



# Supplementary materials

# Influence of cerium oxide nanoparticles on two terrestrial wild plant species



Figure S1 – Preparation of the experiment: filling the pots with the *n*CeO<sub>2</sub> amended substrate.



Figure S2 – Plantlets of *H. lanatus* and *D. tenuifolia* 10 d after sowing.



Figure S3 – Plants of *H. lanatus* and *D. tenuifolia* 30 day after sowing.



Figure S4 – Plants of *H. lanatus* (in the background) and *D. tenuifolia* before biomass harvesting.

#### 1. Detection of *n*CeO<sub>2</sub> in plant fractions

Small portions (0.03 g) of fresh roots and leaves were harvested, rinsed three times with deionized water and homogenized with 8 mL of 2 mM citrate buffer at pH 4.5, using an ultrasonic bath for 5 minutes. After the homogenization, for every sample 2 mL of the enzyme solution (0.05 g of enzyme dissolved in 2 ml of MilliQ water) were added. The final supernatants were analyzed via single particle inductively coupled plasma mass spectrometry (sp-ICP-MS) Nex-ION 350 (Perkin Elmer, Waltham, MA, USA) to obtain the size distribution of nCeO2.

**Table S1** – Most frequent particle size, mean particle size, number of peaks and content of dissolved Ce determined by sp–ICP–MS analysis after enzymatic extraction on roots and leaves of *H. lanatus* and *D. tenuifolia* treated with nCeO<sub>2</sub> 200 mg L<sup>-1</sup>.

|               | Dlamt    | nCeO <sub>2</sub> | Most frequent                  | Mean                           | Pulsos         | Dissolved        |
|---------------|----------|-------------------|--------------------------------|--------------------------------|----------------|------------------|
| Species       | Fidili   | size              | <i>n</i> CeO <sub>2</sub> size | <i>n</i> CeO <sub>2</sub> size | ruises         | Ce               |
|               | Iraction | (nm)              | (nm)                           | (nm)                           | (n)            | (µg L-1)         |
| H. lanatus    | Roots    | 25                | $30 \pm 1.45$                  | $36 \pm 1.34$                  | $5785 \pm 257$ | $0.27 \pm 0.03$  |
|               | Roots    | 50                | $51 \pm 1.53$                  | $56 \pm 1.65$                  | $1327 \pm 49$  | $7.07 \pm 1.10$  |
|               | Leaves   | 25                | $23 \pm 1.20$                  | $28 \pm 1.84$                  | $1124 \pm 64$  | $0.14\pm0.01$    |
|               | Leaves   | 50                | $30 \pm 0.58$                  | $36 \pm 1.14$                  | $1140 \pm 73$  | $0.24\pm0.05$    |
| D. tenuifolia | Roots    | 25                | $50 \pm 3.46$                  | $53 \pm 3.35$                  | 11,909 ± 711   | $14.57 \pm 1.13$ |
|               | Roots    | 50                | $79 \pm 0.88$                  | $82 \pm 0.87$                  | $2855 \pm 76$  | $100.30\pm1.45$  |
|               | Leaves   | 25                | $19 \pm 1.20$                  | $26 \pm 0.51$                  | $818 \pm 29$   | $0.05\pm0.02$    |
|               | Leaves   | 50                | $25 \pm 0.33$                  | $32 \pm 0.84$                  | $1208 \pm 24$  | $0.13 \pm 0.01$  |

#### 2. Plant biomass allocation patterns

Experimental biometric dataset was used to evaluate biomass allocation patterns to roots, stems and leaves of studies species in response to nCeO2 treatments.

**Table S2** – Two-way ANOVA p value determined for biometric variables of *H. lanatus* and *D. tenuifolia*. ns is not significant at  $p \le .05$ , \*, \*\* and \*\*\* indicate significance at  $p \le .05$ , p \le .01 and  $p \le .001$ , respectively.

| Source              | Roots DW  | n. Stems  | Stems DW  | Leaf area | Leaves DW | Total DW |
|---------------------|-----------|-----------|-----------|-----------|-----------|----------|
| Species             | .0000 *** | .0000 *** | .0000 *** | .0000 *** | .9552 ns  | .0123 *  |
| Treatment           | .3394 ns  | .0094 **  | .0574 ns  | .0005 *** | .0482 *   | .2017 ns |
| Species x Treatment | .0045 **  | .0157 *   | .0670 ns  | .0958 ns  | .6577 ns  | .1859 ns |

Table S3 - Biomass allocation variables calculated from plant measurements (Poorter et al, 2011).

| Variable            | Abbreviation | Definition                           | Unit              |
|---------------------|--------------|--------------------------------------|-------------------|
| Root Mass Fraction  | RMF          | Root dry mass/Total plant dry mass   | g g-1             |
| Stem Mass Fraction  | SMF          | Stem dry mass/Total plant dry mass   | g g <sup>-1</sup> |
| Leaf Mass Fraction  | LMF          | Leaf dry mass/Total plant dry mass   | g g-1             |
| Shoot to Root ratio | S/R ratio    | (Leaf + Stem dry mass)/Root dry mass | g g-1             |
| Leaf Area Ratio     | LAR          | Leaf area/Total plant dry mass       | m² kg-1           |
| Specific Leaf Area  | SLA          | Leaf area/Leaf dry mass              | $m^2 kg^{-1}$     |



**Figure S5.** Stems dry matter ± standard deviation of *H. lanatus* and *D. tenuifolia*. Comparison between control and plants grown in presence of 200 mg kg-1 nCeO2 having respectively 25 nm and 50 nm. For each species the statistically significant difference ( $p \le 0.05$ ) between treatments is indicated by the letters using one-way ANOVA followed by Tukey's test.



**Figure S6.** Total plant dry matter ± standard deviation of *H. lanatus* and *D. tenuifolia*. Comparison between control and plants grown in presence of 200 mg kg-1 nCeO2 having respectively 25 nm and 50 nm. For each species the statistically significant difference ( $p \le 0.05$ ) between treatments is indicated by the letters using one-way ANOVA followed by Tukey's test.

**Table S4** – Two-way ANOVA p value determined for biometric ratios calculated for *H. lanatus* and *D. tenuifolia*. ns is not significant at  $p \le .05$ , \*, \*\* and \*\*\* indicate significance at  $p \le .05$ ,  $p \le .01$  and  $p \le .001$ , respectively.

| Source              | Root:Shoot | RMF       | SMF       | LMF       | LAR       | SLA       |
|---------------------|------------|-----------|-----------|-----------|-----------|-----------|
| Species             | .0000 ***  | .0000 *** | .0000 *** | .0000 *** | .0000 *** | .0000 *** |
| Treatment           | .0038 **   | .0070 **  | .1022 ns  | .0618 ns  | .0021 **  | .0017 **  |
| Species x Treatment | .0026 **   | .0035 **  | .0174 *   | .0549 ns  | .1134 ns  | .0583 ns  |



**Figure S7.** Leaf mass fraction  $\pm$  standard deviation of *H. lanatus* and *D. tenuifolia*. Comparison between control and plants grown in presence of 200 mg kg-1 nCeO2 having respectively 25 nm and 50 nm. For each species the statistically significant difference (p  $\leq$  0.05) between treatments is indicated by the letters using one-way ANOVA followed by Tukey's test.



**Figure S8** – Specific leaf area\* ± standard deviation of *H. lanatus* and *D. tenuifolia*. Comparison between control and plants grown in presence of 200 mg kg-1 nCeO2 having respectively 25 nm and 50 nm. For each species the statistically significant difference ( $p \le 0.05$ ) between treatments is indicated by the letters using one-way ANOVA followed by Tukey's test. \* According to Evans (1972) SLA is the total leaf area of a plant divided by the total leaf weight. This ratio has a relevant ecological importance as describes the allocation of leaf biomass relative to leaf area which in turns refers to carbon gain relative to water loss, within a plant canopy (Gunn et al., 1999).

#### 3. Cerium concentration in plant fractions

**Table S5** – Two-way ANOVA p value determined for Ce concentration in plant fractions of *H. lanatus* and *D. tenuifolia*. ns is not significant at  $p \le .05$ , \*, \*\* and \*\*\* indicate significance at  $p \le .05$ ,  $p \le .01$  and  $p \le .001$ , respectively.

| Source              | Ce root   | Ce stems  | Ce leaves |
|---------------------|-----------|-----------|-----------|
| Species             | .0289 *   | 0.2395 ns | .9910 ns  |
| Treatment           | .0000 *** | 0.0131 *  | .0003 *** |
| Species x Treatment | .1651 ns  | .0998 ns  | .0020 **  |

## 4. Macronutrient and micronutrient concentration in plant fractions

**Table S6** – Two-way ANOVA p value for concentration of macronutrients and micronutrients in roots of *H. lanatus* and *D. tenuifolia*. ns is not significant at  $p \le .05$ , \*, \*\* and \*\*\* indicate significance at  $p \le .05$ ,  $p \le .01$  and  $p \le .001$ , respectively.

| Source              | К         | Mg        | Na       | Р        | Cu        | Fe        | Mn        | Zn        |
|---------------------|-----------|-----------|----------|----------|-----------|-----------|-----------|-----------|
| Species             | .0000 *** | .0000 *** | .0076 ** | .0000 ** | .0000 *** | .0000 *** | .0000 *** | .0000 *** |
| Treatment           | .4124 ns  | .3942 ns  | .0044 ** | .2220 ns | .8510 ns  | .0013 **  | .0058 **  | .0650 ns  |
| Species x Treatment | .1045 ns  | .0671 ns  | .5601 ns | .1701 ns | .8797 ns  | .1353 ns  | .0917 ns  | .0000 *** |

**Table S7** – Two-way ANOVA p value for concentration of macronutrients and micronutrients in stems of *H. lanatus* and *D. tenuifolia*. ns is not significant at  $p \le .05$ , \*, \*\* and \*\*\* indicate significance at  $p \le .05$ ,  $p \le .01$  and  $p \le .001$ , respectively.

| Source              | Κ         | Mg       | Na        | Р        | Cu        | Fe       | Mn        | Zn       |
|---------------------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|
| Species             | .0004 *** | .1435 ns | .0009 *** | .0198    | .0008 *** | .0289 *  | .0000 *** | .0108 *  |
| Treatment           | .2437 ns  | .9615 ns | .1697 ns  | .2452 ns | .8216 ns  | .0075 ** | .0495 *   | .4795 ns |
| Species x Treatment | .4800 ns  | .6225 ns | .2653 ns  | .7548 ns | .3758 ns  | .4410 ns | .0612 ns  | .8050 ns |

**Table S8** – Two-way ANOVA p value for concentration of macronutrients and micronutrients in leaves of *H. lanatus* and *D. tenuifolia*. ns is not significant at  $p \le .05$ , \*, \*\* and \*\*\* indicate significance at  $p \le .05$ ,  $p \le .01$  and  $p \le .001$ , respectively.

| Source              | K        | Mg        | Na       | Р        | Cu       | Fe       | Mn        | Zn        |
|---------------------|----------|-----------|----------|----------|----------|----------|-----------|-----------|
| Species             | .0115 *  | .0000 *** | .2653 ns | .3579 ns | .1970 ns | .6790 ns | .0000 *** | .0000 *** |
| Treatment           | .1777 ns | .8807 ns  | .0876 ns | .2470 ns | .0132 *  | .1282 ns | .1798 ns  | .2486 ns  |
| Species x Treatment | .0442 *  | .3137 ns  | .2396 ns | .0864 ns | .0947 ns | .0466 *  | .1510 ns  | .3278 ns  |

### References

- Evans, G.C. The quantitative analysis of plant growth. Oxford, UK: Blackwell Scientific Publications. 1972. https://doi.org/10.2307/2259048.
- Gunn, S.; Farrar, J.F.; Collis, B.E.; Nason, M. Specific leaf area in barley: individual leaves versus whole plants. *New Phytol.*, 1999, 143, 45–51. <u>https://doi.org/10.1046/j.1469-8137.1999.00434.x</u>.
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L.; Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. *New Phytol.*, 2012, 193: 30–50. <u>http://doi.org/10.1111/j.1469-8137.2011.03952.x</u>.