
def logAUC(points):

 # constants

 LOGAUC_MAX = 1.0 ## this should not change

 LOGAUC_MIN = 0.001 ## this you may want to change if you database is

large and you have strong early enrichment.

 RANDOM_LOGAUC = (LOGAUC_MAX-

LOGAUC_MIN)/np.log(10)/np.log10(LOGAUC_MAX/LOGAUC_MIN)

 """Compute semilog x AUC minus the perfectly random semilog AUC."""

 # assumes we have previously interpolated to get y-value at x = 0.1%

 # generate new points array clamped between 0.1% and 100%

 npoints = []

 for x in points:

 if (x[0] >= LOGAUC_MIN*100) and (x[0] <= LOGAUC_MAX*100):

 npoints.append([x[0]/100 , x[1]/100])

 area = 0.0

 for point2, point1 in zip(npoints[1:], npoints[:-1]):

 if point2[0] - point1[0] < 0.000001:

 continue

 # segment area computed as integral of log transformed equation

 dx = point2[0]-point1[0]

 dy = point2[1]-point1[1]

 intercept = point2[1] - (dy)/(dx) * point2[0]

 area += dy/np.log(10) + intercept*(np.log10(point2[0])-

np.log10(point1[0]))

 print("logAUC", area, area/np.log10(LOGAUC_MAX/LOGAUC_MIN) -

RANDOM_LOGAUC)

 return area/np.log10(LOGAUC_MAX/LOGAUC_MIN) - RANDOM_LOGAUC

def roc(scores, lig_list, decoy_list, nbins=10000):

 """Calculate ROC curve given ranked ids and ligand ids."""

 num_data = len(scores)

 binsize = int(num_data/nbins) + 1

 num_lig = len(lig_list)

 num_dec = len(decoy_list)

 found_ligand = 0

 results = []

 for i in range(num_data):

 if i % binsize == 0:

 results.append([i-found_ligand, found_ligand])

 if scores[i][2].split('.')[0] in lig_list:

 found_ligand += 1

 results.append([num_data - found_ligand, found_ligand])

 results.append([num_dec, num_lig])

 points = []

 for x in results:

 fpr = x[0]*100.0/num_dec

 tpr = x[1]*100.0/num_lig

 points.append([fpr, tpr])

 return points

def interpolate_curve(points):

 """Interpolate curve where needed to get better graph visualization."""

 i = 0

 while i < len(points) and points[i][0] < 0.1:

 i += 1

 slope = (points[i][1] - points[i-1][1])/(points[i][0] - points[i-1][0])

 intercept = points[i][1] - slope * points[i][0]

 point_one = [0.100001, (slope * 0.100001 + intercept)]

 npoints = [x for x in points]

 npoints.insert(i, point_one)

 return npoints

