

Supplementary Figure S1. Analysis of recombinant TRV in virus-infected *N. benthamiana* plants by qRT-PCR. The same RNA samples were used as in Figure 2. TRV RNA was amplified by insert-specific primers. Error bars show the standard error of the mean (SEM) of three independent biological replicates. Asterisks indicate significant differences (Student's T-test, p < 0.01).

Supplementary Figure S2. Analysis of virus-derived small RNAs in recombinant-TRV-infected plants. Raw small RNA reads were aligned to the corresponding recombinant TRV RNA2 indicated. The positive or negative *y*-axis values show the number of small RNAs on either plus or minus strand as blue or red lines, respectively. The coat protein and the silencing-inducer sequences are highlighted as blue and yellow boxes, respectively. The total number of small RNAs matching the above selected regions of the viral genome is also indicated in the graph.

Supplementary Figure S3. Analysis of secondary small RNAs in TRV-35S-2M infected *N. benthamiana* 16c plants at 7 dpi and 21 dpi. High resolution map of small RNAs corresponding to Figure 3 top right panel.

Supplementary Figure S4. Non-perfectly matching small RNAs can induce strong post-transcriptional gene silencing in virus-infected plants. 16c plants were infected with wild type TRV, TRV-GFP, TRV-GFP-2M, and TRV-GFP-2M_TV were photographed under UV light at 7 and 21 dpi.

Supplementary Figure S5. Analysis of small RNAs in TRV-infected *N. benthamiana* **16c plants at 7dpi and 21 dpi.** Small RNA reads were aligned to the 35S promoter and GFP coding sequence. The numbers of sRNAs mapping at each position of the plus strand are shown as positive values, to the minus as negative values, for 21, 22, 23 and 24 nt sRNAs separately. The target sequence is highlighted by dotted lines.

А

		Number	Total C	Methylated	% C	95% confide	nce interval
		of clones	sites	C sites	methylation	C int-	C int+
ıt	TRV-35S	37	1332	885	66.44	63.86	68.93
laı	TRV-35S-1M_A	25	900	528	58.67	55.42	61.84
þ	TRV-35S-1M_B	30	1080	654	60.56	57.61	63.43
, te	TRV-35S-2M	33	1188	734	61.78	58.99	64.51
fec	TRV-35S-4M	27	972	89	9.16	7.50	11.13
느	TRV	35	1260	9	0.71	0.38	1.35
	TRV-35S	35	1260	209	16.59	14.64	18.74
≥	TRV-35S-1M_A	30	1080	195	18.06	15.88	20.46
Jen	TRV-35S-1M_B	32	1152	148	12.85	11.04	14.90
õ	TRV-35S-2M	33	1188	198	16.67	14.66	18.89
đ	TRV-35S-4M	28	1008	16	1.59	0.98	2.56
	TRV	30	1080	7	0.65	0.31	1.33
		Number	Total CC	Mathulatad	9/ 00	OE% confide	n na internal

		Number	Total CG	Methylated	% CG	95% confidence interval	
		of clones	sites	CG sites	methylation	CG int-	CG int+
ιt	TRV-35S	37	222	175	78.83	72.99	83.69
laı	TRV-35S-1M_A	25	150	125	83.33	76.55	88.45
þ	TRV-35S-1M_B	30	180	145	80.56	74.16	85.67
cte	TRV-35S-2M	33	198	151	76.26	69.87	81.65
fe	TRV-35S-4M	27	162	14	8.64	5.22	13.98
드	TRV	35	210	3	1.43	0.49	4.12
	TRV-35S	35	210	94	44.76	38.19	51.52
≥	TRV-35S-1M_A	30	180	96	53.33	46.05	60.48
leu	TRV-35S-1M_B	32	192	64	33.33	27.05	40.27
õ	TRV-35S-2M	33	198	94	47.47	40.63	54.41
đ	TRV-35S-4M	28	168	4	2.38	0.93	5.96
	TRV	30	180	0	0.00	0.00	2.09

		Number	Total CHG	Methylated	% CHG	95% confide	ence interval
		of clones	sites	CHG sites	methylation	CHG int-	CHG int+
Ì	TRV-35S	37	148	110	74.32	66.73	80.68
laı	TRV-35S-1M_A	25	100	78	78.00	68.93	85.00
þ	TRV-35S-1M_B	30	120	101	84.17	76.59	89.62
te	TRV-35S-2M	33	132	101	76.52	68.60	82.93
fec	TRV-35S-4M	27	108	19	17.59	11.56	25.85
-	TRV	35	140	1	0.71	0.13	3.94
	TRV-35S	35	140	58	41.43	33.60	49.71
≥	TRV-35S-1M_A	30	120	53	44.17	35.60	53.10
Jen	TRV-35S-1M_B	32	128	33	25.78	18.99	33.99
ĕ	TRV-35S-2M	33	132	53	40.15	32.18	48.68
ā	TRV-35S-4M	28	112	4	3.57	1.40	8.83
	TRV	30	120	0	0.00	0.00	3.10

		Number	Total CHH	Methylated	% CHH	95% confide	ence interval
		of clones	sites	CHH sites	methylation	CHH int-	CHH int+
ъ	TRV-35S	37	962	600	62.37	59.27	65.38
olai	TRV-35S-1M_A	25	650	325	50.00	46.17	53.83
þ	TRV-35S-1M_B	30	780	408	52.31	48.80	55.79
te	TRV-35S-2M	33	858	482	56.18	52.84	59.46
fee	TRV-35S-4M	27	702	56	7.98	6.19	10.22
2	TRV	35	910	5	0.55	0.23	1.28
	TRV-35S	35	910	57	6.26	4.87	8.03
≥	TRV-35S-1M_A	30	780	46	5.90	4.45	7.78
Jer	TRV-35S-1M_B	32	832	51	6.13	4.69	7.97
Proç	TRV-35S-2M	33	858	51	5.94	4.55	7.73
	TRV-35S-4M	28	728	8	1.10	0.56	2.15
	TRV	30	780	7	0.90	0.44	1.84

Supplementary Figure S6. Analysis of DNA methylation at the CaMV 35S promoter in recombinant-TRV-infected *N. benthamiana* 16c plants and their progeny. (A) Examination of cytosine methylation by bisulfite sequencing. Raw data is shown from one of the three biological repeats. Up to 12 independent clones of bisulfite-converted DNA were analysed by Cymate from each sample. The position of cytosine residues in the CaMV 35S promoter is indicated at the bottom of the composite figure. CG, CHG and CHH methylation is represented as red circle, blue square and green triangle, respectively. Methylated residues are shown as solid symbols. Black arrow indicates the virus-targeted region of CaMV 35S promoter. (B) Raw data from the bisulfite sequencing analysis presented in Figure 4 and Figure 5 including the number of sequenced clones and scored cytosine sites. There are 6 CG sites, 4 CHG sites and 26 CHH sites in the targeted region. The Wilson score was calculated as shown in (1) and (2).

TRV-FWA-Bs-1M_B

TRV-FWA-Bs-2M

Supplementary Figure S7. Analysis of flowering time (rosette leaf number at the time of bolting) in the progeny of recombinant-TRV-infected *Arabidopsis* plants. Approximately 48 individual plants were analysed from each selected line presented in Figure 7A and B.

	Number of	Total C	Methylated	% C	95% confide	ence interval
	clones	sites	C sites	methylation	C int-	C int+
TRV-FWA-B	32	3264	894	27.39	25.89	28.95
TRV-FWA-Bs	33	3366	862	25.61	24.16	27.11
TRV-FWA-Bs-1M_A	32	3264	745	22.82	21.42	24.30
TRV-FWA-Bs-1M_B	32	3264	884	27.08	25.59	28.63
TRV-FWA-Bs-2M	36	3672	1052	28.65	27.21	30.13
TRV	27	2754	36	1.31	0.95	1.80
	Number of	Total CG	Methylated	% CG	95% confide	ence interval
	clones	sites	CG sites	methylation	CG int-	CG int+
TRV-FWA-B	32	672	524	77.98	74.69	80.95
TRV-FWA-Bs	33	693	514	74.17	70.78	77.29
TRV-FWA-Bs-1M_A	32	672	426	63.39	59.68	66.95
TRV-FWA-Bs-1M_B	32	672	449	66.82	63.17	70.27
TRV-FWA-Bs-2M	36	756	590	78.04	74.95	80.85
TRV	27	567	14	2.47	1.48	4.10
	Number of	Total CHG	Methylated	% CHG	95% confide	ence interval
	clones	sites	CHG sites	methylation	CHG int-	CHG int+
TRV-FWA-B	32	448	69	15.40	12.35	19.04
TRV-FWA-Bs	33	462	66	14.29	11.39	17.77
TRV-FWA-Bs-1M_A	32	438	57	13.01	10.18	16.49
TRV-FWA-Bs-1M_B	32	448	67	14.96	11.95	18.56
TRV-FWA-Bs-2M	36	504	64	12.70	10.07	15.89
TRV	27	378	14	3.70	2.22	6.12
	Number of		Mathylated		05% confide	noo intorvol
				% CHH	95% connue	
	ciones	Siles		methylation		
TRV-FWA-B	32	2144	301	14.04	12.63	15.57
TRV-FWA-BS	33	2211	282	12.75	11.43	14.21
IRV-FWA-Bs-1M_A	32	2154	262	12.16	10.85	13.61
IRV-FWA-Bs-1M_B	32	2144	368	17.16	15.63	18.82
TRV-FWA-Bs-2M	36	2412	398	16.50	15.07	18.04
TRV	27	1809	8	0.44	0.22	0.87

В

С

Supplementary Figure S8. Analysis of DNA methylation at the *FWA* promoter in the progeny of recombinant-TRV-infected Col-0 *fwa-d* plants. (A) Examination of cytosine methylation by bisulfite sequencing. Raw data is generated from three individual plants of each selected line. Up to 12 independent clones of bisulfite-converted DNA were analysed by Cymate from each sample. Labelling as in Supplementary Figure 6. Black arrows indicate the position of FWA tandem repeats. Solid black arrows indicate the virus-targeted region of FWA promoter. (B) Analysis of the percentage of total methylated cytosine at the *FWA* promoter in each individual plant. (C) Raw data from the bisulfite sequencing analysis presented in Figure 7 including the number of sequenced clones and scored cytosine sites. There are 21 CG sites, 14 CHG sites and 67 CHH sites in the amplified region.

2 nd -LR 1 st -LR 1 st -LR in FWA-Bs-1M_A 1 st -LR in FWA-Bs-1M_B 1 st -LR in FWA-Bs-2M	1 TTATCCCATTCAACATTCATACGAGCACCGCTTTACGGTTTTTGCTTT 1 TTATCCCATTCAACATTCATACGAGCGCCGCTCTAGGGTTTTTGCTTT 1 TTATCCCACTCAACATTCATACGAGCGCTGCTCTAGGGTTTTTGCTTT 1 TTATCCCATTCAACATTCGTACGAGCGCCGCTCTAGGGCTTTTGCTTT 1 TTATCCCACTCAACATTCGTACGAGCGCCGCTCTAGGGCTTTTGCTTT 1 TTATCCCACTCAACATTCGTACGAGCGCTGCTCTAGGGCTTTTGCTTT	TC TC C TC TC
2 nd -LR 1 st -LR 1 st -LR in FWA-Bs-1M_A 1 st -LR in FWA-Bs-1M_B 1 st -LR in FWA-Bs-2M	51 GACATTGGTCGAAGTGCTATTTGGTTGTTTAAGGTTGCTTTTAGCACA 51 GCCATTGGTCCAAGTGCTATTTGGTTGTTTAAGGTTGCTTTTAGCACA 51 GCCATTGGTCCAAGTGCTGTTTTGGTTGTTTAAGGTTGCCTTTAGCACA 51 GCCATTGGCCCAAGTGCTGTTTTGGTTGTTTAAGGTTGCCTTTAGCACA 51 GCCATTGGCCCAAGTGCTGTTTTGGTTGTTTAAGGTTGCCTTTAGCACA 51 GCCATTGGCCCAAGTGCTATTTGGTTGTCTAAGGTTGCCTTTAGCACA 51 GCCATTGGCCCAAGTGCTGTTTTGGTTGTCTAAGGTTGCCTTTAGCACA	CA CA CA TA TA
2 nd -LR 1 st -LR 1 st -LR in FWA-Bs-1M_A 1 st -LR in FWA-Bs-1M_B 1 st -LR in FWA-Bs-2M	101 ACTTTAATATTATTTTTATGTT-TTCTTCTTACGATTTATCGATTTGT 101 ACTTTAATATTATTTTTATGTTTTTCTTCTTACGATTTATCGATTTGT 101 ACTTTAATCTTATTTTATGTTTTTCTTTTTACGATTTATCGATTTGT 101 ACTTTAATATTATTTTTACGTTTTTCTTCTTACGATTTCTCGTCGATTTGT 101 ACTTTAATCTTATTTTTACGTTTTTCTTTTTACGATTTCTCGATTTGT 101 ACTTTAATCTTATTTTTACGTTTTTCTTTTTACGATTTCTCGATTTGT	AG GG TG GG TG
2 nd -LR 1 st -LR 1 st -LR in FWA-Bs-1M_A 1 st -LR in FWA-Bs-1M_B 1 st -LR in FWA-Bs-2M	 150 GATACTGACAATCAGATTTTTTTTTTTTTTTCAGCCAAAAATCAGAT 151 GATACTGACAATCAGATTATTGTTGTTTTTTTCCAGCCAAATATCAGAT 151 GATACTGACAATCAGATTGTTGTTGTTTTTTCCAGCCAGATATCAGAT 151 GATACTGATAATCAGATTATTGTTGTTTCTTCCAGCCAAATATCAGAT 151 GATACTGATAATCAGATTGTTGTTGTTTCTTCCAGCCAGATATCAGAT 	

Supplementary Figure S9. Sequence alignment of FWA long repeats and derivatives.

В

	Number	Total C	Methylated	% C	95% confide	nce interval
	of clones	sites	C sites	methylation	C int-	C int+
TRV-35S	35	1260	896	71.11	68.55	73.55
TRV-35S-1M_AT	34	1224	826	67.48	64.81	70.05
TRV-35S-2M_AT	36	1296	797	61.50	58.52	64.11
TRV	35	1260	8	0.63	0.3221	1.248
	Number	Total CG	Methylated	% CG	95% confide	nce interval
	of clones	sites	CG sites	methylation	CG int-	CG int+
TRV-35S	35	210	178	84.76	79.28	88.99
TRV-35S-1M_AT	34	204	162	79.41	73.34	84.39
TRV-35S-2M_AT	36	216	126	58.33	51.67	64.71
TRV	35	210	0	0.00	0	1.796
	Number	Total CHG	Methylated	% CHG	95% confide	nce interval
	of clones	sites	CHG sites	methylation	CHG int-	CHG int+
TRV-35S	35	140	123	87.86	81.41	92.28
TRV-35S-1M_AT	34	136	106	77.94	70.26	84.09
TRV-35S-2M_AT	36	144	80	55.56	47.4	63.42
TRV	35	140	0	0.00	0	2.671
	Number	Total CHH	Methylated	% CHG	95% confide	nce interval
	of clones	sites	CHH sites	methylation	CHH int-	CHH int+
TRV-35S	35	910	595	65.38	62.23	68.41
TRV-35S-1M_AT	34	884	558	63.12	59.89	66.24
TRV-35S-2M_AT	36	936	591	63.14	60	66.17
TRV	35	910	8	0.88	0.4461	1.725

Supplementary Figure S10. Analysis of DNA methylation at the CaMV 35S promoter in recombinant-TRV-infected *N. benthamiana* 16c plants. (A) Examination of cytosine methylation by bisulfite sequencing. Raw data is shown from one of the three biological repeats. Up to 12 independent clones of bisulfite-converted DNA were analysed by Cymate from each sample. The position of cytosine residues in the CaMV 35S promoter is indicated at the bottom of the composite figure. CG, CHG and CHH methylation is represented as red circle, blue square and green triangle, respectively. Methylated residues are shown as solid symbols. Black arrow indicates the virus-targeted region of CaMV 35S promoter. (B) Raw data from the bisulfite sequencing analysis presented in Figure 8E and F including the number of sequenced clones and scored cytosine sites. There are 6 CG sites, 4 CHG sites and 26 CHH sites in the targeted region.

В

	Number of		Position_50 CHH		Position_90 CG			
	clones	Methylated sites	% methylation	% methylation (global)	Methylated sites	% methylation	% methylation (global)	
TRV-35S	37	26	70	62	30	81	79	
TRV-35S-1M_A	25	11	44	50	21	84	83	
TRV-35S-1M_B	30	12	40	52	29	97	81	
TRV-35S-2M	33	17	52	56	26	79	76	
TRV-35S-1M_TV	34	24	71	63	30	88	79	
TRV-35S-2M_TV	36	26	72	63	24	67	58	

Supplementary Figure S11. Analysis of the effect of direct and indirect pairing of mismatched nucleotides on cytosine methylation at the CaMV 35S promoter in recombinant-TRV-infected *N. benthamiana* 16c plants. (A) Schematic diagram of the position of cytosine residues in the CaMV 35S promoter. CG, CHG and CHH methylation is represented as red circle, blue square and green triangle, respectively. Cytosine residues directly affected by SNS in recombinant TRV/small RNA are shown as empty symbols, and their positions are highlighted in boxes. (B) Analysis of bisulfite sequencing data presented in Figure 4 and 8.

Supplementary Table S1. Analysis of sRNA libraries. Related to Figure 3 and Figure S2.

				Total reads for	,	
sRNA library	Total reads	Filtered reads (21-24 nt)	TRV-RNA2	TRV CP	TRV 120 nt insert	% 120 nt/CP
TRV-35S 7dpi	11,647,785	5,667,519	722,409	230,158	10,292	4.47
TRV-35S 21dpi	11,506,628	6,233,872	610,988	221,652	8,587	3.87
TRV-35S-2M 7dpi	12,521,906	6,007,339	681,260	209,363	12,955	6.19
TRV-35S-2M 21dpi	10,670,771	3,593,089	459,278	147,162	8,997	6.11
TRV-GFP 7dpi	10,535,377	5,922,424	746,512	237,707	20,932	8.81
TRV-GFP 21dpi	10,967,090	4,073,630	409,917	140,555	14,244	10.13
TRV-GFP-2M 7dpi	11,557,069	6,458,851	520,451	159,420	14,970	9.39
TRV-GFP-2M 21dpi	12,457,417	5,635,874	500,807	166,749	14,760	8.85

Supplementary Table S2. Oligonucleotides used in this study.

Oligonucleotide name	Sequence	Description
	CATCGTTGAGGATGCCTCTGCCGACAGTGATCCCAAAGATGGACCCCCATCC	
35S-1M_A forward	ACGAGGAGCATCGTGGAGAAAGAAGACGTTCCAACCATGTCTTCAAAGCAAG	VIGS
	TGGATCGATGTGATAT	
	ATATCACATCGATCCACTTGCTTTGAAGACATGGTTGGAACGTCTTCTTTCT	
35S-1M_A reverse	CACGATGCTCCTCGTGGATGGGGGGTCCATCTTTGGGATCACTGTCGGCAGA	VIGS
35S 1M B forward		VICS
555-TW_B IOFwaru	GTGGATTGATGTGATAC	103
	GTATCACATCAATCCACTTGTTTTGAAGACGTGGTTGGAATGTCTTCTTTTCC	
35S-1M B reverse	ACGATGTTCCTCGTGGGTGGGGGGTCCGTCTTTGGGACCACTGTCGGTAGAG	VIGS
-	GCATCTTCAACGATG	
	CATCGTTGAGGATGCCTCTACCGACAGTGATCCCAAAGACGGACCCCCATCC	
35S-2M forward	ACGAGGAACATCGTGGAGAAAGAAGAAGACATTCCAACCATGTCTTCAAAACAAG	VIGS
	TGGATCGATGTGATAC	
050 004	GIAICACAICGAICCACIIGIIIIGAAGACAIGGIIGGAAIGICIICIICIC	1/100
35S-2M reverse		VIGS
35S-4M forward	ACAAGGAACATCATGGAGAAAGGAGACATTCCGACCATGTCTCCAAAACAAG	VIGS
	CGGATCGATGCGATAC	100
	GTATCGCATCGATCCGCTTGTTTTGGAGACATGGTCGGAATGTCTCCTTTCTC	
35S-4M reverse	CATGATGTTCCTTGTGGATGGGAGTCCGTCTTCGGGATCACTATCGGTAGAG	VIGS
	ACATCCTCAATGATG	
	CATCGTTGATGATGCCTCTGCCGACAGTGCTCCCAAAGATGGACCCCCAGCC	
35S-1M_IV forward		VIGS
35S 1M TV rovorso		VICS
555-TW_TV Tevelse	GCATCATCAACGATG	163
35S-2M TV forward	ACGAGGACCATCGTGGATAAAGAAGACCTTCCAACCAGGTCTTCAAACCAAG	VIGS
_	TGGATAGATGTGATAA	
	TTATCACATCTATCCACTTGGTTTGAAGACCTGGTTGGAAGGTCTTCTTTATC	
35S-2M_TV reverse	CACGATGGTCCTCGTGGCTGGGGGGTCCTTCTTTGGGAGCACTGTCGGGAGA	VIGS
	GGCATCATCAACGATG	
EWA Bo 1M A top	CGAAGCCCACACATCTTTCCGTCGAGAATTTCATATATACCTTATCCCACTCA	VICE
FVVA-DS-TIVI_A lop	ACATTCATACGAGCGCTGCTCTAGGGTTTTTGCTTTCCGCCATTGGT	163
FWA-Bs-1M A middle	AAAGAAAAACATAAAAATAACATTAAAGTTGTGTGCTAAAGGCAACCTTAAAC	VIGS
-	AACCAAACAGCACTTGGACCAATGGCGGAAAGCAAAAACCCTAGAGC	
FWA-Bs-1M A bottom	CAACTTTAATGTTATTTTTATGTTTTTCTTTTTACGATTTATCGATTTGTTGGAT	VIGS
	ACTGACAATCAGATTGTTGTTGTTTTTCCAGCCAGATATCAGAT	
EWA Do 1M D ton	CGAAGCCCATACATCTTTCTGTCGAGAATCTCATATATAT	VICE
FWA-BS-TIM_B top	CATTCGTACGAGCGCCGCTCTAGGGCTTTTGCTTTTCGCCATTGGC	VIGS
FWA-Bs-1M B middle	GAAGAAAAACGTAAAAAATAATATTAAAGTTATGTGCTAAAAGCAACCTTAGAC	VIGS
	AAUUAAATAGUAUTTGGGUUAATGGUGAAAAGUAAAAGUUUTAGAGU	
EW/A-Be-1M B bottom	TAACTTTAATATTATTTTTACGTTTTTCTTCTTACGATTTGTCGATTTGTGGGAT	VICS
	ACTGATAATCAGATTATTGTTGTTTCTTCCAGCCAAATATCAGAT	103
	CGAAGCCCACACATCTTTCTGTCGAGAATTTCATATATAT	1400
FWA-Bs-2M top	CATTCGTACGAGCGCTGCTCTAGGGCTTTTGCTTTCCGCCATTGGC	VIGS
FWA-Bs-2M middle	AAAGAAAAACGTAAAAATAACATTAAAGTTATGTGCTAAAGGCAACCTTAGAC	VIGS
	AACCAAACAGCACIIGGGCCAAIGGCGGAAAGCAAAAGCCCIAGAGC	100
ENA Do ONA hottom	TAACTTTAATGTTATTTTTACGTTTTTCTTTTTACGATTTGTCGATTTGTTGGAT	VICE
	ACTGATAATCAGATTGTTGTTGTTTCTTCCAGCCAGATATCAGAT	VIGS
FWA-Bs forward	CGAAGCCCATACATCTTTCCG	VIGS
FWA-Bs reverse	ATCTGATATTTGGCTGGAAAA	VIGS
FWA-Bs-1M_A forward	CGAAGCCCACACATCTTTCCG	VIGS
FWA-Bs-1M_A reverse	ATCTGATATCTGGCTGGAAAA	VIGS
FWA-Bs-1M_B forward	CGAAGCCCATACATCTTTCTG	VIGS
FWA-Bs-1M_B reverse	ATCTGATATTTGGCTGGAAGA	VIGS
FWA-Bs-2M forward	CGAAGCCCACACATCTTTCTG	VIGS
FWA-Bs-2M reverse	ATCTGATATCTGGCTGGAAGA	VIGS

Oligonucleotide name	Sequence	Description
GFP +364 forward	AAGGACGACGGGAACTACAAG	VIGS
GFP +483 reverse	CTTGTGGCCGAGGATGTTTC	VIGS
GFP-2M forward	AAGGACGACAGGAACTACAGGACACGTGCCGAAGTCAAGCTTGAGGGAGG	VIGS
GFP-2M reverse	TTTGTGGCCGGGGATGTTTCTGTCCTCCTTAAAATCGATTTCCTTAAGCTTGA TCCTGTTAACGAGGGTGCCTCCCTCAAGCTTGACTTCGGCACGTGTCCTGTA GTTCCTGTCGTCCTT	VIGS
GFP-2M_TV forward	AAGGACGACCGGAACTACATGACACGTGCAGAAGTCAAGATTGAGGGAGTC ACCCTCGTGAACAGGATCCAGCTTAAGGCAATCGATTTGAAGGAGGACCGAA ACATCCACGGCCACAAC	VIGS
GFP-2M_TV reverse	GTTGTGGCCGTGGATGTTTCGGTCCTCCTTCAAATCGATTGCCTTAAGCTGG ATCCTGTTCACGAGGGTGACTCCCTCAATCTTGACTTCTGCACGTGTCATGTA GTTCCGGTCGTCCTT	VIGS
35S_bisulfite forward	TGAGATTTTTTAATAAAGGGTAATTTYGGGAAATT	Bisulfite sequencing PCR
35S_bisulfite reverse	ТССТСТССАААТААААТАААСТТССТТАТАТААААА	Bisulfite sequencing PCR
FWA_bisulfite forward	ATTAAAGAGTTATGGGYYGAAGTTTAT	Bisulfite sequencing PCR
FWA_bisulfite reverse	CRRRAACCAAAATCATTCTCTAAACA	Bisulfite sequencing PCR
M13 forward	CGCCAGGGTTTTCCCAGTCACGAC	Colony PCR
M13 reverse	AGCGGATAACAATTTCACACAGGA	Colony PCR
Nb-act forward	GAAGATACTCACAGAAAGAGG	qRT-PCR
Nb-act reverse	GGAGCTAATGCAGTAATTTCC	qRT-PCR
AtEF1a forward	CACCACTGGAGGTTTTGAGG	qRT-PCR
AtEF1a reverse	TGGAGTATTTGGGGGTGGT	qRT-PCR
TRV-CP-713 forward	TGGGTTACTAGCGGCACTGA	qRT-PCR
TRV-CP-856 reverse	GCTCGTCTCTTGAACGCTGA	qRT-PCR
mGFP5 +148 forward	ACTGGAAAACTACCTGTTCC	qRT-PCR
mGFP5 +344 reverse	TCAAACTTGACTTCAGCACG	qRT-PCR
Insert forward	AATCTCAGACTGTTCCGCTTC	qRT-PCR
Insert reverse	GATGGACAACCCGTTCACCAC	qRT-PCR

References

1. Henderson, I.R., Deleris, A., Wong, W., Zhong, X., Chin, H.G., Horwitz, G.A., Kelly, K.A., Pradhan, S. and Jacobsen, S.E. (2010) The de novo cytosine methyltransferase DRM2 requires intact UBA domains and a catalytically mutated paralog DRM3 during RNA-directed DNA methylation in Arabidopsis thaliana. *PLoS Genet*, **6**, e1001182.

2. Jullien, P.E., Susaki, D., Yelagandula, R., Higashiyama, T. and Berger, F. (2012) DNA methylation dynamics during sexual reproduction in Arabidopsis thaliana. *Curr Biol*, **22**, 1825-1830.