Supplementary Material

Crystal Structure of SARS-CoV-2 Main Protease in Complex with the Non-Covalent Inhibitor ML188

Gordon J. Lockbaum, Archie C. Reyes, Jeong Min Lee, Ronak Tilvawala, Ellen A. Nalivaika, Akbar Ali, Nese Kurt Yilmaz, Paul R. Thompson, Celia A. Schiffer^{*}

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States

*Corresponding author. Email: <u>Celia.Schiffer@umassmed.edu</u>

Supplementary Materials

Figure S1: Sequence alignment of SARS2-M^{pro} and SARS1-M^{pro}. Table S1: X-ray data collection and crystallographic refinement statistics. Figure S2: Comparison of crystallographic symmetry mates. Figure S3: C-alpha distance differences between SARS2-M^{pro} ML188 complex and SARS1-M^{pro} ML188 complex. Figure S4: Protease-Inhibitor vdW differences.

SARS1	1	SGFRKMAFP:	SGKVEGCMVQVTCGTTTLNGLWLDD <mark>T</mark> VYCPRHVICT <mark>A</mark> EDML	50
SARS2	1	SGFRKMAFP	SGKVEGCMVQVTCGTTTLNGLWLDD <mark>V</mark> VYCPRHVICT <mark>S</mark> EDML	50
SARS1	51	NPNYEDLLII	RKSNH <mark>S</mark> FLVQAGNVQLRVIGHSMQNC <mark>L</mark> L <mark>R</mark> LKVDT <mark>S</mark> NPKTPK	100
SARS2	51	NPNYEDLLI	RKSNH <mark>N</mark> FLVQAGNVQLRVIGHSMQNC <mark>V</mark> L <mark>K</mark> LKVDT <mark>A</mark> NPKTPK	100
SARS1	101	YKFVRIQPG(QTFSVLACYNGSPSGVYQCAMRPN <mark>H</mark> TIKGSFLNGSCGSVGF	150
SARS2	101	YKFVRIQPG	QTFSVLACYNGSPSGVYQCAMRPN <mark>F</mark> TIKGSFLNGSCGSVGF	150
SARS1	151	NIDYDCVSF(CYMHHMELPTGVHAGTDLEG <mark>K</mark> FYGPFVDRQTAQAAGTDTTI	200
SARS2	151	NIDYDCVSF	CYMHHMELPTGVHAGTDLEG <mark>N</mark> FYGPFVDRQTAQAAGTDTTI	200
SARS1	201	T <mark>L</mark> NVLAWLY2 :	AAVINGDRWFLNRFTTTLNDFNLVAMKYNYEPLTQDHVDIL	250
SARS2	201	T <mark>V</mark> NVLAWLY2	AAVINGDRWFLNRFTTTLNDFNLVAMKYNYEPLTQDHVDIL	250
SARS1	251	GPLSAQTGI	AVLDMCA <mark>A</mark> LKELLQNGMNGRTILGS <mark>TI</mark> LEDEFTPFDVVRQC	300
SARS2	251	GPLSAQTGI	AVLDMCA <mark>S</mark> LKELLQNGMNGRTILGS <mark>AL</mark> LEDEFTPFDVVRQC	300
SARS1	301	SGVTFQ 	306	
SARS2	301	SGVTFQ	306	

Figure S1. Sequence alignment of SARS2-M^{pro} vs SARS1-M^{pro}. Differences include: T35V, A46S, S65N, L86V, R88K, S94A, H134F, K180N, L202V, A267S, T285A, and I286L.

	SARS2-M ^{pro} -ML188
PDB ID	7L0D
Data Collection	
Space group	C121
<i>a, b, c</i> (Å)	113.2, 52.7, 46.1
<i>α,</i> β, γ (°)	90, 102.8, 90
Resolution (Å)	30.1 - 2.39 (2 47 - 2 39)
Unique Reflections	9338 (886)
Total Reflections	28452 (2586)
Redundancy	3.0 (2.9)
Completeness (%)	87.9 (84.6)
Average Ι/σ	12.3 (3.4)
R _{merge} ^a	0.069 (0.313)
R _{pim}	0.045 (0.210)
CC 1/2	0.995 (0.862)
Refinement	
R _{factor} (%) ^c	20.1
R _{free} (%) ^d	26.1
RMSD ^b in:	
Bond lengths (Å)	0.003
Bond angles (°)	0.550
Ramachandrans:	
Favored (%)	97.36
Allowed (%)	2.31
Outliers (%)	0.33
B-factors:	
Average	35.66
Macromolecules	35.55
Ligands	36.61
Solvent	37.77

Table S1. X-ray data collection and crystallographic refinement statistics. Values in parenthesesare for the highest resolution shell.

 ${}^{a}R_{sym} = \Sigma | I - \langle I \rangle | / \Sigma I$, where I = observed intensity, $\langle I \rangle =$ average intensity over symmetry equivalent

^bRMSD, root mean square deviation.

 ${}^{c}R_{factor} = \Sigma || F_{o}| - |F_{c}|| / \Sigma |F_{o}|.$

 ${}^{d}R_{free}$ was calculated from 5% of reflections, chosen randomly, which were omitted from the refinement process.

Figure S2. Comparison of crystallographic symmetry mates. SARS2-M^{pro}-ML188 complex (cyan) and SARS1-M^{pro}-ML188 complex (magenta) with natural dimer (orange) and relevant crystallographic symmetry mates within 4 Å (grey)

Figure S3. A) C-alpha distance differences between SARS2-M^{pro}-ML188 and SARS1-M^{pro}-ML188. Residues 301-306 were excluded because the differences at those residues were large and overshadowed the analysis. B) Average C-alpha distance differences plotted onto structure, shown as cartoon, with inhibitor ML188 shown as green spheres.

Figure S4. A) Overall shifts in Inhibitor binding between ML188 and SARS2-M^{pro} and SARS1-M^{pro}, emphasized with blue arrows. B) Per-residue protein-inhibitor vdW contacts between ML188 and SARS2-M^{pro} and SARS1-M^{pro}. In the "Diff" column, **Red** indicates ML188 makes more contacts in SARS2 than SARS1, and **Blue** indicates less contacts. C) Residues that showed the largest differences in protein-inhibitor vdW contacts are shown as sticks.