Table S1. The top 15 up-regulated genes after acute FGF23 administration

Gene Name	Symbol	NCBI No.	Fold Change	P-value
Early growth response 1	Egr1	NM_007913	9.06671	1.36E-08
Heparin-binding EGF-like growth factor	Hbegf	NM_010415	3.09658	5.33E-05
Dual specificity phosphatase 6	Dusp6	NM_026268	2.41652	1.65E-08
Zinc finger protein 36	Zfp36	NM_011756	2.22423	0.00017
Immediate early response 2	Ier2	NM_010499	1.96741	8.97E-06
Dual specificity phosphatase 4	Dusp4	NM_176933	1.87764	0.000835
Basic helix-loop-helix domain, class B2	Bhlhb2	NM_011498	1.79652	0.000678
Ngfi-A binding protein	Nab2	NM_008668	1.69864	0.000396
Jun-B oncogene	Junb	NM_008416	1.65532	0.000384
SERTA domain containing 1	Sertad1	NM_018820	1.50534	6.02E-05
Choline kinase alpha	Chka	NM_013490	1.50023	0.000239
DnaJ (Hsp40) homolog, subfamily C, member 17	Dnajc17	NM_139139	1.48847	0.000155
DNA-damage inducible transcript 3	Ddit3	NM_007837	1.48731	0.000251
Sprouty homolog 2	Spry2	NM_011897	1.47345	0.000733
FBJ osteosarcoma oncogene	Fos	NM_010234	1.4645	0.000658

Table S2. The 15 most down-regulated genes after acute FGF23 administration

Gene Name	Symbol	NCBI No.	Fold Change	P-value
Acyl-CoA thioesterase 3	Acot3	NM_134246	-1.44409	0.000438
Solute carrier organic anion transporter family				
member 1a4	Slco1a4	NM_030687	-1.43617	0.000374
Solute carrier family 35	Slc35a3	NM_144902	-1.35772	0.000985
Leucine-rich repeats and immunoglobulin-like				
domains 2	Lrig2	NM_001025067	-1.33814	0.000991
APOBEC1 complementation factor	Alcf	NM_001081074	-1.33433	0.000139
Tetratricopeptide repeat domain 30A2	Ttc30a2	NM_001081228	-1.31536	0.000198
Tryptophan rich basic protein	Wrb	NM_207301	-1.29465	2.62E-05
ATPase, H+ transporting, lysosomal accessory				
protein 2	Atp6ap2	NM_027439	-1.28521	0.000426
Solute carrier family 31, member 1	Slc31a1	NM_175090	-1.27627	0.000518
Calcium-dependent activator protein for secretion 2	Cadps2	NM_153163	-1.2553	0.000982
Carbonic anhydrase 13	Car13	NM_024495	-1.24159	0.000629
Plasma glutamate carboxypeptidase	Pgcp	NM_018755	-1.22196	0.000821
Adenosine deaminase-like	Adal	NM_029475	-1.20276	0.000991
Galactose mutarotase	Galm	NM_176963	-1.19341	0.000266
Germ cell-less homolog 1	Gmcl1	NM_027955	-1.17749	0.000901

Figure S2

Figure S3

Table S1 and Table S2. Kidney microarray data after acute FGF23 administration. By microarray, 1 hour post FGF23 injection to WT mice showed significant changes in kidney mRNAs compared with control mice. The top 15 up-regulated genes are listed in Table 1 with Egr1 serving as the positive control for FGF23 signaling through MAPK. Hbegf was the second-most highly elevated gene. Table 2 lists the 15 most down-regulated genes.

Figure S1. Violin plots of nephron segment gene markers. Violin plots of (A) Npt2a (primarily proximal tubule) and (B) Ncc (primarily distal tubule) are shown.

Figure S2. Long term effect of HBEGF on WT renal genes. 5 ug rhHBEGF was given intravenously to 9-10 week old female WT mice. (A) Egr1 mRNA expression was induced at 3 h and returned to baseline level at 9 h and 13 h. No significant changes were observed in serum phosphorus (B). (*P<0.05 versus saline control mice. N=4-5. 'Sal', saline).

Figure S3. Incremental doses of HBEGF *in vitro*. HEK293 cells were treated with saline (Ctrl), 0.1 ng/ml, 1 ng/ml, 5 ng/ml, 10 ng/ml, 50 ng/ml or 100 ng/ml of rhHBEGF for 24 h. (A) EGR1 mRNA levels started increasing at 5 ng/ml and were significantly elevated at 50 ng/ml and 100 ng/ml; (B) CYP24A1 showed a similar pattern; (C) CYP27B1 was significantly decreased at 50 ng/ml and 100 ng/ml (*P<0.05, **P<0.01 versus the bracketed groups. N=3).

Supplementary information is available at *Kidney International*'s website.