1) Milk replacer spiked with antibiotics (ANT) 2) Milk replacer without antibiotics (CON)	Penicillin (0.024mg/l), Streptomycin (0.025mg/l), Tetracycline (0.1mg/l), Ceftiofur (0.33 mg/l)	Rumen fluid: 15., 25., 35. Tag for pH, volatile fatty acids and NH ₃ -N; 10 samples from day 35 investigated for microbial community; Faecal consistency and feed intake daily; Liveweight, withers height,	Artificial

						body length and heart girth: Day 1, 7, 14, 21, 28, 35	
Manga et al, (2019) [29]	Czech Republic	13 calves	94 % of the faecal samples contained cefotaxime-resistant E.coli (CREC) using selective culture, later confirmed as AmpC-producing; all calves were positive on day 1 or 2, 90 % of cefotaxime-resistant <i>E.coli</i> were multi-resistant; Frequency of isolation of CREC decreased with age	Calves were fed milk with antimicrobial residues on this farm – no further details	AM Usage on the farm included lincomycin, oxytetracycline, amoxicillin/ clavulanic acid, marbofloxacin, cefquinome, cefoperazone	Faecal samples from calves until day 63, environmental samples, feed samples, faecal samples from the 13 dams before calving	Natural
Maynou et al (2017a) [30]	Spain	20±5 calves	Increased excretion of resistant and multi-resistant <i>E. coli</i> (9 antimicrobials tested), reduced excretion with calf age. Increased prevalence of colistin- resistant <i>Pasteurella multocida;</i> Calf isolates similar to environmental ones, not to those from the dams	1) Waste milk (WM) 2) Milk replacer (MR)	Not known	Rectal swabs (for <i>E.coli</i>) und nasal swabs (for <i>Pasteurella multocida</i>): 42±3.2 days., 1 year; environmental samples	Natural

Maynou et al, (2017b) [31]	USA	52 female calves (3 <u>+</u> 1.3 days old)	Increased excretion of resistant <i>E. coli</i> (12 antimicrobials tested), reduced excretion with calf age.	1) Pasteurised waste milk (pWM) 2) Milk replacer (MR)	Not known	Rectal swabs: Study days 0, 35, 56	Natural
Maynou et al, (2019) [32]	USA	40 calves (2-5 days old)	Non-specific influence on gut microbiota, Increased liveweight gain	1) Pasteurised waste milk (pWM) 2) Milk replacer (MR)	Beta-lactam antimicrobials were detected in each batch of waste milk, other antimicrobials might also be present.	Faecal samples, nasal swabs, liveweight: twice a week. Microbiome analysed: Day 42	Natural
Pereira et al, (2018) [33]	USA	30 calves	Significant difference in relative abundance of functional genes in bacteria, particularly those expressing for stress responses, regulation and cell signalling, and N metabolism.	1) Raw milk with antimicrobials added (DR) 2) Raw milk (NR)	Ampicillin, ceftiofur, penicillin, oxytetracycline	Faecal samples: Weekly until 6 weeks old	Artificial

Tempini et al, (2018) [34]	USA	25 farms	60% of waste milk tested contained detectable concentration of at least 1 antimicrobial, 20% of <i>E.coli</i> (n=10) from waste milk were multidrug resistant	(Survey)	-	Milk samples from each farm Bulk tank / waste milk (1 sample/ farm)	Natural
Tetens et al, (2019) [35]	Germany	50 calves	Higher prevalence of ESBL producing <i>E.coli</i> on the farm using blanket dry cow therapy	 Colostrum from farms with selective drying off Colostrum from farms with blanket antibiotic dry cow therapy 	Combination product (dihydro- streptomycin, nafcillin and penicillin-G procaine) for blanket DCT; Framecytin with penicillin or cloxacillin for selective DCT	Faecal samples: Day 3, 21 post-partum	Natural (colostrum)
Yousif et al, (2018) [36]	China	12 calves	Cocktail of antibiotics induced changes at different taxonomic levels, a decrease in <i>E.coli</i> was found in the group receiving the cocktail of antibiotics, which might reduce diarrhoea	1)Milk replacer without AB (CON) 2) Milk replacer with low cocktail of AB (LCA) 3) Milk replacer with one AB	LCA: Penicillin, streptomycin, tetracycline, ceftiofur, LSA: Ceftiofur	Calves euthanised on Day 35: Digesta from ileum and colon, faecal samples, IgG from blood samples	Artificial

				(LSA)			
						Stomach mass: Day 58 (n=3,	
						male calves).	
7hana at al		54 calves	In more design and the second second	1) Whole milk	Gentamicin (only	Feed intake & growth:	
Znang et al,	China	(from 7	different besteriel community with	2) Pasteurised	residue detected in	Day 7, 14, 28, 49, 58, 90, 120, 150,	Natural
(2019)	China	days of		waste milk	WM)	180 (female calves);	Inatural
[37]		age)	VV IVI	3) Milk replacer		Blood samples, rumen	
						fermentation:	
						Day 60, 180 (female calves)	
				1) Bulk tank milk			
				(UBM)			
				2) Untreated		Weight, Blood samples: Day 1,	
Zou et al.			Increased liveweight gain, increased	waste milk		22.	
(2017)	China	84 male	diarrhoea incidence, increased	(UWM)	Not known	Diarrhoea: assessed daily	Natural
[38]	china	calves	inflammation of jejunum and ileum,	3) Pasteurised		Small intestine tissue at d 22	
[00]			no difference in immune response	waste milk		(n=6)	
				(PWM)			
				4) Acidified waste			
				milk (AWM)			

Table S2: Aspects considered in the studies dealing with feeding waste milk and published since 2016.

Author & Year	Excretion of AMR bacteria	Age of calves	Microbiome	Health	Transfer of bacteria
Awosile et al (2018) [20]	•	•			
Awosile & Smith (2017) [21]	•				
Calderon-Amor & Gallo (2020)				_	
[22]				•	
Deng et al (2017) [23]			•	0	
Edrington et al (2018) [24]	0				•
Feng et al (2020) [25]			•		
Foutz et al (2018) [26]	•	•			
Horton et al (2016) [27]	•	•			0
Li et al (2019) [28]			0	•	
Manga et al (2019) [29]	•				
Maynou et al (2017a) [30]	•	•			
Maynou et al (2017b) [31]	•	•			
Maynou et al (2019) [32]			•	0	
Pereira et al (2018) [33]	0	0	•	0	
Tempini et al (2018) [34]					•
Tetens et al (2019) [35]	•	•			
Yousif et al (2018) [36]			•		
Zhang et al (2019) [37]		•	•	0	
Zou et al (2017) [38]				•	

• = Primary focus of the study; \bigcirc = Secondary focus of the study.