Supplementary materials for

Human Rev1 relies on insert-2 to promote selective binding and accurate replication of stabilized G-quadruplex motifs

*Amit Ketkar*¹, *Lane Smith*¹, *Callie Johnson*³, *Alyssa Richey*³, *Makayla Berry*¹, *Jessica H. Hartman*⁴, *Leena Maddukuri*¹, *Megan R. Reed*¹, *Julie Gunderson*⁵, *Justin W.C. Leung*², *and Robert L. Eoff*^{1,*} ¹Department of Biochemistry and Molecular Biology and ²Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, ³Arkansas School for Mathematics, Sciences, and the Arts, Hot Springs, AR 71901, USA, ⁴Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA, ⁵Department of Physics, Hendrix College, Conway, AR 72032, USA.

* To whom correspondence should be addressed. Tel: +1 501 686 8343; Fax: +1 501 686 8169; Email: RLEoff@uams.edu

Running title: Human Rev1 interaction with G-quadruplex DNA

SUPPORTING INFORMATION CONTENTS

Supplementary materials and methods

Table S1. CD melting temperatures of the ss-DNA G4 oligos used in this study.

Table S2. Equilibrium dissociation constants for hRev1³³⁰⁻⁸³³ binding to ss-G4 and non-G4 DNA substrates in a buffer containing 100 mM LiCl.

Table S3. Equilibrium dissociation constants for hRev1³³⁰⁻⁸³³ binding to ds-G4 and non-G4 DNA substrates in a buffer containing 100 mM KCI.

Table S4. hRev1¹⁻¹²⁵¹-derived peptides (trypsin-digested) identified by mass spectrometry.

Figure S1. Circular dichroism spectra of the DNA oligonucleotides used in this study.

Figure S2. Purification and CD spectra of hRev1³³⁰⁻⁸³³ wild-type and mutant proteins.

Figure S3. Cloning, purification, DNA binding and enzyme activity of full-length hRev1¹⁻¹²⁵¹.

Figure S4. Schematic showing the DNA sequence of the pSP189 plasmids used in the forward mutagenesis assay.

Figure S5. Uncropped immunoblots of whole-cell lysates from HAP-1 *REV1^{KO}* cells transiently transfected with the pMH-SFB-Rev1 wild-type and muitant plasmids.

Figure S6. Alignment of the G4-*supF* plasmid sequences obtained from white MBM7070 *E. coli* colonies after replication in HAP-1 cells.

Figure S7. Alignment of the G4-*supF* plasmid sequences obtained from white MBM7070 *E. coli* colonies after replication in HAP-1 *REV1*^{KO} cells.

Figure S8. Sequence information, circular dichroism spectra and DNA binding of the putative G4-forming sequence identified at the *REV1* promoter.

Figure S9. Binding affinity of hRev1³³⁰⁻⁸³³ to primer-template G4 DNA substrates.

Figure S10. Alignment of the Rev1 polymerase domain from multiple species.

Supplementary materials and methods

Circulr dichroism spectroscopy -

Circular dichroism (CD) spectroscopy for all DNA oligonucleotide substrates was performed on a Jasco J-1100 spectropolarimeter (Jasco, Easton, MD, USA). The ss-DNA G4 or non G4 oligos, or the corresponding primer-template ds-DNA substrates were prepared by annealing, as described in Methods. Solutions were prepared in 10 mM Tris-HCl, pH 7.5, containing either 100 mM KCl or LiCl. For measuring spectra, DNA was taken at a concentration of 5 µM in a total volume of 200 µL of buffer in a quartz cuvette with pathlength of 1 mm. Spectra were measured between the wavelength range of 230 nm to 330 nm, with a band-width of 1 nm, data pitch of 0.1 nm, at a scanning speed of 100 nm/min. Spectra were reported as an average of three scans. A similar scan of the buffer alone was used as blank to subtract and obtain the corrected spectra for oligo substrates. Thermal stability for the ss-G4 oligo substrates was measured by monitoring the change in CD signal at the corresponding peak wavelength, across a temperature range of 4°C to 95°C, by applying a melting temperature gradient of 1°C/min. An average of two scans was reported. Data analysis was performed using Graphpad Prism (San Diego, CA, USA), and the melting temperature values were obtained by fitting the data to a four-parameter logistic model allowing a variable slope.

Immunoblotting -

Aliquots at different stages during purification (lysate, supernatant after interaction with streptavidin-Sepharose beads, biotin-eluted fraction, etc.) from the large-scale culture of HEK293T cells stably expressing SFB-tagged hRev1¹⁻¹²⁵¹ were retained during protein purification. These were then loaded on a 4–20% gradient SDS-PAGE gel (Bio-Rad Laboratories, Hercules, CA, USA), and electrophoresis was performed at 120 V for 80 min. The separated proteins were transferred to a 0.2 µm polyvinylidene difluoride membrane (Bio-Rad; Cat # 162-0177) at 4°C at 200 mA for 90 min. After blocking with 5% (w/v) nonfat milk in 1X Tris-buffered saline (TBS), western blotting to detect the presence of SFB-tagged hRev1¹⁻¹²⁵¹ was performed by probing the membrane with the rabbit polyclonal anti-FLAG epitope antibody (Novus Biologicals; Cat # NB600-345). Dilution of the primary antibody was 1:1000 made in 1X TBS containing 1% (w/v) BSA. The blots were also probed with a rabbit anti-GAPDH primary antibody (Cell Signaling Technologies, Danvers, MA, USA; Cat #2118S) used at 1:10,000 dilution as loading control. Horseradish peroxidase-coupled anti-rabbit secondary antibody (Thermo-Scientific; Cat #32460) was used at a 1:2000 dilution. Blot was developed by enhanced chemiluminescence using the ECL kit (Bio-Rad; Cat # 170-5060) and the bands were visualized on a ChemiDoc MP imaging system (Bio-Rad; Cat # 12003154).

For the HAP-1 *REV1^{KO}* cells transiently transfected to express the SFB-tagged hRev1¹⁻¹²⁵¹ wild-type or mutant proteins, whole cell lysates were prepared 48 hrs post-transfection. *REV1^{KO}* cells that were sham-transfected (no plasmid) were used as untransfected control. Protein concentration of the lysates was estimated using the Pierce BCA assay kit (Thermo-Fisher Cat#23225). 50 µg of each lysate sample was loaded and separated by gel electrophoresis followed by transfer and blocking as described earlier. The immunoblot was then probed with the rabbit polyclonal anti-FLAG epitope antibody (Novus Biologicals; Cat # NB600-345; 1:1000 [v/v] dilution) to detect the level of each SFB-

hRev1 protein expression. The blot was subsequently also probed for loading control, with a rhodamine-conjugated anti-actin FAB (Bio-Rad12004164; 1:2000 [v/v] dilution).

Table S1. Melting temperatures of the G4 ssDNA substrates used in the study, measured by CD, in10 mM Tr-s-CI buffer (pH 7.5) containing 100 mM KCI/LiCI.

	T _m ^a (°C) [100 mM KCI]	T _m (°C) [100 mM LiCl]
Мус 14/23	91 ± 3	52 ± 4
Мус 2/11	84 ± 4	49 ± 2
Rev1-prom	80 ± 3	51 ± 4
Bcl-2 1245	66 ± 5	53 ± 3
KRAS 22RT	56 ± 3	44 ± 1
ТВА	48 ± 7	38 ± 4
hTelo-4	62 ± 5	41 ± 4

^a T_m values reported represent the mean ± SD (n=3).

	Ũ		
	K _{D.DNA}		Fold preference for G4 DNA
	Non-G4 G4 (nM) (nM)		$(K_{D,NonG4 DNA}/K_{D,G4 DNA})$
Мус 14/23	760 ± 290	220 ± 70	4
Myc 2/11	-	90 ± 20	8
Rev1-prom	260 ± 120	180 ± 70	2
Bcl-2 1245	750 ± 340	200 ± 40	4
KRAS 22RT	1620 ± 800	250 ±130	7
TBA	310 ± 40	140 ± 20	2
hTelo-4	920 ± 120	630 ± 100	2

Table S2. Equilibrium dissociation constants for hRev1³³⁰⁻⁸³³ binding to ss-G4 and non-G4 DNA substrates in a buffer containing 100 mM LiCl.^b

^bFluorescence polarization experiments were performed by titrating hRev1³³⁰⁻⁸³³ into a solution containing the indicated ss-DNA substrate containing 100 mM LiCl. The resulting equilibrium dissociation constant values were calculated by fitting the resulting polarization values to a quadratic equation. Data represent the mean \pm SD (n=3).

	К _{D.I} Non-G4 (nM)	G4 (nM)	Fold preference for G4 DNA $(K_{D,NonG4 DNA}/K_{D,G4 DNA})$
Мус 14/23	770 ± 80	59 ± 9	13
Myc 2/11	-	45 ± 6	17
Rev1-prom	154 ± 30	11 ± 2	14
Bcl-2 1245	660 ± 120	97 ± 20	7
KRAS 22RT	1120 ± 80	120 ±10	9
ТВА	270 ± 30	165 ± 25	2
hTelo-4	1600 ± 320	840 ± 50	2

Table S3. Equilibrium dissociation constants for hRev1³³⁰⁻⁸³³ binding to ds-G4 and non-G4 DNA substrates in a buffer containing 100 mM KCI.^c

^cFluorescence polarization experiments were performed by titrating hRev1³³⁰⁻⁸³³ into a solution containing the indicated ds-DNA substrate containing 100 mM KCI. The resulting equilibrium dissociation constant values were calculated by fitting the resulting polarization values to a quadratic equation. Data represent the mean \pm SD (n=3).

Peptide Sequence (Trypsin cleavage sites in parentheses)	m/z	M.W.	Charge state	Residue (Start- End)
(K)AAPSVPSKPSDcNFISNFYSHSR(L)*	856.73	2567.18	+3	335-357
(R)LHHISMWK(C)	526.28	1050.54	+2	358-365
(K)cELTEFVNTLQR(Q)	755.37	1508.73	+2	366-377
(R)QSnGIFPGREK(L)*	617.31	1232.62	+2	378-388
(R)QSnGIFPGREK(L)**	683.33	1364.64	+2	378-388
(K)mKTGRSALVVTDTGDmSVLNSPR(H)*	650.57	2598.24	+4	392-414
(R)SALVVTDTGDMSVLNSPR(H)	621.32	1860.93	+3	397-414
(R)HQScImHVDMDcFFVSVGIR(N)	818.70	2453.07	+3	415-434
(R)NRPDLKGKPVAVTSNR(G)	438.75	1750.98	+4	435-450
(R)NRPDLKGKPVAVTSNR(G)	471.76	1883.00	+4	435-450
(K)GKPVAVTSNRGTGR(A)	700.39	1398.77	+2	441-454
(K)GKPVAVTSNRGTGR(A)	511.27	1530.79	+3	441-454
(R)GTGRAPLRPGANPQLEWQYYQNK(I)	661.84	2643.33	+4	451-473
(R)GTGRAPLRPGANPQLEWQYYQNK(I)	694.85	2775.35	+4	451-473
(R)APLRPGANPQLEWQYYQNK(I)	758.39	2272.14	+3	455-473
(K)GKAADIPDSSLWENPDSAQAnGIDSVLSR(A)	1005.48	3013.43	+3	477-505
(K)AADIPDSSLWENPDSAQANGIDSVLSRAEIASc SYEAR(Q)	1355.96	4064.86	+3	479-516
(R)AEIAScSYEARQLGIK(N)	599.31	1794.89	+3	506-521
(R)AEIAScSYEARQLGIK(N)	643.31	1926.92	+3	506-521
(R)QLGIKnGMFFGHAK(Q)	516.94	1547.79	+3	517-530
(K)NGMFFGHAK(Q)	504.74	1007.46	+2	522-530
(K)QLcPNLQAVPYDFHAYK(E)	1032.50	2062.99	+2	531-547
(K)LTPDEFANAVR(M)	616.82	1231.62	+2	585-595
(R)MEIKDQTK(C)	496.76	991.50	+2	596-603
(K)cAASVGIGSNILLAR(M)	751.41	1500.81	+2	604-618
(K)cAASVGIGSNILLARmATR(K)	703.69	2108.05	+3	604-622
(R)KAKPDGQYHLKPEEVDDFIR(G)	597.06	2384.21	+4	623-642
(K)AKPDGQYHLKPEEVDDFIR(G)	565.04	2256.12	+4	624-642
(R)GQLVTNLPGVGHSmESK(L)	885.45	1768.88	+2	643-659
(R)GQLVTNLPGVGHSmESKLASLGI K(T)	818.11	2451.32	+3	643-666
(K)LASLGIKTcGDLQYMTmAK(L)	706.35	2116.04	+3	660-678
(K)TcGDLQYmTMAK(L)	717.81	1433.60	+2	667-678
(K)LQKEFGPKTGQmLYR(F)	453.74	1810.94	+4	679-686
(K)TGQmLYRFcR(G)	493.89	1478.64	+3	687-696
(K)TGQMLYRFcR(G)	488.56	1462.65	+3	687-696
(R)GLDDRPVRTEK(E)	709.36	1416.70	+2	697-707
(R)GLDDRPVRTEKER(K)	785.92	1569.82	+2	697-709
(K)ERKSVSAEINYGIR(F)	541.29	1620.86	+3	708-721
(R)KSVSAEINYGIR(F)	446.25	1335.71	+3	710-721
(K)SVSAEINYGIR(F)	403.55	1207.62	+3	711-721

Table S4. hRev1¹⁻¹²⁵¹-derived peptides (trypsin-digested) identified by mass spectrometry.

(R)FTQPKEAEAFLLSLSEEIQR(R)	779.41	2335.21	+3	722-741
(K)EAEAFLLSLSEEIQR(R)	867.95	1733.88	+2	727-741
(R)RLEATGmKGK(R)	553.80	1105.59	+2	742-751
(R)LTLKImVRKPGAPVETAK(F)	492.80	1967.16	+4	753-770
(K)ImVRKPGAPVETAK(F)	548.96	1643.87	+3	757-770
(K)ImVRKPGAPVETAK(F)	756.93	1511.85	+2	757-770
(R)KPGAPVETAKFGGHGlcDNIAR(T)	574.55	2294.16	+4	761-782
(K)FGGHGIcDNIARTVTLDQATDNAK(I)	677.32	2705.25	+4	771-794
(R)TVTLDqATDNAK(I)	639.31	1276.61	+2	783-794
(R)TVTLDQATDnAKIIGK(A)	563.64	1687.90	+3	783-798
(K)IIGKAmLNMFHTMK(L)	550.96	1649.85	+3	795-808
(K)AMLNmFHTmKLNISDMR(G)	695.66	2083.97	+3	799-815

* Lowercase 'n' indicates deamidation (+1) of Asn residues, while lowercase 'c' indicates carbamidomethyl modification (+57), and 'm' indicates oxidation (+16) of Met residues.

^{**} Arg residues highlighted in red were modified by HPG (+132).

Figure S1. Circular dichroism spectra of the ss-DNA oligonucleotides used in this study. Spectra measured in 100 mM KCl are shown in *blue*, while those in 100 mM LiCl are shown in *red*. Positions of signature peaks and troughs for parallel (265 nm), anti-parallel (262 nm and 295 nm) and mixed (265 nm and 290 nm) G4-DNA CD curves are marked.

В

Α

Figure S2. hRev1³³⁰⁻⁸³³ wild-type and mutant proteins were overexpressed in *E. coli* BL21 (DE3) cells and purified. (**A**) All the hRev1³³⁰⁻⁸³³ proteins were purified to homogeneity. A Coomassie brilliant blue R-250 stained SDS-PAGE gel with 10 μ g of each protein is shown. (**B**) CD spectra of the purified hRev1³³⁰⁻⁸³³ proteins are shown. The spectra of all proteins overlapped, indicative of similar folding for the wild-type and mutant proteins.

Figure S3. Full-length hRev1 was used in *supF*-forward mutagenesis assay and biochemical experiments. (**A**) Full-length hRev1 (a.a. 1-1251) was cloned into the Gateway-compatible pMH-SFB mammalian expression vector as a N-terminal tandem S protein-FLAG-streptavidin-Binding peptide (SFB) tagged construct. The domain organization of the construct is shown, where the affinity tag and hRev1 domains are labeled. *S*, S-protein; *2xFLAG*, two tandem FLAG-peptide sequences; *SBP*, streptavidin-binding peptide; *BRCT*, BRCA1 C terminus domain; *pol core*, hRev1 polymerase core domain (a.a. 330-833) colored according to the scheme identical to that used in **Figure 2C** to show the sub-domains; *ubm*, ubiquitin-binding motif; *CT*, C-terminal domain (a.a. 1150-1251). This plasmid was used to transfect HAP-1 mammalian cells for the forward mutagenesis assay. All the mutant hRev1 constructs described in the mutagenic assay were subsequently made using this construct. (**B**) HEK293T cells stably expressing SFB-tagged hRev1¹⁻¹²⁵¹ were generated using the construct described in **A**, and the overexpressed protein was purified using affinity chromatography with

streptavidin-sepharose beads. Aliquots from different stages of the protein purification protocol were separated using SDS-PAGE gel electrophoresis. *Lane 1*, Lysate from the HEK293T cells; *lane 2*, supernatant after interaction with streptavidin-sepharose beads; *lane 3*, first eluate with 2 mg/mL biotin; *lane 4*, biotin eluate after second round of binding; *lane 5*, final dialyzed sample. A major band at ~120 kDa was observed for the purified protein. Molecular weight markers are shown in the far-left lane. The panel below the Ponceau-stained blot shows the western blot probed with an anti-FLAG antibody. A single band was detected for SFB-hRev1 at different stages of purification. (C) DNA binding properties of the purified hRev1¹⁻¹²⁵¹ protein were studied using the Myc 14/23 substrate. Binding curves for the equilibrium dissociation constants are given in Table 2. (D) Enzyme activity on both G4-and non-G4 template-primer substrates was tested for the purified hRev1¹⁻¹²⁵¹ protein, in an assay as described in Methods and Figure 4.

pSP189 with *supF*

pSP189 with *supF*

Figure S4. Schematic showing the DNA sequence of the pSP189 plasmids used in the forward mutagenesis assay. The unmodified pSP189 plasmid sequence is shown in the top panel, with the *supF*-tRNA coding region marked in *yellow*. The numbering is according to Seidman *et al* (1). In the lower panel, the region marked in *green* indicates the Myc-G4 sequence inserted into the pSP189 plasmid. The color scheme is identical to that used in **Figure 6**.

Figure S5. Uncropped Western immunoblots of whole-cell lysates from HAP-1 *REV1^{KO}* cells transiently transfected with the pMH-SFB-Rev1 plasmids. The HAP-1 *REV1^{KO}* cells were transiently transfected with different constructs of the pMH-SFB-Rev1 plasmid, expressing the wild-type, or mutant form of hRev1, and these were used in the complementation experiments in the supF forward mutagenesis assay. Cropped versions of these blots are shown in Figure 5A. **(A)** The immunoblot was probed with a rabbit anti-FLAG tag polyclonal primary antibody (Novus Biologicals Cat# NB600-345; 1:1000 [v/v] dilution), to detect the level of protein expression for each of the SFB-tagged hRev1 proteins as indicated above each lane. **(B)** The immunoblot described in A was probed with a rhodamine-conjugated antiactin loading control antibody FAB (Bio-Rad Cat#12004164; 1:2000 [v/v] dilution.

HAP-1 No PDS

G4_supF	GAATTCGAGAGCCCTGCTCGAGCTGT <mark>GGGGAGGGTGGGGGGGGGG</mark>
No-PDS_1	${\tt GAATTCGAGAGCCCTGCTCGAGCTGTGGGGGGGGGGGGG$
No-PDS_2	${\tt GAATTCGAGAGCCCTGCTCGAGCTGTGCGGAGGGTGGGGGGGG$
No-PDS_3	${\tt GAATTCGAGAGCCCTGCTCGAGCTGTGTGGGGGGGGGGG$
No-PDS_4	${\tt GAATTCGAGAGCCCTGCTCGAGCTGTGCGGAGGGTGGGGGGGG$
No-PDS_5	${\tt GAATTCGAGAGCCCTGCTCGAGCTGTGTGGAGGGTGGGGGGGG$
No-PDS_6	${\tt GAATTCGAGAGCCCTGCTCGAGCTGTGGGGGAGGGTAGGGAGGATGGGGTTCCCGAGCGGCCAAAGTTAGCAGACTCTAAATCTGCCGTCATCGAC}$
No-PDS_7	${\tt GAATTCGAGAGCCCTGCTCGAGCTGTGCGGAGGGTGGGGGGGG$
No-PDS_8	${\tt GAATTCGAGAGCCCTGCTCGAGCTGTGTGGGGGGGGGGG$
No-PDS_9	${\tt GAATTCGAGAGCCCTGCTCGAGCTGTGCGGAGGGTGGGGGGGG$
No-PDS_10	GAATTCGAGAGCCCTGCTCGAGCTGTGTGGGGGGGGGGG
_	***************************************

G4_supF	TTCGAAGGTTCGAATCCTTCCCCCACCACCACGACCGAAATTCGGTACCCGGATCCTTAGC
No-PDS_1	${\tt TTCGGAGGTTCTAATCCTTCCCCCACCACCACGGCCGAAATTCGGTACCCGGATCCTTAGC}$
No-PDS_2	TTCGAAGATTCGATTCCTTCCCCCACGACCACGGCCGAAATTCTGTACCCGGATCCTTAGC
No-PDS_3	-TCGAAGGTTCGAATCCTTCCCCCACCACCGCCGAAATTCGGTACCCGGATCCTTAGC
No-PDS_4	TTCGGAGGTTCTAATCCTTCCCCCACGACCACGGCCGAAATTCTGTACCCGGATCCTTAGC
No-PDS_5	TTCGAAGATTCGATTCCTTCCCCCACGACCACGGCCGAAATTCTGTACCCGGATCCTTAGC
No-PDS_6	-TCGAAGGTTCGAATCCTTCCCCCACCACCGCCGAAATTCGGTACCCGGATCCTTAGC
No-PDS 7	TTCGAAGATTCGATTCCTTCCCCCACGACCACGGCCGAAATTCTGTACCCGGATCCTTAGC
No-PDS_8	-TCGAAGGTTCGAATCCTTCCCCCACCACCGCCGAAATTCGGTACCCGGATCCTTAGC
No-PDS_9	TTCGGAGGTTCTAATCCTTCCCCCACGACCACGGCCGAAATTCTGTACCCGGATCCTTAGC
No-PDS_10	TTCGAAGATTCGATTCCTTCCCCCACCACCGCCGAAATTCGGTACCCGGATCCTTAGC
_	*** ** *** * *********** **************

HAP-1 0.5 μ M PDS

G4_SupF	GAATTCGAGAGCCCTGCTCGAGCTGT <mark>GGGGAGGGTGGGGGGGGGG</mark>
0.5-PDS_1	GAATTCGAGAGCCCTGCTCGAGCTGTGGGGAGGGTGGGAAGGGTGGGGT-CCCGATCGGCCAAAGGGATCAGACTCTA-ATCTGCCGTCATCGTC
0.5-PDS_2	GAATTCTAGAGCCCTGCTCGAGCTGTGGGGAGGCTGGGTAGGGTGGGGTTCCCGAGCGGCCAAAGTGAGAAGACTCTAAATCTGCCGTCATCGAC
0.5-PDS_3	GAATTCGATAGCCCTGCTCGAGCTGTGGGAAGGGTGGGGAGGGTGGGGTTCCCGAGCGGCCAAAGGTAGCAGACTCTAAATCTGCTCATCGAC
0.5-PD5 4	GAATTCGAGAGCCCTGCTCGAGCTGTGGGGAGGGTGGGAAGGGTGGGGT-CCCGATCGGCCAAAGGGATCAGACTCTA-ATCTGCCGTCATCGTC
0.5-PDS 5	GAATTCTAGAGCCCTGCTCGAGCTGTGGGGAGGCTGGGTAGGGTGGGGTTCCCGAGCGGCCAAAGTGAGAAGACTCTAAATCTGCCGTCATCGAC
0.5-PDS_6	GAATTCGATAGCCCTGCTCGAGCTGTGGGAAGGGTGGGGAGGGTGGGGTTCCCGAGCGGCCAAAGGTAGCAGACTCTAAATCTGCTCATCGAC
0.5-PDS_7	GAATTCGATAGCCCTGCTCGAGCTGTGGGAAGGGTGGGGGGGG
0.5-PDS_8	GAATTCGAGAGCCCTGCTCGAGCTGTGGGGAGGGTGGGAAGGGTGGGG-TCCCGATCGGCCAAAGTGAGAAGACTCTAAATCTGCCGTCATCGAC
0.5-PDS_9	GAATTCTAGAGCCCTGCTCGAGCTGTGGGGAGGCTGGGTAGGGTGGGGTTCCCGAGCGGCCAAAGGTAGCAGACTCTAAATCTGCTCATCGAC
o =	
0.5-PDS_10	GAATTCGATAGCCTCTGCCGAGCTGTGGGGAAGGGTGGGGGGGG
0.5-PDS_10	GAATTCGATAGCCCTGCTCGAGCTGTGGGAAGGGTGGGGAGGGTGGGGGTGGGGGTTCCCCGAGCGGCCAAAGGGATCAGACTCTA-ATCTGCCGTCATCGTC ***** * * ***************************
0.5-PDS_10	GAATTCGATAGCCCTGCTCGAGCTGTGGGAAGGGTGGGGGAGGGTGGGGGTTCCCGAGCGGCCAAAGGGATCAGACTCTA-ATCTGCCGTCATCGTC ***** * *****************************
0.5-PDS_10	GAATTCGATAGCCCTGCTCGAGCTGTGGGAAGGGTGGGGAGGGTGGGGGTGCGGGTTCCCGAGCGGCCAAAGGGATCAGACTCTA-ATCTGCCGTCATCGTC
0.5-PDS_10 G4_SupF	GAATTCGATAGCCCTGCTCGAGCTGTGGGAAGGGTGGGGAGGGTGGGGGTGCGGGTTCCCGAGCGGCCAAAGGGATCAGACTCTA-ATCTGCCGTCATCGTC ***** * *****************************
0.5-PDS_10 G4_SupF 0.5-PDS_1	GAATTCGATAGCCCTGCTCGAGCTGTGGGAAGGGTGGGGAGGGTGGGGGTGCGGGTTCCCGAGCGGCCAAAGGGATCAGACTCTA-ATCTGCCGTCATCGTC ***** * *****************************
0.5-PDS_10 G4_SupF 0.5-PDS_1 0.5-PDS_2	GAATTCGATAGCCCTGCTCGAGCTGTGGGAAGGGTGGGGAGGGTGGGGGTGGGGTTCCCGAGCGGCCAAAGGGATCAGACTCTA-ATCTGCCGTCATCGTC ****** * ****************************
G4_SupF 0.5-PDS_1 0.5-PDS_2 0.5-PDS_3	GAATTCGATAGCCCTGCTCGAGCTGTGGGAAGGGTGGGGAGGGTGGGGGTGCGGGCTCCCGAGCGGCCCAAAGGGATCAGACTCTA-ATCTGCCGTCATCGTC ****** ************************************
G4_SupF 0.5-PDS_1 0.5-PDS_2 0.5-PDS_3 0.5-PDS_4	GAATTCGATAGCCCTGCTGCGGAGCGGAGGGTGGGGAGGGTGGGGGTGGGGGTCCCGAGCGGCCCAAAGGGATCAGACTCTA-ATCTGCCGTCATCGTC ****** ************************************
G4_SupF 0.5-PDS_1 0.5-PDS_2 0.5-PDS_3 0.5-PDS_4 0.5-PDS_5	GAATTCGATAGCCCTGCTGCGGAGCGGTGGGGAGGGTGGGGAGGGTGGGGTTCCCGAGCGGCCAAAGGGATCAGACTCTA-ATCTGCCGTCATCGTC ****** ************************************
G4_SupF 0.5-PDS_1 0.5-PDS_2 0.5-PDS_3 0.5-PDS_4 0.5-PDS_5 0.5-PDS_6	GAATTCGATAGCCCTGCTGCGGGGGGGGGGGGGGGGGGG

0.5-PDS_8 --CGAAGGTTCGAAACCTTCCCCCAT-ACCACGGCCGAAATTCGGTACCCGGATCCTTAGC 0.5-PDS_9 TTCGAAGGTTCGAATCCTTCCCCCACCACCACGGCCGAAATTCGTTACCCGGATCCTTAGC

0.5-PDS_10 TTCGAAGGTTCGAATCCTTCCCCCA-TACCACGGCCGAAATTCGGTACCCGGATCCTTAGC

Figure S6. Alignment of the G4-*supF* plasmid sequences obtained from white MBM7070 *E. coli* colonies. These plasmids were first allowed to replicate in HAP-1 cells grown in the presence or absence of 0.5 μM PDS. After extracting these plasmids from the HAP-1 cells, they were used to transform the bacterial indicator strain as described in Methods. The top sequence is for the parent G4-*supF* plasmid (before transfection into HAP-1 cells), while lower sequences were obtained from the white-colony transfectants. Ten colonies per condition were used for sequencing.

The positions of conserved/unmutated bases (in all the ten sequences) are marked by asterisks, while deletions are marked by dashes in each sequence. The shading/coloring of the unmodified G4-*supF* sequence marks the zones I to IV as mentioned in **Figure 6** of the manuscript.

HAP-1 *REV1^{KO}* No PDS

G4_SupF	GAATTCGAGAGCCCTGCTCGAGCTGT <mark>GGGGAGGGTGGGGGGGGGG</mark>
No-PDS_1	CAATTCGAGAGCCCTGCTCGAGCTGTGAGGAGCGTGGGGGGGG
No-PDS_2	CAATTCGAGAGCCCAGCTCGAGCTGTTGGGAGGGTGTGGAGGGTGGGGGTTCCAGCGGCCAAGGTCAGACTCTAAATCT-GCCGTATCGAC
No-PDS_3	GAATTCTAGAGCTGCTCGAGCTGTGGGGGGGGGGGGGG
No-PDS_4	CAATTCGAGAGCCCTGCTCGAGCTGTGAGGAGCGTGGGGGGGG
No-PDS_5	CAATTCGAGAGCCCAGCTCGAGCTGTTGGGAGGGTGTGGAGGGTGGGGTTCCAGCGGCCAAATGGAGCAGACTCTAAAACT-CCGTCATCGAC
No-PDS_6	GAATTCTAGAGCTGCTCGAGCTGTGGGGGGGGGGGGGG
No-PDS_7	CAATTCGAGAGCCCAGCTCGAGCTGTTGGGAGGGTGTGGAGGGTGGGGGTTCCAGCGGCCAAAAGTAGCAGACTCTAAATCT-C-GTCATCGAC
No-PDS_8	GAATTCTAGAGCTGCTCGAGCTGTGGGGGGGGGGGGGG
No-PDS_9	CAATTCGAGAGCCCTGCTCGAGCTGTGAGGAGCGTGGGGGGGG
No-PDS_10	CAATTCGAGAGCCCAGCTCGAGCTGTTGGGAGGGTGTGGAGGGTGGGGGTTCCAGCGGCCAAAAGTAGCAGACTCTAAATCT-C-GTCATCGAC
	**** **** * ********* **** *** ****** ****

G4_SupF	TTCGAAGGTTCGAATCCTTCCCCCACCACCACGACGGAAATTCGGTACCCGGATCCTTAGC
No-PDS_1	TTAGGTTCGAATCCTTCCCCCATCACCACGGCCGAAATTCGGTACCCGAATCCTTAGC
No-PDS_2	TTCG-AGGTTCGAATCCTTCACCCACCACCACGGCCGAAATTCAGTACCCGGATCCTTAGC
No-PDS_3	TTCGTAGGTTCGAATCTTTCCCCCACTACCACGGCCGAAATTCGATACCCGGATCCTTA
No-PDS_4	TTCG-AGGTTCGAATCCTTCACCCATCACCACGGCCGAAATTCGGTACCCGAATCCTTAGC
No-PDS_5	TTAGGTTCGAATCCTTCCCCCACCACCACGGCCGAAATTCAGTACCCGGATCCTTAGC
No-PDS_6	TTCG-AGGTTCGAATCCTTCACCCACTACCACGGCCGAAATTCGATACCCGGATCCTTA
No-PDS_7	TTCGTAGGTTCGAATCTTTCCCCCACCACCACGGCCGAAATTCAGTACCCGGATCCTTAGC
No-PDS_8	TTCG-AGGTTCGAATCCTTCACCCACTACCACGGCCGAAATTCGATACCCGGATCCTTA
No-PDS_9	TTCG-AGGTTCGAATCCTTCACCCATCACCACGGCCGAAATTCGGTACCCGAATCCTTAGC
No-PDS_10	TTCGTAGGTTCGAATCTTTCCCCCACCACCACGGCCGAAATTCAGTACCCGGATCCTTAGC
	** ********* *** **** ***************

HAP-1 *REV1^{κο}* 0.5 μM PDS

G4_SupF	GAATTCGAGAGCCCTGCTCGAGCTGT <mark>GGGGAGGGTGGGGGGGGGG</mark>
0.5-PDS_1	GAA-TCGAGAGCCCTGCTCGAGCTGTGGAGAGGGTGGGGGGGGG
0.5-PDS_2	AAATTCTAGAGCCCCGCTCGAGCTGTGAGGAGGTGTGGGGGAGGGTGACGTTCCTGAGCGGCTGGAGCAGACTCTAAATCTGCCGTCATCGACCGCGCGCGC
0.5-PDS_3	AAATTCGAGAGCCCTGCTCGAGCTGTAGGGAGGGTGGGGGGGG
0.5-PDS_4	${\tt GAA-TCGAGAGCCCTGCTCGAGCTGTGGAGAGGGTGGGGGGGGG$
0.5-PDS_5	AAATTCTAGAGCCCCGCTCGAGCTGTGAGGAGGTGTGGGGGAGGGTGACGTTCCTGAGCGGCTGGAGCAGACTCTAAATCTGCCGTCATCGACCGCGTCATCGACGCGCGCTGGAGCAGACTCTAAATCTGCCGTCATCGACGCGCGCTGGAGCAGACTCTAAATCTGCCGTCATCGACGACGTGAGGAGGGTGACGTGACGTTCCTGAGCGGCGCGCTGGAGCAGACTCTAAATCTGCCGTCATCGACGACGTGACGTGACGTGACGTGACGTGACGTGACGTGACGGCGGCGGCGGCGGCGGGGGGGG
0.5-PDS_6	AAATTCGAGAGCCCTGCTCGAGCTGTAGGGAGGGTGGGGGGGG
0.5-PDS_7	AAATTCGAGAGCCCTGCTCGAGCTGTAGGGAGGGTGGGGGGGG
0.5-PDS_8	${\tt GAA-TCGAGAGCCCTGCTCGAGCTGTGGAGAGGGTGGGGGGGGG$
0.5-PDS_9	AAATTCTAGAGCCCCGCTCGAGCTGTGAGGAGGTGTGGGGGAGGGTGACGTTCCTGAGCGGCCATGGAGGACTCAATCTGTCGTCTTCGACGCGCCATGGAGGACTCAATCTGTCGTCTTCGACGCGCCATGGAGGACTCAATCTGTCGTCTTCGACGCGCCATGGAGGACTCAATCTGTCGTCTTCGACGCGCCATGGAGGACTCAATCTGTCGTCGTCGTCGAGGGGGGGGGG
0.5-PDS_10	AAATTCGAGAGCCCTGCTCGAGCTGTAGGGAGGGTGGGGGGGG
	** ** ****** ******** *** *** ******* ** ** *** *** ****

G4_SupF	TTCGAAGGTTCGAATCCTTCCCCCACCACCACGGCCGAAATTCGGTACCCGGATCCTTAGC
0.5-PDS_1	TTAAGGTTTTCTTCCCCCACTACGGCCGA-ATTCGATACCTGAATCCTTAGC
0.5-PDS_2	TTCGTAGGTTAATCCTTCCCACCACTACGGCCGA-ATTCGGAACCCGGATCCTTAGC
0.5-PDS_3	TTCGGGTTCATCCTTCCCCCAACTACGGCTTCGGTACCCGTATCCTTAGC
0.5-PDS_4	TTAAGGTTTTCTTCCCCCACCACTACGGCCGA-ATTCGGAACCCGGATCCTTAGC
0.5-PDS_5	TTCGTAGGTTAATCCTTCCCAACTACGGCTTCGGTACCCGTATCCTTAGC
0.5-PDS_6	TTAAGGTTTTCTTCCCCCACCACTACGGCCGA-ATTCGGAACCCGGATCCTTAGC
0.5-PDS_7	TTCGTAGGTTAATCCTTCCCAACTACGGCTTCGGTACCCGTATCCTTAGC
0.5-PDS_8	TTCGGGTTCATCCTTCCCCCACTACGGCCGA-ATTCGATACCTGAATCCTTAGC
0.5-PDS_9	TTAAGGTTTTCTTCCCCCACCACTACGGCCGA-ATTCGGAACCCGGATCCTTAGC
0.5-PDS_10	TTCGTAGGTTAATCCTTCCCAACTACGGCTTCGGTACCCGTATCCTTAGC
_	** *** ** ** *** *** ****

Figure S7. Alignment of the G4-supF plasmid sequences obtained from white MBM7070 E. coli colonies. These plasmids were first allowed to

replicate in HAP-1 $REV1^{KO}$ cells grown in the presence or absence of 0.5 μ M PDS.

Figure S8. A putative G4-forming sequence was identified at the *REV1* promoter. The human *REV1* gene is located on chromosome 2 (2q11.2; 99490201-99490218 on the negative strand). (**A**) Cartoon schematic showing the region spanning -2000 to +100 bp at the *REV1* gene locus. The transcription start site (marked by position '0') is indicated, as well as the region +100 bp into the coding region (*blue*). DNA sequence was retrieved from the Eukaryotic promoter database and the G4-forming prediction was done by analyzing the sequence using the G4-prediction tool on the QGRS web server. The three top-scoring sequences (based on G-score>20) are marked as I (G-score = 42), II (G-score = 35) and III (G-score = 21) respectively, and the DNA sequences are shown, with the guanine bases involved in putative quadruplex formation marked in bold and underlined. Sequence 'I' was used for designing the Rev1-prom oligonucleotide used in this study. The position of each sequence is marked by the numbers on the 5'- and 3'-end. (**B**) Circular dichroism spectra of the Rev1-prom sequence (**Table 1** in main text) were measured in buffer containing 100 mM KCI (*blue* curve) or 100 mM LiCI (*red* curve). The position of the signature peak at 265 nm for parallel

G4-form is indicated. (C) Binding affinity for Rev1-prom G4 (*blue*) and nonG4 (*red*) DNA was measured for the wild-type hRev1³³⁰⁻⁸³³ protein as indicated. The measured values are listed in **Table 3** of main text. Reported values represent the mean \pm SD (n=3).

Figure S9. Binding affinity of hRev1³³⁰⁻⁸³³ to primer-template G4 DNA substrates. Oligonucleotides forming the different types of G4 DNA folds (described in main text and **Table 1**) were annealed to a common 11-mer primer to obtain primer-template substrates. The hRev1³³⁰⁻⁸³³ protein was then titrated into a solution containing each of these ds-G4-DNA (*blue*) or ds-non-G4-DNA (*red*) substrates at 1 nM in a buffer containing 100 mM KCl. The range of concentrations for the protein is indicated on the X-axis. The change in fluorescence polarization at each concentration was measured and plotted as a function of the protein concentration. (**A-F**) Binding curves for hRev1³³⁰⁻⁸³³ core protein with the indicated G4 DNA

substrate. In panel **A**, the binding curve for Myc-14/23 is shown as a solid *blue* line (full circles), while that for Myc-2/11 is shown as a dotted *blue* line (open circles). The G4 fold is indicated by the direction of arrows in parentheses for each panel ($\uparrow\uparrow$ = parallel G4, $\uparrow\downarrow$ = anti-parallel G4, $\uparrow\downarrow\downarrow$ = hybrid G4). Resulting data were fit to a quadratic equation to yield the binding dissociation constants given in **Table S3**. Reported values represent the mean ± SD (n=3).

human	HSNTKINGAHHSTVQGPSSTKSTSSVSTFSKAAPSVPSKPSDCNFISNFYSHSRLHHI	361
chimpanzee	HSNTKINGAHHSTVQGPSSTKSTSSVSTFSKAAPSVPSKPSDCNFISNFYSHSRLHHI	361
gorilla	HSNTKINGAHHSTVQGPSSTKSTSSVSTFSKAAPSVPSKPSDCNFISNFYSHSRLHHI	361
rhesus	HSNTKINGAHHSTVQGPSSTKSTSSVSTLSKAAPSVPSKPSDCNFISNFYSHSRLHHI	395
cattle	HSNPRVNGAHHSTVQGPSSTKSTSSVPSPSRGRPSGPPRPSDFNFISDFYSRSRLHHI	361
sheep	HSNPRVNGAHHSTVQGPSSTKSTSSVPSPSRAGPSGPPRPSDCNFISDFYSRSRLHHI	355
pig	HSNTRVNGAHHSTVQGPSSTRSTSSVPMPSKAAPSVPPRPSDCNFISDFYSRSRLHHI	401
mouse	HSNTKINGAHHSTVQGPSSTKSTS-VLTLSKVAPSVPSKPSDCNFISDFYSRSRLHHI	359
dog	HSNTKINGAHHSAVQGPSSTKSTSSVPTLSKAAPLVPSKPSDCNFISDFYSRSRLHHI	361
cat	HSNTKINGAHHSAVQGPSSTKST-SVPALSKAAPSVPSKPSDCNFISDFYSHSRLHHI	360
opossum	HSHTKINGAHHSTVQGPSSTKSTSSLPAVSKAASSALSKPSDCNFISDFYSRSRLHHI	363
bat	HTNTKINGAHHSTVQGPSSTKST-SVPSLSKAAPSVPSRPSDCSFISDFYSHSRLHHI	360
frog	HTNSKINGAHHSL-PGPSSTSTTALSPAKLASLQLPKTADPNFISDFYSHSRLHHI	358
lizard	HSNIKRNGAHHSTVQGPSSTKSTTVPSNKVESPLSKPPNCSFISDFYSRSRLHHI	355
zebrafish	HDQTTVRLNGSYHVTSNSSTLANSSNQSGKSSAEAGIISEFFSHSRLHHI	391
chicken	HSNTKINGAHHSTVQGPSSTKSTS-VPTPSKAASLSVSKPSDCSFISDFYSRSRLHHI	366
fruitfly	TNLSTTSNNSTTARTAADPNFLSEFYKNSRLHHI	231
leishmania	MTAMS-RSVRDQANSLQHFQQHSRLYFI	30
trypanosoma	MSGKK-NVSVGRKWACDQVNSVRHFQQHSRLHFI	33
saccharomyces	LNNLEAKRIVACDDPDFLTSYFAHSRLHHL	328
fission yeast	HNYQLLKNPNVRNSTTQNQDFLENFFSSSRLHHL	244
arabidopsis	HSTSDNKSVHANGKNGGKSIATAAGSSTRRHSTLEDPNFVENYFKNSRLHFI	339
human	SMWKCELTEFVNTLQRQSNGIFPGREKLKKMKTGRSALVVTDTGDMSVLNSPRHQS	417
chimpanzee	SMWKCELTEFVNTLQRQSNGIFPGREKLKKMKTGRSALVVTDTGDMSVLNSPRHQS	417
gorilla	SMWKCELTEFVNTLQRQSNGIFPGREKLKKMKTGRSALVVTDTGDMSVLNSPRHQS	417
rhesus	SMWKCELTEFVNTLQRQSNGIFPGREKLKKMKTGRSALVVTDTGDMSVLNSPRHQS	451
cattle	SAWKWELTEFVNALQKQSSGVFPGREKLKKMKAGRSALVVTDTGNMSVLSSPRHQS	417
sheep	STWKCELTEFVNALQRQSSGIFPGREKLKKMKAGRSALVVADTGNMSVLSSPRHQS	411
pig	SMWKCELTEFVNTLQRQSSGIFPGREKLKKMKTGRSALVVTDTGNMSVLSSPRHQS	457
mouse	STWKCELTEFVNTLQRQSSGIFPGREKLKKVKTGRSSLVVTDTGTMSVLSSPRHQS	415
dog	SMWKCELTEFVNTLQRQSSGVFPGREKLKKMKTGRSTLVVTDTGNMSVLSSPRHQS	417
cat	SMWKCELTEFVNTLQRQSSGIFPGREKLKKMKTGRSALVVTDTGNMSVLSSPRHQS	416
opossum	SMWKCELTEFVNTLQRQSSGVFPGREKLKKMKASRSALIITDAGNMSVLNPSRHQS	419
bat	SMWKCEFTEFVNTLQRQSSGIFPGREKLKKMKTGRSALVVTDTGNMSVLSSPRHQS	416
frog	STWKCEFTEFVRGLQTQSNKGFPGRERLKKLKPGNMPPSTLPKCQN	404
lizard	ATWKSEFTDFVNTLQKQNNAIFPGREKLKKLKAGQSILNKADSDYAATLSSTKHQS	411
zebrafish	${\tt STWRNEFSEYVNSLQSRRRAAGGAVFSGREKLKKLKANCNSVSHFDPGSLMA-APQVRQS}$	450
chicken	STWKCELTEFVNSLQRKNSGVFPGREKLKKWKAGRSAL-KTDTGNVSVASSAKPQS	421
fruitfly	ATLGAGFKQYVCRLRQKHGTQGFPKRETLKSLANSHHNCLER	273
leishmania	GQWRTKMEDVFREQQR	57
trypanosoma	GQWKTKAHDLFKSHQA-	63
saccharomyces		
	SAWKANLKDKFLNENIHKYTKYTKITDKDTY	356
fission_yeast	SAWKANLKDKFLNENIHKYTKITDKDTY STWKADFKNEIQAMTTASEPVRPIMKDKSKKSR	356 277

• •

•

human	CIMHVDMD <mark>CFFVSVGIR</mark>	NRP	DLKGKPVA	VT SNRGT	GRAI	PLRPGANPQLE	EWQ 468
chimpanzee	CIMHVDMDCFFVSVGIR	NRP	DLKGKPVA	VTSNRGT	GRAI	PLRPGANPQLE	EWQ 468
gorilla	CIMHVDMDCFFVSVGIR	NRP	DLKGKPVA	VTSNRGT	GRAI	PLRPGANPQLE	EWQ 468
rhesus	CIMHVDMDCFFVSVGIR	NRP	DLKGKPVA	VTSNRGT	GRAI	PLRPGANPQLE	EWQ 502
cattle	CIMHVDMDCFFVSVGIR	NRP	DLKGKPVA	VTSNRGT	GRAI	PLRPGANPQLE	EWQ 468
sheep	CIMHVDMDCFFVSVGIR	NRP	DLKGKPVA	VTSNRGT	GRAI	PLRPGANPQLE	EWQ 462
pig	CIMHVDMDCFFVSVGIR	NRP	DLKGKPVA	VTSNRGT	GRAI	PLCPGANPQLE	EWQ 508
mouse	CVMHVDMDCFFVSVGIR	NRP	DLKGKPVA	VTSNRGT	GTAI	PLRPGANPQLE	EWQ 466
dog	CIMHVDMDCFFVSVGIR	NRP	DLKGKPVA	VTSNRGT	GRAI	PLRPGANPQLE	EWQ 468
cat	CIMHVDMDCFFVSVGIR	NRP	DLKGKPVA	VTSNRGT	GRAI	PLRPGANPQLE	EWQ 467
opossum	CIMHVDMDCFFVSVGIR	NRP	DLKGKPVA	VTSNRGT	GRAI	PLRPGANPQLE	EWQ 470
bat	CIMHVDMDCFFVSVGIR	NRP	DLKGKPVA	VTSNRGT	GRAI	PLRPGANPQLE	EWQ 467
frog	CIIHVDMDCFFVSVAIR	NRP	DLKGKPVA	VTSNRGA	GTT	FTREGANPQLE	EFQ 455
lizard	CIMHVDMDCFFVSVGIR	GRP	DLKGKPVA	VTSNRGS	GKSI	LLRPGANPQLE	EWQ 462
zebrafish	CVLHVDMDCFFVSVGIR	HRP	DLIGKPVA	VTSNRGP	GRVA	AQRPGANPQLE	EFQ 501
chicken	CIMHVDMDCFFVSVAIR	NRP	DLKGKPVA	VTSNRGA	GKAI	PLRPGANPQLE	EWQ 472
fruitfly	YVMHIDMDCFFVSVGLR	TRP	ELRGLPIA	VTHSKGG	NAATDVI	PVHPQADRKAE	ELE 327
leishmania	TFVHVDMDAFFCSVQLA	-KPEYA	HLKTKPVG	JAAGK			92
trypanosoma	LFVHLDMDAFFCSVVLA	-KEENA	HMREKPVC	IAAGK			98
saccharomyces	IIFHIDFDCFFATVAYL	CRSSSFSAC	DFKRDPIV	VCHG			394
fission_yeast	FLLHVDFDCFFASVSTR	FSH	ELRLKPVA	VAHG			309
arabidopsis	TIIHIDLDCFFVSVVIK	NRL	ELHDKPVA	VCHSDNP			408
	: : * : * : * * * * * *		:: *:.	* .			
human	YYQNKILKGKAA	DIPDSSLWE	NPDSAQAN	IGIDS	VLS <mark>RAE</mark>	IASCSYEAR	516
human chimpanzee	YYQNKILKGKAA YYQNKILKGKAA	DIPDSSLWE DIPDSSLWE	NPDSAQAN NPDSAQAN	IGIDS IGIDS	VLS <mark>RAE</mark> VLSRAE	<mark>IASCSYEAR</mark> IASCSYEARSI	516 GKV 520
human chimpanzee gorilla	YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA	DIPDSSLWE DIPDSSLWE DIPDSSLWE	NPDSAQAN NPDSAQAN NPDSAQAN	IGIDS IGIDS IGIDS	VLS <mark>RAE</mark> VLSRAE VLSRAE	<mark>IASCSYEAR</mark> IASCSYEARSI IASCSYEARSI	516 LKV 520 LKV 520
human chimpanzee gorilla rhesus	YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA	DIPDSSLWE DIPDSSLWE DIPDSSLWE DIPDSSLWE	NPDSAQAN NPDSAQAN NPDSAQAN NPDSAQAN	IGIDS IGIDS IGIDS IGIDS	VLS <mark>RAE</mark> VLSRAE VLSRAE	<mark>IASCSYEAR</mark> IASCSYEARSI IASCSYEARSI IASCSYEAR	516 GKV 520 GKV 520 550
human chimpanzee gorilla rhesus cattle	YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILRGKAA	DIPDSSLWE DIPDSSLWE DIPDSSLWE DIPDSSLWE EIPDPSTWE	NPDSAQAN NPDSAQAN NPDSAQAN NPDSAQAN SQDSAQIN	IGIDS IGIDS IGIDS IGIDS IGIDS	VLS <mark>RAE</mark> VLSRAE VLSRAE VLSKAE	<mark>IASCSYEAR</mark> IASCSYEARSI IASCSYEARSI IASCSYEAR IASCSYEAR	516 KV 520 KV 520 550 516
human chimpanzee gorilla rhesus cattle sheep	YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILRGKAA YYQNKILRGKAA	DIPDSSLWE DIPDSSLWE DIPDSSLWE DIPDSSLWE EIPDPSTWE EIPDPSTWE	NPDSAQAN NPDSAQAN NPDSAQAN NPDSAQAN SQDSAQIN SQDSAQIN	IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS	VLS <mark>RAE</mark> VLSRAE VLSRAE VLSKAE VLSKAE	<mark>IASCSYEAR</mark> IASCSYEARSI IASCSYEARSI IASCSYEAR IASCSYEAR IASCSYEAR	516 LKV 520 LKV 520 550 516 510
human chimpanzee gorilla rhesus cattle sheep pig	YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILRGKAA YYQNKILRGKAA YYQNKLLKGRAA	DIPDSSLWE DIPDSSLWE DIPDSSLWE DIPDSSLWE EIPDPSTWE EIPDPSTWE EIPDSSMWE	NPDSAQAN NPDSAQAN NPDSAQAN SQDSAQIN SQDSAQIN SQDSAQIN NQDSAQIN	IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDY	VLS <mark>RAE</mark> VLSRAE VLSRAE VLSKAE VLSKAE VLSKAE	IASCSYEAR IASCSYEARSI IASCSYEARSI IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR	516 LKV 520 LKV 520 550 516 510 556
human chimpanzee gorilla rhesus cattle sheep pig mouse	YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILRGKAA YYQNKILRGKAA YYQNKILRGKAA YYQNKLLKGRAA	DIPDSSLWE DIPDSSLWE DIPDSSLWE EIPDPSTWE EIPDPSTWE EIPDSSMWE DIPDSSVWE	NPDSAQAN NPDSAQAN NPDSAQAN SQDSAQIN SQDSAQIN NQDSAQIN NQDSAQIN NQDSTQTN	IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDY IGIDS	VLSRAE VLSRAE VLSRAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE	IASCSYEAR IASCSYEARSI IASCSYEARSI IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR	516 LKV 520 LKV 520 550 516 510 556 514
human chimpanzee gorilla rhesus cattle sheep pig mouse dog	YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILRGKAA YYQNKILRGKAA YYQNKLLKGRAA YYQNKLLKGRAA YYQNRALRGKAA	DIPDSSLWE DIPDSSLWE DIPDSSLWE EIPDPSTWE EIPDPSTWE EIPDSSMWE DIPDSSVWE EIPDSSMWE	NPDSAQAN NPDSAQAN NPDSAQAN SQDSAQIN SQDSAQIN NQDSAQIN NQDSAQIN NQDSAQAN	IGIDS IGIDS IGIDS IGIDS IGIDS IGIDY IGIDS IGIDS	VLSRAE VLSRAE VLSRAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE	IASCSYEAR IASCSYEARSI IASCSYEARSI IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR	516 LKV 520 LKV 520 550 516 556 514 516
human chimpanzee gorilla rhesus cattle sheep pig mouse dog cat	YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILRGKAA YYQNKILRGKAA YYQNKILRGKAA YYQNKLLKGRAA YYQNRALRGKAA YYQNKILKGKAA	DIPDSSLWE DIPDSSLWE DIPDSSLWE EIPDPSTWE EIPDPSTWE EIPDSSMWE DIPDSSVWE EIPDSSMWE KIPDSSMWE	NPDSAQAN NPDSAQAN NPDSAQAN SQDSAQIN SQDSAQIN NQDSAQIN NQDSAQIN NQDSAQAN NQDSAQAN	IGIDS IGIDS IGIDS IGIDS IGIDS IGIDY IGIDS IGIDS	VLSRAE VLSRAE VLSRAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE	IASCSYEAR IASCSYEARSI IASCSYEARSI IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR	516 LKV 520 LKV 520 550 516 556 514 516 515
human chimpanzee gorilla rhesus cattle sheep pig mouse dog cat opossum	YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILRGKAA YYQNKILRGKAA YYQNKILRGKAA YYQNKLLKGRAA YYQNRALRGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA	DIPDSSLWE DIPDSSLWE DIPDSSLWE EIPDPSTWE EIPDPSTWE EIPDSSMWE DIPDSSVWE EIPDSSMWE KIPDSSMWE DVPDASLLE	NPDSAQAN NPDSAQAN NPDSAQAN SQDSAQIN SQDSAQIN NQDSAQIN NQDSAQIN NQDSAQAN NQDSAQAN NQDSAQAN NQDSAQAN	IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS	VLSRAE VLSRAE VLSRAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE	IASCSYEAR IASCSYEARSI IASCSYEARSI IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR	516 LKV 520 LKV 520 550 516 516 514 516 515 522
human chimpanzee gorilla rhesus cattle sheep pig mouse dog cat opossum bat	YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILRGKAA YYQNKILRGKAA YYQNKLLKGRAA YYQNKLLKGRAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA	DIPDSSLWE DIPDSSLWE DIPDSSLWE EIPDPSTWE EIPDPSTWE EIPDSSMWE DIPDSSWE EIPDSSMWE KIPDSSMWE DVPDASLLE DMPDSSLWE	NPDSAQAN NPDSAQAN NPDSAQAN SQDSAQIN SQDSAQIN NQDSAQIN NQDSAQIN NQDSAQAN NQDSAQAN NQDSAQAN NQDSAQIN NQDSAQIN	IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS	VLSRAE VLSRAE VLSRAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE	IASCSYEAR IASCSYEARSI IASCSYEARSI IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR	516 LKV 520 LKV 520 550 516 516 514 516 515 515 522 515
human chimpanzee gorilla rhesus cattle sheep pig mouse dog cat opossum bat frog	YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILRGKAA YYQNKILRGKAA YYQNKLLKGRAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA	DIPDSSLWE DIPDSSLWE DIPDSSLWE EIPDPSTWE EIPDPSTWE DIPDSSWWE DIPDSSWWE KIPDSSMWE DVPDASLLE DMPDSSLWE DQPTSI	NPDSAQAN NPDSAQAN SQDSAQAN SQDSAQIN SQDSAQIN NQDSAQIN NQDSAQIN NQDSAQAN NQDSAQAN NQDSAQAN NQDSAQIN SSDSAQQN	IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS	VLSRAE VLSRAE VLSRAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE HLSMAE	IASCSYEAR IASCSYEARSI IASCSYEARSI IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR	516 LKV 520 LKV 520 550 516 516 514 516 515 515 522 508
human chimpanzee gorilla rhesus cattle sheep pig mouse dog cat opossum bat frog lizard	YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILRGKAA YYQNKILRGKAA YYQNKLLKGRAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA	DIPDSSLWE DIPDSSLWE DIPDSSLWE EIPDPSTWE EIPDPSTWE DIPDSSVWE EIPDSSMWE KIPDSSMWE DVPDASLLE DMPDSSLWE DQPTSI DSPDDD	NPDSAQAN NPDSAQAN SQDSAQIN SQDSAQIN SQDSAQIN NQDSAQIN NQDSAQIN NQDSAQAN NQDSAQAN NQDSAQIN NQDSAQIN SSDSAQQN NPESTQVN	IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS	VLSRAE VLSRAE VLSRAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE	IASCSYEAR IASCSYEARSI IASCSYEARSI IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR	516 LKV 520 550 516 516 516 516 515 515 515 508 515
human chimpanzee gorilla rhesus cattle sheep pig mouse dog cat opossum bat frog lizard zebrafish	YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILRGKAA YYQNKLLRGKAA YYQNKLLKGRAA YYQNKLLKGRAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA	DIPDSSLWE DIPDSSLWE DIPDSSLWE EIPDPSTWE EIPDPSTWE EIPDSSMWE DIPDSSVWE KIPDSSMWE DVPDASLLE DMPDSSLWE DQPTSI DSPDDD D-LEMTPSP	NPDSAQAN NPDSAQAN SQDSAQIN SQDSAQIN NQDSAQIN NQDSAQIN NQDSAQIN NQDSAQAN NQDSAQAN NQDSAQAN SSDSAQQN NPESTQVN QDGEVPSN	IGIDS IGIDS	VLSRAE VLSRAE VLSRAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE ALSMAE	IASCSYEAR IASCSYEARSI IASCSYEARSI IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR	516 LKV 520 550 516 516 514 516 514 515 515 508 515 555
human chimpanzee gorilla rhesus cattle sheep pig mouse dog cat opossum bat frog lizard zebrafish chicken	YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILRGKAA YYQNKILRGKAA YYQNKLLKGRAA YYQNKLKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKLLNGKAAGATEL YYQNKLLNGKAAEIRVP	DIPDSSLWE DIPDSSLWE DIPDSSLWE EIPDPSTWE EIPDPSTWE EIPDSSMWE DIPDSSMWE KIPDSSMWE DVPDASLLE DMPDSSLWE DQPTSI DSPDDD D-LEMTPSP DKLDSWVWE	NPDSAQAN NPDSAQAN SQDSAQIN SQDSAQIN NQDSAQIN NQDSAQIN NQDSAQAN NQDSAQAN NQDSAQAN NQDSAQAN SSDSAQQN NPESTQVN QDGEVPSN HSDSAHMN	IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDLDIS IGIDLEIS IGVHEDLA	VLSRAE VLSRAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE HLSKAE HLSMAE VLSKAE	IASCSYEAR IASCSYEARSI IASCSYEARSI IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR	516 LKV 520 550 516 516 514 516 515 515 508 515 555 528
human chimpanzee gorilla rhesus cattle sheep pig mouse dog cat opossum bat frog lizard zebrafish chicken fruitfly	YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILRGKAA YYQNKILRGKAA YYQNKLLKGRAA YYQNKLLKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKLLNGKAAGATEL YYQNKLLNGKAAGATEL YYQNKLLNGKAAEIRVP LFAQRFEHHFHDG	DIPDSSLWE DIPDSSLWE DIPDSSLWE EIPDPSTWE EIPDPSTWE EIPDSSMWE DIPDSSVWE EIPDSSMWE DVPDASLLE DMPDSSLWE DQPTSI DSPDDD D-LEMTPSP DKLDSWVWE	NPDSAQAN NPDSAQAN SQDSAQIN SQDSAQIN NQDSAQIN NQDSAQIN NQDSAQIN NQDSAQAN NQDSAQAN NQDSAQAN SSDSAQQN NPESTQVN QDGEVPSN HSDSAHMN DKAEKVRS	IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDLDIS IGIDLEIS IGVHEDLA IGVDCDLT IGFDK	VLSRAE VLSRAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE HLSKAE VLSKAE VLSKAE VLSKAE KLSMAE VLSMAE VLSMAE	IASCSYEAR IASCSYEARSI IASCSYEARSI IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR	516 LKV 520 LKV 520 550 516 516 514 515 515 522 515 508 555 528 528 528 528 528 528
human chimpanzee gorilla rhesus cattle sheep pig mouse dog cat opossum bat frog lizard zebrafish chicken fruitfly leishmania	YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILRGKAA YYQNKILRGKAA YYQNKLLKGRAA YYQNKLLKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKLLNGKAAGATEL YYQNKLLNGKAAGATEL YYQNKLLNGKAAEIRVP LFAQRFEHHFHDG	DIPDSSLWE DIPDSSLWE DIPDSSLWE EIPDPSTWE EIPDPSTWE EIPDSSWWE DIPDSSVWE EIPDSSMWE MPDSSLWE DVPDASLLE DMPDSSLWE DQPTSI DSPDDD D-LEMTPSP DKLDSWVWE	NPDSAQAN NPDSAQAN NPDSAQAN SQDSAQIN SQDSAQIN NQDSAQIN NQDSAQIN NQDSAQAN NQDSAQAN NQDSAQAN NQDSAQAN SSDSAQQN NPESTQVN QDGEVPSN HSDSAHMN DKAEKVRS	IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDLDIS IGIDLEIS IGVHEDLA IGVDCDLT IGFDK	VLSRAE VLSRAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE KMSLSE YNSD	IASCSYEAR IASCSYEARSI IASCSYEARSI IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR	516 LKV 520 550 516 516 516 515 515 515 508 515 508 528 528 528 367 105
human chimpanzee gorilla rhesus cattle sheep pig mouse dog cat opossum bat frog lizard zebrafish chicken fruitfly leishmania trypanosoma	YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILRGKAA YYQNKILRGKAA YYQNKLLKGRAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAAGATEL YYQNKLLNGKAAGATEL YYQNKLLNGKAAEIRVP LFAQRFEHHFHDG	DIPDSSLWE DIPDSSLWE DIPDSSLWE EIPDPSTWE EIPDPSTWE EIPDSSMWE DIPDSSVWE EIPDSSMWE KIPDSSMWE DVPDASLLE DMPDSSLWE DQPTSI DSPDDD D-LEMTPSP DKLDSWVWE	NPDSAQAN NPDSAQAN NPDSAQAN SQDSAQIN SQDSAQIN NQDSAQIN NQDSAQIN NQDSAQAN NQDSAQAN NQDSAQAN NQDSAQAN NQDSAQTN NQDSAQTN NDESTQVN QDGEVPSN HSDSAHMN DKAEKVRS	IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDLDIS IGUDLEIS IGUHEDLA IGVDCDLT IGFDK	VLSRAE VLSRAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE YNSD YNSD	IASCSYEAR IASCSYEARSI IASCSYEARSI IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR ISSCNYVAR SSS-NYIAR	516 LKV 520 LKV 520 550 516 516 514 515 515 515 508 555 528 528 367 105 111
human chimpanzee gorilla rhesus cattle sheep pig mouse dog cat opossum bat frog lizard zebrafish chicken fruitfly leishmania trypanosoma saccharomyces	YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILRGKAA YYQNKILRGKAA YYQNKLLKGRAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAAD YYQNKILKGKAAD YYQNKILKGKAAD YYQNKILKGKAA YYQNKILKGKAAEIPNEQ YYQNKLLNGKAAGATEL YYQNKLLNGKAAEIRVP LFAQRFEHHFHDG	DIPDSSLWE DIPDSSLWE DIPDSSLWE EIPDPSTWE EIPDPSTWE EIPDSSMWE DIPDSSVWE EIPDSSMWE DVPDASLLE DMPDSSLWE DQPTSI DSPDDD D-LEMTPSP DKLDSWVWE	NPDSAQAN NPDSAQAN NPDSAQAN SQDSAQIN SQDSAQIN NQDSAQIN NQDSAQIN NQDSAQIN NQDSAQAN NQDSAQAN NQDSAQIN SSDSAQQN NPESTQVN QDGEVPSN HSDSAHMN DKAEKVRS	IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGLDLDIS IGUDLEIS IGVHEDLA IGVDCDLT IGFDK	VLSRAE VLSRAE VLSRAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE KMSLSE YNSD -GNSDIS	IASCSYEAR IASCSYEARSI IASCSYEARSI IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR ISSCNYVAR SSS-NYIAR IASCNYVAR	516 LKV 520 LKV 520 550 516 516 516 515 515 515 515 515 528 528 367 105 111 408
human chimpanzee gorilla rhesus cattle sheep pig mouse dog cat opossum bat frog lizard zebrafish chicken fruitfly leishmania trypanosoma saccharomyces fission_yeast	YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILRGKAA YYQNKILRGKAA YYQNKLLKGRAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAA YYQNKILKGKAAD-RVP YYQNKILKGKAAD-RVP YYQNKILKGKAAD-RVP YYQNKILKGKAAEIPNEQ YYQNKLLNGKAAGATEL YYQNKLLNGKAAEIRVP LFAQRFEHHFHDG	DIPDSSLWE DIPDSSLWE DIPDSSLWE EIPDPSTWE EIPDPSTWE EIPDSSMWE DIPDSSVWE EIPDSSMWE MPDSSLWE DWPDASLLE DMPDSSLWE DQPTSI DSPDDD D-LEMTPSP DKLDSWVWE	NPDSAQAN NPDSAQAN NPDSAQAN SQDSAQIN SQDSAQIN NQDSAQIN NQDSAQIN NQDSAQAN NQDSAQAN NQDSAQAN NQDSAQAN NQDSAQTN SSDSAQQN HSDSAHMN DKAEKVRS	IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGIDS IGLDLDIS IGUDLDIS IGVHEDLA IGVDCDLT IGFDK	VLSRAE VLSRAE VLSRAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE VLSKAE KMSLSE YNSD -GNSDI -TKNSD	IASCSYEAR IASCSYEARSI IASCSYEARSI IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR IASCSYEAR ISSCNYVAR SSS-NYIAR IASCNYEAR	516 LKV 520 LKV 520 550 516 516 516 515 515 522 515 515 528 367 105 111 408 323

::*:*..* **

Figure S10. Alignment of the Rev1 polymerase domain from multiple species. Name of each species is indicated on the left of each sequence as its trivial/common name: human, *Homo sapiens*; chimpanzee, *Pan troglodytes*; gorilla, *Gorilla gorilla gorilla*; rhesus, *Macaca mulatta*; cattle, *Bos taurus*; sheep, *Ovis aries*; pig, *Sus domesticus*; mouse, *Mus musculus*; dog, *Canis familiaris*; cat, *Felis catus*; opossum, *Monodelphis domestica*; bat, *Desmodus rotundus*; frog, *Xenopus tropicalis*; lizard, *Zootoca vivipara*; zebrafish, *Danio rerio*; Chicken, *Gallus gallus* domesticus; fruitfly, *Drosophila melanogaster*; leishmania *Leishmania donovani*; trypanosome, *Trypanosoma cruzi*; saccharomyces, *Saccharomyces cerevisiae*; fission yeast,

Schizosaccharomyces pombe; arabidopsis, *Arabidopsis thaliana*. The top sequence is of the human Rev1 protein, with the domains colored as: *orange*, N-digit (a.a. 344-377); *light grey*, insert 1 (a.a. 379-417); *red*, palm 1 (a.a. 418-425); *blue*, finger (a.a. 427-447 & 505-516); *dark grey*, insert 2 (a.a. 448-504).

REFERENCES

1. Seidman, M.M., Dixon, K., Razzaque, A., Zagursky, R.J. and Berman, M.L. (1985) A shuttle vector plasmid for studying carcinogen-induced point mutations in mammalian cells. *Gene*, **38**, 233–237.