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Note on parameter identifiability
Investigation of the properties of the dynamical model can shed light on the identifiability of the
parameters of the single-seizure statistical model (Box 2 in the main text) in the limit case of no
observation noise σt = 0. Recall that the dynamical model reads

żi = fq

ci,

n∑
j=1

wijH(zj − 1)

 , zi(t0) = 0 for i = 1, . . . , n (1)

with t0 = 0, and that the onset time of a region i is defined as ti = min{t | zi(t) ≥ 1}. Recall also
that we use the shorthand PW,q(c) = t for the mapping between the excitabilities c = (c1, . . . , cn)
and onset times t = (t1, . . . , tn) defined by the dynamical model (1) with the connectome matrix
W and parameterization q.

Theorem 1. Let fq(c, y) : R × [0, 1] → R+ be a continuous function, strictly increasing in c and
onto R+ for any y. Then PW,q : Rn → (R+)n is one-to-one and onto.

Proof. Since zi(t0) = 0 and zi(t) is increasing in t due to the positive RHS of (1), it follows from
the definition that ti ∈ R+ for all i = 1, . . . , n. One thus has to show that for every t ∈ (R+)n there
exists one and only one c ∈ Rn that satisfies PW,q(c) = t.

Assume that there is a t = (t1, t2, . . . , tn) ∈ (R+)n, and assume, without loss of generality, that
it is ordered so that 0 < t1 ≤ t2 ≤ . . . ≤ tn. If not, one can simply reorder the indices of the regions.
Since the RHS in (1) is constant for t ∈ [tj−1; tj) for any j = 1, . . . , n, one can write

zi(tj) = zi(tj−1) + (tj − tj−1)fq

(
ci,

n∑
k=1

wikH(zk(tj−1)− 1)
)

= zi(tj−1) + (tj − tj−1)fq

(
ci,

j−1∑
k=1

wik

)

= zi(t0) +
j∑

l=1
(tl − tl−1)fq

(
ci,

j−1∑
k=1

wik

)
(2)

=
j∑

l=1
(tl − tl−1)fq

(
ci,

l−1∑
k=1

wik

)
.

The second equality follows from the definition of tk implying that zk(t) < 1 for t < tk and from
the ordering of t. By setting i = j we obtain

1 = zi(ti) =
i∑

l=1
(tl − tl−1)fq

(
ci,

l−1∑
k=1

wik

)
︸ ︷︷ ︸

gi(ci)

for i = 1, . . . , n. (3)

Since (tl− tl−1) are non-negative (with at least t1− t0 being positive) and fq is strictly increasing in
c and onto R+, it follows that gi is also strictly increasing and onto R+, therefore (3) has a unique
solution for all i = 1, . . . , n.
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This theorem helps to make a clear link between the observations and the model parameters.
In an observation of a spreading seizure in a network any region i can be either

• observed seizing, in which case it has a known onset time ti;

• or observed non-seizing, which we represent as having an onset time ti ≥ tlim;

• or hidden.

If we reorder the regions in this order, any particular observation of a seizure can be represented as
a set T in the space of observations (R+)n,

T = {t1} × . . .× {tnsz}︸ ︷︷ ︸
Seizing regions, nsz

× [tlim,∞)× . . .× [tlim,∞)︸ ︷︷ ︸
Non-seizing regions, nns

× R+ × . . .× R+︸ ︷︷ ︸
Hidden regions, nhid

(4)

This is an (nns + nhid)-dimensional manifold, and if nns > 0, then it has an (nns + nhid − 1)-
dimensional boundary representing the limit cases of one non-seizing region having the onset time
tlim. And since PW,q is one-to-one and onto, P−1

W,q exists, and P−1
W,q(T ) is a manifold of the same

dimensionality in the space of excitability parameters Rn. This parameter manifold represents all
possible solutions to the inverse problem for a particular observation T . The probability of the
solutions on the manifold is then determined by the prior distribution on the parameters. Fig 1
illustrates this in a three-node network.

Validation on synthetic data
To instill confidence in the inference process and to establish what can be expected from the inference
from the incomplete seizure observations, we first performed extensive validation of the method on
synthetic data, i.e. on data generated by the same dynamical model which was then used for the
inference. For three different functions fq (with no coupling, weak coupling, or strong coupling;
Fig 2) we generated synthetic seizures by randomly sampling the excitabilities from standard normal
distribution and calculating the region onset times using the dynamical model. If there were no
seizing regions in the simulated seizure (i.e. no regions with onset time ti < tlim with tlim = 90 s),
a new seizure with new excitability parameters was generated. The parameters q of the excitation
functions were selected by hand, loosely guided by the principle of preserving some key statistics
of generated seizures (Fig 2B). The exception was the strong coupling function, which was in fact
the result of the inference performed on real data; the results for strong coupling thus provide an
estimate of what can be expected in real data. We then ran the multi-seizure and single-seizure
inference on these synthetic data, assuming that only portion of the regions (21, 54, or 108 out
of 162) were observed, and we evaluated how well were the original parameters recovered. For
every seizure, first one observed region was selected from those seizing, and then the other observed
regions were selected randomly from all regions; this was to assure that there was at least one region
seizing among those observed.

To test the recovery of the hyperparameters q, we ran the multi-seizure model on batches
of twelve synthetic seizures. Four independent MCMC chains were run for each batch; out of
total of 36 chains one chain was stuck and was excluded from further analysis. The convergence
was evaluated using the split-chain reduction factors R̂ and number of effective samples Neff

[1]. All but one scenarios converged satisfactory with R̂ below 1.1 and with Neff above 30 for
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Fig 1. Observation and parameter manifolds in a three-node network. (A) Three node network
with one hidden, one observed non-seizing, and one observed seizing region (with tS = 50 s),
marked with H, N, and S respectively. The network is fully and symmetrically connected with
connection strengths wij = 0.1. (B) The observation manifold in the onset time space (R+)3. The
green line marks the limit case of tN = tlim. (C) The parameter manifolds in the parameter space
R3 for three excitation functions fq representing no, weak, and strong coupling (see Fig 2). In
general, the dimensionality of the manifolds is determined by the number of seizing, non-seizing,
and hidden regions in the network, while the shape of the manifold is determined by the
connectivity W , excitation function fq, and the onset times of seizing regions. The coloring
represents the prior distribution of the excitability parameters, which is a standard normal
distribution N(0, I). (D) Marginal posterior probabilities of the excitability parameters of the
three nodes, obtained by integrating the prior over the manifold. (E) Recruitment probabilities of
the three regions. With no observation noise, the only differences are in the hidden region H, and
the observations of the other two regions are reproduced exactly. This figure illustrates how the
stronger coupling leads to more complicated posterior geometry (C), possibly resulting in a
multimodality in the distribution of the excitability parameters (D). In this case, in addition to
the dominant mode representing the highly excitable observed region S, the strong coupling
introduces also a secondary mode representing the highly excitable hidden region H and less
excitable observed region S. In other words, the coupling allows for a discovery of a hidden
epileptogenic zone.
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Fig 2. Three excitation functions used for the synthetic data validation. (A) Plots of the
functions fq(c, y) named “Uncoupled” with q = (−5.12,−5.12, 1.95, 1.95), “Weak coupling” with
q = (−10.0, 2.0, 5.5, 33.0), and “Strong coupling” with q = (−12.70, 15.48, 5.53, 75.21). The
colormap is clipped to show the range of values relevant for the seizure propagation on timescales
of seconds to tens of seconds. The red line shows the prior distribution on the region excitabilities
c, i.e. the standard normal function. (B) Statistical quantification of the generated seizures. For
each function (in rows) 10000 seizures were generated by taking a random patient connectome and
randomly sampling excitabilities using the standard normal distribution. Columns show the
histograms of properties of the generated seizures: fraction of seizing regions, standard deviation
of the onset times of seizing regions, and percentiles of the onset times of seizing regions. Vertical
axis always represents the count of seizures. (C) Dependency of the excitation functions on the
network input for different values of excitability. The stronger or weaker relation motivates our
notation of Uncoupled, Weak and Strong coupling for the different functions.



all hyperparameters. The exception was the scenario with the strong coupling function with 108
observed regions (R̂ ≤ 1.41, Neff ≥ 5.79); these results are nevertheless shown as well. We adopt
the evaluation framework of Betancourt [2] and present the values of posterior z-score and posterior
shrinkage. For a parameter θi, the posterior z-score quantifies how far is the posterior from the
ground truth,

zi =
∣∣∣∣ θ̄i − θ∗

i

σi,post

∣∣∣∣ , (5)

where θ̄i is the mean of the posterior distribution, θ∗
i is the ground truth, and σi,post is the

standard deviation of the posterior distribution. The posterior shrinkage quantifies how much
is the uncertainty in the prior distribution reduced,

si = 1−
σ2

i,post

σ2
i,prior

, (6)

where σi,prior is the standard deviation of the prior distribution. Fig 3A-C shows the results. Most
data points are located in the lower right corner, indicating good recovery of the parameters. Some
overfitting however can be seen for the uncoupled model; considering that the shrinkage values are
very close to one, the distance is still small in the absolute numbers. This overfitting may be caused
by the fact that the data were generated without any observation noise assumed in the statistical
model, leading to more confident estimations.

To test the recovery of the low-level excitability parameters we ran the single-seizure model on
synthetic seizures, assuming the knowledge of the hyperparameters q used for their generation. We
have again used the same three sets of the hyperparameters and for each of them we generated 96
seizures, again sampling the excitability parameters randomly from a standard normal distribution,
and using the connectomes from the patient cohort. One chain out of total of 1728 was stuck
and was excluded. The vast majority of the inference runs converged well, with 99.84% regional
excitability parameters with R̂ below 1.1 and Neff above 30. We evaluated the relation between
the ground truth and the mean of the posterior distribution, separately for the observed (Fig 3D)
and hidden nodes (Fig 3E). For the observed nodes, best values are obtained in the uncoupled
network, and the goodness of fit is reduced with stronger coupling; the effect of added observed
nodes is minimal. For the hidden nodes the relation between the posterior mean and ground truth
is in general much weaker. When the network is entirely uncoupled, nothing can be inferred about
the hidden nodes. With stronger coupling some information can be extracted, with positive effect
of added observed nodes. Interestingly, too strong coupling decreases the goodness of fit. In such
scenarios the network acts homogeneously, and it is difficult to infer which node is the driver and
which is the follower. Fig 3F and 3G shows how well can be the seizing/non-seizing state and the
onset times of hidden nodes predicted. Here the relation is clear: stronger coupling leads to better
predictions, with small benefits of adding observed nodes.

Discovery of epileptogenic zones in synthetic seizures
Before applying the method to discover the epileptogenic zone in the patient recordings, we tested
how well can the epileptogenic zones be discovered in the synthetic data. These were generated
by the trained model using patients’ structural connectivities and electrode implantations. In the
model, we equated the epileptogenic zone with the region with high excitability c > ch for the
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Fig 3. Validation on synthetic data. (A) Example of a hyperparameter inference. The posterior
is more concentrated around the ground truth compared to the prior. (B) Interpretation of the
shrinkage - z-score plot. Lower right corner constitutes the ideal fit. (C) Shrinkage - z-score plots
for the three excitation functions, three numbers of observed nodes out of total of 162, and all
four hyperparameters. (D,E) Goodness of fit for the low-level parameters. Left panels show the
relation between the ground truth and the posterior mean of the excitability in one simulated
scenario with weak coupling and 21 observed nodes. Each dot represent one brain region, colored
based on whether it seizes or not. The dashed line represents a perfect fit and the solid line shows
the linear regression fit. Right panels show the linear regression slope for all scenarios. Note that
the color code is different between D and E. (F) Distribution of state prediction accuracy (i.e. of
the probabilities that a seizing/non-seizing state of a hidden region is correctly inferred) for one
scenario (left), and its median for all scenarios (right). (G) Distribution of onset prediction
accuracy (i.e. of the probabilities that a onset time for a hidden seizing region is correctly inferred)
for one scenario (left), and its median for all scenarios (right). The violin plots in F and G show a
kernel density estimate of the probability density of a given variable across all regions and across
all seizures for the given scenario. The inner boxplots show the median (white dot), interquartile
range (IQR, gray bar) and adjacent values (upper/lower quartile +/- 1.5 IQR, gray line).



Fig 4. Discovery of the observed and hidden epileptogenic zones (EZ) in synthetic seizures. (A)
Three scenarios of EZ location. In all three scenarios, two EZs (with the excitabilities drawn from
the standard normal distribution bottom-truncated at c = ch) are placed in the network, and the
rest of the nodes has excitabilities drawn from the standard normal distribution top-truncated at
c = ch. In the observed EZ scenario, the EZs are placed randomly among the observed nodes. In
the random hidden EZ scenario, the EZs are placed randomly among the non-observed regions. In
the near miss hidden EZ scenario, the EZs are placed among the non-observed nodes that are
well-connected to at least three observed nodes, where well-connected means having the outgoing
connection stronger that 97-percentile of all connections weights. Thirty-two synthetic seizures
were generated and fitted for each scenario. (B) Precision-recall curves obtained by using the
inferred probability p(c > ch) that a region is highly excitable as a predictor and varying a
threshold pt for this predictor from zero to one. Two specific thresholds pt are marked on each
curve.

threshold ch = 2. In order to establish how well can be the epileptogenic zone discovered based on
its location relative to the implanted sensors, we analyzed three scenarios: observed epileptogenic
zone, hidden epileptogenic zone with random location among the non-observed regions, and a
near miss scenario, that is a hidden epileptogenic zone that is well connected to at least three
observed regions (Fig 4A). We analyzed how well were the epileptogenic zones discovered with
the precision-recall curve using the inferred probability of high excitability (Fig 4B). The observed
epileptogenic zones were well identified, while the identification of the hidden epileptogenic zone
was unsurprisingly worse. However, the location matters considerably. In the random scenario,
the precision and recall for the threshold pt = 0.05 is 4% and 9% respectively. In comparison,
the precision and recall in the near miss scenario is at 11% and 33%, meaning that a third of the
hidden epileptogenic zones were discovered with above one in ten chance of being correct. While
such numbers are far from being sufficient to serve as a sole basis for any surgical decision, it might
be enough to point to previously unexpected cause for which supporting evidence may (or may not)
be found by other methods.

Subject-level analysis of the prediction accuracy
Here our goal is to compare the differences in leave-one-out prediction accuracies, obtained from the
empirical data, among the subjects and seizures in order to see if the method performs considerably
better or worse in some cases, and if so, to identify these cases. Analysis of the results on the subject
level is however complicated by two main obstacles. First, as established, the values of state and
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Box 1. Multi-level model for accuracy analysis

Input data: Number of subjects nsubjects, numbers of seizures of each subject nseizures
i ,

numbers of analyzed regions in each seizure nregions
ij , fractions of seizing nodes in a seizure

fij , node strengths nijk, and the variable of interest yijk. Everywhere i indexes the subjects,
j the seizures of a subject, and k the analyzed brain regions.
Parameters: Slopes a, b (shared globally), intercepts on a seizure level cij , on a subject level
c̄i, and global ¯̄c, auxiliary parameters η̄i and ηij , and standard deviations on a region, seizure,
and subject level σregions, σseizures, σsubjects (shared globally).
Model:

a ∼ Normal(0, 1)
b ∼ Normal(0, 1)
¯̄c ∼ Normal(0, 1)
σregions ∼ HalfNormal(0, 1)
σseizures ∼ HalfNormal(0, 1)
σsubjects ∼ HalfNormal(0, 1)

For i = 1, . . . , nsubjects:
η̄i ∼ Normal(0, 1)
c̄i = ¯̄c+ σsubjectsη̄i

For j = 1, . . . , nseizures
i :

ηij ∼ Normal(0, 1)
cij = c̄i + σseizuresηij

For k = 1, . . . , nregions
ij :

yijk ∼ Normal(fija+ nijkb+ cij , σ
regions)

onset prediction accuracies depend on the seizing/non-seizing state of a brain region, its connection
strength, and fraction of regions that are seizing in a given seizure (Fig 6 in the main text). These
factors differ between subjects and seizures, and so the values are not directly comparable and have
to be corrected to account for this known dependency. Second, the number of observed regions
(for which the prediction accuracies are calculated) differ between seizures and subjects, especially
when analyzing separately the seizing and non-seizing regions. When this sampling variability is not
accounted for, the results might give a wrong impression of variance between seizures and subjects.

To overcome these issues, we have analyzed the results using a multi-level model based on
linear regression (Box 1). At the core of the model, the variable of interest is predicted via linear
dependency on the fraction of seizing nodes in a seizure and node strength, thus accounting for this
known relation (or rather its linear part). The slopes are shared between all seizures and subjects,
while the intercepts are only partially shared between seizures and subjects through the multi-level
hierarchy. This partial sharing allows to use the information from other seizures and subjects if the
sample size is low, while allowing the intercepts to vary if the evidence is strong. The results for
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the seizing and non-seizing regions are analyzed independently with no parameter sharing between
them. Note the use of a non-centered parameterization in defining c̄i and cij through the auxiliary
parameters η̄i and ηij , instead of a centered parameterization (i.e. c̄i ∼ Normal(¯̄c, σsubjects) and
similarly for cij). That is done to improve the efficiency of the sampling process. The priors were
set as weakly informative Normal(0, 1) (or HalfNormal(0, 1) for positive parameters) considering
that all data are on the order of one.

The model was implemented and fitted using Stan [3] utilizing Hamiltonian Monte Carlo method.
Four chains were used for sampling each analyzed variable, each chain with 500 warmup and
500 sampling iterations. Standard diagnostics did not indicate any sampling issues (no divergent
iterations, split chain reduction factor R̂ < 1.03 and number of effective samples Neff > 200 for
all parameters in all runs). That is in part due to the non-centered parameterization, the centered
version of the same model converged considerably worse.

The results of the analysis for state and onset prediction accuracies obtained by the inference and
their difference to the unweighted and weighted estimates are shown on Figs 13 and 14 respectively.
As visible, individual variations from the population mean exist both on subject and seizure level;
these cannot be explained by the linear dependency on node strength and fraction of seizing nodes
accounted for in the model. Detailed analysis of the causes of these variations remains out of scope
for this study, however, these charts can guide the future investigation of the model strengths and
weaknesses on the subject and seizure level.
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Fig 5. Influence of the threshold δ on the detection of seizing channels and their onset times.
Threshold δ corresponds to δ-fold increase of the signal power compared to the pre-ictal baseline.
(A) Percentage of channels detected as seizing. (B) Pairwise difference between the detected onset
times relative to the reference threshold δ = 5 used in the study. The solid line shows the median
difference, the filled area corresponds to 10th to 90th percentile range. For the purpose of
visualization, the difference is set as infinity for the channels that switched to non-seizing state. In
both panels, the vertical line indicates the threshold used in the study.
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Fig 6. Posterior distribution of the hyperparameters. The diagonal panels show the kernel
density estimation of the posterior distributions, the offdiagonal panels show the pair plots of the
hyperparameters. The two colors represent two different data folds.
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Fig 7. Example of the inference results on a seizure from subject 17. The layout of the figure is
the same as in Fig 5 in the main text. The seizure is observed to start in the left anterior
hippocampus (yellow circle, panels A, B) and left rhinal cortex and collateral sulcus (green
square, panels A, B), and then it spreads to left amygdala and thalamus, left temporal pole, and
eventually to left occipito-temporal sulcus. The seizure activity is inferred to remain spatially
restricted, only the possible late recruitment of the left occipital lobe is inferred in addition to the
observations. The early seizing regions are also inferred as being epileptogenic (yellow circle and
green square, panel D).
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Fig 8. Example of the inference results on a seizure from subject 1. The layout of the figure is
the same as in Fig 5 in the main text. From the observations the method infers that the seizure
starts in the anterior part of the right hippocampus (yellow circle, panels A, B) before a large
portion of the right hemisphere is recruited (magenta square, panels A, B), and eventually also
some regions in the left hemisphere (light green triangle, panels A, B). The anterior part of the
right hippocampus is strongly inferred to be the epileptogenic zone; the inference also points to
the strongly connected posterior part of the right hippocampus (blue circle, panel D).
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Fig 9. Example of the inference results on a seizure from subject 36. The layout of the figure is
the same as in Fig 5 in the main text. This example shows a possible failure of the model, with a
pattern repeatedly occurring among the results. Even though several stable regions are observed
during the seizure, the method infers almost simultaneous recruitment of the majority of brain
regions. The only regions not recruited are the observed stable nodes, and the left and right
cerebella which are in the model generally very stable regions due to the low volumetric density of
afferent projections obtained from diffusion-weighted imaging. None of the regions is identified as
more epileptogenic than others; in cases of simulateneous recruitment it is difficult to infer which
region is leading the seizure activity and which regions are only following.
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Fig 10. Feature importances from Fig 6B in the main text, calculated with four different
methods: gradient boosting regression (shown in the main text), random forest regression, linear
regression, and linear regression with lasso regularization (α = 0.01).
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Fig 11. Extended analysis of the virtual resection results from Fig 7 in the main text. The
columns show, for each patient with known surgery outcome, number of post-operative seizing
regions after the virtual surgery (panels A and B) and the inferred post-operative probability that
a region is seizing, averaged across all brain regions (panels C and D). When multiple seizures are
available for a single patient, either the mean value (panels A and C) or the worst value (panels B
and D) is shown. Top panels show the absolute measure (i.e, number of regions or the probability;
higher is worse), lower panels show the relative reduction (higher is better). The text shows the
Mann-Whitney statistic between patients with Engel score I and II and those with scores III and
IV. Column A corresponds to Fig 7D in the main text.

Fig 12. Dependency of the real and virtual surgery outcome from Fig 7 in the main text on the
resection size. Real surgery outcome is quantified with the Engel score, the virtual surgery
outcome with the post-operative number of seizing regions and with the reduction of seizing
regions as on Fig 7 in the main text. The inset text show the result of statistical analysis:
Mann-Whitney test between Engel I, II and III, IV patients for the real surgery outcome, and
linear regression for the virtual surgery outcomes. Neither the real nor the virtual surgery
outcome show strong dependency on the number of resected regions.
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Fig 13. Multi-level analysis of state prediction accuracy. Full caption on the following page.
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Fig 13. Multi-level analysis of state prediction accuracy. The plots show 95% confidence intervals
for the intercepts c̄i at the subject level (thick lines) and the intercepts cij at the seizure level
(thin lines). Solid points show the median value. The columns show the results for the accuracy of
inference (Inf), difference between the accuracies of the inference and the unweighted estimate (Inf
- Est), and the difference between the accuracies of the inference and the weighted estimate (Inf -
wEst), all separately for the seizing and non-seizing regions. Vertical line shows the mean of the
global intercept ¯̄c. In all panels, higher values mean better performance of the inference method,
either absolute or compared to the estimates. Note that since the accuracy of the unweighted
estimate depends linearly on the fraction of seizing regions, which is accounted for in the
multi-level model, the results in the first two columns differ only by a constant.
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Fig 14. Multi-level analysis of onset prediction accuracy. Layout same as in Fig 13
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Table 1. (Caption on the following page)
Operation Name(s) of the input region(s) Name(s) of the output region(s) Options
merge ctx_%h_G_and_S_frontomargin, ctx_%h_G_and_S_transv_frontopol %H-Frontal-pole

merge ctx_%h_G_orbital, ctx_%h_S_orbital_lateral,
ctx_%h_S_orbital-H_Shaped

%H-Orbito-frontal-cortex

merge ctx_%h_G_rectus, ctx_%h_S_suborbital, ctx_%h_S_orbital_med-olfact %H-Gyrus-rectus

merge ctx_%h_G_front_inf-Orbital, ctx_%h_Lat_Fis-ant-Horizont %H-F3-Pars-Orbitalis

merge ctx_%h_G_front_inf-Triangul, ctx_%h_Lat_Fis-ant-Vertical %H-F3-Pars-triangularis

merge ctx_%h_G_temp_sup-G_T_transv, ctx_%h_S_temporal_transverse %H-Gyrus-of-Heschl

merge ctx_%h_Lat_Fis-post, ctx_%h_G_temp_sup-Plan_tempo %H-T1-planum-temporale

merge ctx_%h_G_occipital_sup, ctx_%h_S_oc_sup_and_transversal %H-O1

merge ctx_%h_G_precuneus, ctx_%h_S_subparietal %H-Precuneus

merge ctx_%h_G_occipital_middle, ctx_%h_S_oc_middle_and_Lunatus %H-O2

rename ctx_%h_G_front_inf-Opercular %H-F3-pars-opercularis

rename ctx_%h_S_front_inf %H-Inferior-frontal-sulcus

rename ctx_%h_S_front_middle %H-Middle-frontal-sulcus

rename ctx_%h_G_subcallosal %H-Subcallosal-area

rename ctx_%h_S_precentral-inf-part %H-Precentral-sulcus-inferior-part

rename ctx_%h_S_precentral-sup-part %H-Precentral-sulcus-superior-part

rename ctx_%h_G_and_S_paracentral %H-Paracentral-lobule

rename ctx_%h_Pole_temporal %H-Temporal-pole

rename ctx_%h_G_temp_sup-Plan_polar %H-T1-planum-polare

rename ctx_%h_G_oc-temp_lat-fusifor %H-Fusiform-gyrus

rename ctx_%h_G_postcentral %H-Postcentral-gyrus

rename ctx_%h_S_postcentral %H-Postcentral-sulcus

rename ctx_%h_G_parietal_sup %H-Superior-parietal-lobule-P1

rename ctx_%h_G_pariet_inf-Angular %H-Angular-gyrus

rename ctx_%h_S_intrapariet_and_P_trans %H-Intraparietal-sulcus

rename ctx_%h_S_cingul-Marginalis %H-Marginal-branch-of-the-cingulate-sulcus

rename ctx_%h_S_parieto_occipital %H-Parieto-occipital-sulcus

rename ctx_%h_S_occipital_ant %H-Anterior-occipital-sulcus-and-preoccipital-notch

rename ctx_%h_G_and_S_occipital_inf %H-O3

rename ctx_%h_Pole_occipital %H-Occipital-pole

rename ctx_%h_G_oc-temp_med-Lingual %H-Lingual-gyrus

rename ctx_%h_S_calcarine %H-Calcarine-sulcus

rename ctx_%h_G_cuneus %H-Cuneus

split ctx_%h_G_front_middle %H-F2-rostral, %H-F2-caudal

split ctx_%h_S_front_sup %H-SFS-rostral, %H-SFS-caudal

split ctx_%h_G_and_S_subcentral %H-Central-operculum, %H-Parietal-operculum

split ctx_%h_G_temp_sup-Lateral %H-T1-lateral-anterior, %H-T1-lateral-posterior

split ctx_%h_S_temporal_sup %H-STS-anterior, %H-STS-posterior

split ctx_%h_S_temporal_inf %H-ITS-anterior, %H-ITS-posterior

split ctx_%h_G_temporal_middle %H-T2-anterior, %H-T2-posterior

split ctx_%h_G_temporal_inf %H-T3-anterior, %H-T3-posterior

split-mes ctx_%h_G_front_sup %1, %2

split %1 %H-F1-mesial-prefrontal, %H-PreSMA, %H-SMA ratios: 2, 1, 3

split %2 %H-F1-lateral-prefrontal, %H-F1-lateral-premotor

split ctx_%h_G_precentral %H-Precentral-gyrus-head-face, %H-Precentral-gyrus-upper-limb ratios: 2, 1

split ctx_%h_S_central %H-Central-sulcus-head-face, %H-Central-sulcus-upper-limb ratios: 2, 1

split ctx_%h_S_oc-temp_med_and_Lingual %H-Collateral-sulcus, %1

merge %1, ctx_%h_S_collat_transv_post %H-Lingual-sulcus

split ctx_%h_G_oc-temp_med-Parahip %1, %H-Parahippocampal-cortex

split ctx_%h_S_collat_transv_ant %2, %3

merge %1, %2 %H-Rhinal-cortex

merge %3, ctx_%h_S_oc-temp_lat %H-Occipito-temporal-sulcus

split ctx_%h_G_pariet_inf-Supramar %H-Supramarginal-anterior, %1

merge %1, ctx_%h_S_interm_prim-Jensen %H-Supramarginal-posterior

split-to-nl ctx_%h_S_pericallosal ctx_%h_G_and_S_cingul-Ant, ctx_%h_G_and_S_cingul-Mid-Ant,
ctx_%h_G_and_S_cingul-Mid-Post, ctx_%h_G_cingul-Post-dorsal,
ctx_%h_G_cingul-Post-ventral

rename ctx_%h_G_and_S_cingul-Ant %H-Anterior-cingulate-cortex

rename ctx_%h_G_and_S_cingul-Mid-Ant %H-Middle-cingulate-cortex-anterior-part

rename ctx_%h_G_and_S_cingul-Mid-Post %H-Middle-cingulate-cortex-posterior-part

rename ctx_%h_G_cingul-Post-dorsal %H-Posterior-cingulate-cortex-dorsal

rename ctx_%h_G_cingul-Post-ventral %H-Posterior-cingulate-cortex-retrosplenial-gyrus

split-to ctx_%h_S_circular_insula_sup ctx_%h_G_insular_short, ctx_%h_G_Ins_lg_and_S_cent_ins

merge ctx_%h_S_circular_insula_ant, ctx_%h_G_insular_short %H-Insula-gyri-brevi

merge ctx_%h_G_Ins_lg_and_S_cent_ins, ctx_%h_S_circular_insula_inf %H-Insula-gyri-longi

split %H-Hippocampus %H-Hippocampus-anterior, %H-Hippocampus-posterior

rename %H-Cerebellum-Cortex %H-Cerebellar-cortex

rename %H-Thalamus-Proper %H-Thalamus

rename %H-Caudate %H-Caudate-nucleus

rename %H-Accumbens-area %H-Nucleus-accumbens
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Table 1. List of operations to create the custom brain parcellation. The operations are: merge - merges two or
more regions together; rename - renames a region; split - splits one region into multiple using a linear PCA
projection of the coordinates; split-to - splits one region into multiple using a linear projection and merges the
created regions with the specified existing ones; split-to-nl - splits one region into multiple using a nonlinear
Isomap projection and merges the created regions with the specified existing ones; split-mes - splits the region
into the mesial wall and the remaining part, using a criterion of the mesial-lateral component of the unit normal
vector of the inflated cortical surface being equal to -0.5. Wildcards %h and %H stand for the hemisphere name in
the format ’lh’/’rh’ and ’Left’/’Right’ respectively, and numerical wildcards %1, %2, %3 stand for temporary
regions which are then replaced by following operations. If ratios are given, the split is into non-equal sized region
as determined by the ratios, otherwise the region is split into equally sized regions. For the cortical regions, the
operations are performed on the triangulated cortical surface, while for the subcortical regions the operations are
performed on the voxels.
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Table 2. List of brain regions in the custom atlas.
Anatomical grouping Index Name Index Name

Frontal lobe 1 Left-Frontal-pole 82 Right-Frontal-pole
Frontal lobe 2 Left-Orbito-frontal-cortex 83 Right-Orbito-frontal-cortex
Frontal lobe 3 Left-Gyrus-rectus 84 Right-Gyrus-rectus
Frontal lobe 4 Left-F3-Pars-Orbitalis 85 Right-F3-Pars-Orbitalis
Frontal lobe 5 Left-F3-Pars-triangularis 86 Right-F3-Pars-triangularis
Frontal lobe 6 Left-F3-pars-opercularis 87 Right-F3-pars-opercularis
Frontal lobe 7 Left-Inferior-frontal-sulcus 88 Right-Inferior-frontal-sulcus
Frontal lobe 8 Left-F2-rostral 89 Right-F2-rostral
Frontal lobe 9 Left-F2-caudal 90 Right-F2-caudal
Frontal lobe 10 Left-Middle-frontal-sulcus 91 Right-Middle-frontal-sulcus
Frontal lobe 11 Left-SFS-rostral 92 Right-SFS-rostral
Frontal lobe 12 Left-SFS-caudal 93 Right-SFS-caudal
Frontal lobe 13 Left-F1-mesial-prefrontal 94 Right-F1-mesial-prefrontal
Frontal lobe 14 Left-PreSMA 95 Right-PreSMA
Frontal lobe 15 Left-SMA 96 Right-SMA
Frontal lobe 16 Left-F1-lateral-prefrontal 97 Right-F1-lateral-prefrontal
Frontal lobe 17 Left-F1-lateral-premotor 98 Right-F1-lateral-premotor
Frontal lobe 18 Left-Subcallosal-area 99 Right-Subcallosal-area
Frontal lobe 19 Left-Precentral-sulcus-inferior-part 100 Right-Precentral-sulcus-inferior-part
Frontal lobe 20 Left-Precentral-sulcus-superior-part 101 Right-Precentral-sulcus-superior-part
Frontal lobe 21 Left-Precentral-gyrus-head-face 102 Right-Precentral-gyrus-head-face
Frontal lobe 22 Left-Precentral-gyrus-upper-limb 103 Right-Precentral-gyrus-upper-limb
Frontal lobe 23 Left-Central-sulcus-head-face 104 Right-Central-sulcus-head-face
Frontal lobe 24 Left-Central-sulcus-upper-limb 105 Right-Central-sulcus-upper-limb
Frontal lobe 25 Left-Paracentral-lobule 106 Right-Paracentral-lobule
Frontal lobe 26 Left-Central-operculum 107 Right-Central-operculum
Frontal lobe 27 Left-Parietal-operculum 108 Right-Parietal-operculum

Cingulate cortex 28 Left-Anterior-cingulate-cortex 109 Right-Anterior-cingulate-cortex
Cingulate cortex 29 Left-Middle-cingulate-cortex-anterior-part 110 Right-Middle-cingulate-cortex-anterior-part
Cingulate cortex 30 Left-Middle-cingulate-cortex-posterior-part 111 Right-Middle-cingulate-cortex-posterior-part
Cingulate cortex 31 Left-Posterior-cingulate-cortex-dorsal 112 Right-Posterior-cingulate-cortex-dorsal
Cingulate cortex 32 Left-Posterior-cingulate-cortex-retrosplenial-gyrus 113 Right-Posterior-cingulate-cortex-retrosplenial-gyrus

Insula 33 Left-Insula-gyri-brevi 114 Right-Insula-gyri-brevi
Insula 34 Left-Insula-gyri-longi 115 Right-Insula-gyri-longi

Temporal lobe 35 Left-Temporal-pole 116 Right-Temporal-pole
Temporal lobe 36 Left-T1-planum-polare 117 Right-T1-planum-polare
Temporal lobe 37 Left-Gyrus-of-Heschl 118 Right-Gyrus-of-Heschl
Temporal lobe 38 Left-T1-planum-temporale 119 Right-T1-planum-temporale
Temporal lobe 39 Left-T1-lateral-anterior 120 Right-T1-lateral-anterior
Temporal lobe 40 Left-T1-lateral-posterior 121 Right-T1-lateral-posterior
Temporal lobe 41 Left-STS-anterior 122 Right-STS-anterior
Temporal lobe 42 Left-STS-posterior 123 Right-STS-posterior
Temporal lobe 43 Left-ITS-anterior 124 Right-ITS-anterior
Temporal lobe 44 Left-ITS-posterior 125 Right-ITS-posterior
Temporal lobe 45 Left-T2-anterior 126 Right-T2-anterior
Temporal lobe 46 Left-T2-posterior 127 Right-T2-posterior
Temporal lobe 47 Left-T3-anterior 128 Right-T3-anterior
Temporal lobe 48 Left-T3-posterior 129 Right-T3-posterior
Temporal lobe 49 Left-Fusiform-gyrus 130 Right-Fusiform-gyrus
Temporal lobe 50 Left-Occipito-temporal-sulcus 131 Right-Occipito-temporal-sulcus
Temporal lobe 51 Left-Collateral-sulcus 132 Right-Collateral-sulcus
Temporal lobe 52 Left-Lingual-sulcus 133 Right-Lingual-sulcus
Temporal lobe 53 Left-Parahippocampal-cortex 134 Right-Parahippocampal-cortex
Temporal lobe 54 Left-Rhinal-cortex 135 Right-Rhinal-cortex
Parietal lobe 55 Left-Postcentral-gyrus 136 Right-Postcentral-gyrus
Parietal lobe 56 Left-Postcentral-sulcus 137 Right-Postcentral-sulcus
Parietal lobe 57 Left-Superior-parietal-lobule-P1 138 Right-Superior-parietal-lobule-P1
Parietal lobe 58 Left-Supramarginal-anterior 139 Right-Supramarginal-anterior
Parietal lobe 59 Left-Supramarginal-posterior 140 Right-Supramarginal-posterior
Parietal lobe 60 Left-Angular-gyrus 141 Right-Angular-gyrus
Parietal lobe 61 Left-Intraparietal-sulcus 142 Right-Intraparietal-sulcus
Parietal lobe 62 Left-Precuneus 143 Right-Precuneus
Parietal lobe 63 Left-Marginal-branch-of-the-cingulate-sulcus 144 Right-Marginal-branch-of-the-cingulate-sulcus
Parietal lobe 64 Left-Parieto-occipital-sulcus 145 Right-Parieto-occipital-sulcus

Occipital lobe 65 Left-Anterior-occipital-sulcus-and-preoccipital-notch 146 Right-Anterior-occipital-sulcus-and-preoccipital-notch
Occipital lobe 66 Left-O3 147 Right-O3
Occipital lobe 67 Left-O2 148 Right-O2
Occipital lobe 68 Left-O1 149 Right-O1
Occipital lobe 69 Left-Occipital-pole 150 Right-Occipital-pole
Occipital lobe 70 Left-Lingual-gyrus 151 Right-Lingual-gyrus
Occipital lobe 71 Left-Calcarine-sulcus 152 Right-Calcarine-sulcus
Occipital lobe 72 Left-Cuneus 153 Right-Cuneus

Subcortical regions 73 Left-Hippocampus-anterior 154 Right-Hippocampus-anterior
Subcortical regions 74 Left-Hippocampus-posterior 155 Right-Hippocampus-posterior
Subcortical regions 75 Left-Amygdala 156 Right-Amygdala
Subcortical regions 76 Left-Thalamus 157 Right-Thalamus
Subcortical regions 77 Left-Caudate-nucleus 158 Right-Caudate-nucleus
Subcortical regions 78 Left-Putamen 159 Right-Putamen
Subcortical regions 79 Left-Pallidum 160 Right-Pallidum
Subcortical regions 80 Left-Nucleus-accumbens 161 Right-Nucleus-accumbens
Subcortical regions 81 Left-Cerebellar-cortex 162 Right-Cerebellar-cortex



Table 3. Patient table. Abbreviation in bracket in the Epilepsy type column indicates the simplified epilepsy
type used in the statistical analysis (T, Temporal; P/P-T, Posterior/Postero-temporal; F/F-T,
Frontal/Fronto-temporal; M/I-O, Motor/Insulo-opercular). Other abbreviations: AVM, arteriovenous
malformation; DNET, dysembryoplastic neuroepithelial tumor; FCD, focal cortical dyplasia; HH, hypothalamic
hamartoma; L, left; NA, not applicable; PMG, polymicrogyria; PNH, periventricular nodular heterotopia; R,
right; SG, secondarily generalized. The column “Number of seizures” shows the number of recorded seizures
longer than 30 seconds used in this study.

Patient Gender
Age at

epilepsy
onset (y)

Epilepsy
duration

(y)
Epilepsy type MRI Histopathology Side Engel

score
Post-op

MRI
Number

of
seizures

Number
of SG

seizures

1 F 31 3 Temporo-insular (T) Normal Hippocampal sclerosis R I Y 4 1

2 F 19 10 Temporo-occipital (P/P-T) L temporo-occipital PNH NA L NA N 3 0

3 M 23 13 Temporo-frontal (F/F-T) R temporo-occipital scar FCD1a R I Y 3 3

4 F 23 3 Temporal (T) R temporal mesial
ganglioglioma Ganglioglioma R I Y 2 0

5 M 0.3 21 Postcentral - superior parietal
(M/I-O)

L postcentral-parietal gyration
asymmetry NA L NA N 1 1

6 M 45 14 Fronto-temporal (F/F-T) Normal NA L NA N 3 0

7 M 55 5 Temporal (T) Normal Slight gliosis R>L III Y 2 2

8 F 38 8 Temporal (T) L amygdala enlargement Slight gliosis L III N 3 2

9 F 11 34 Bifocal: parietal mesial &
temporo-basal Unknown R parietal lesion Rosenthal fibers; slight

gliosis R III Y 2 0

10 F 27 18 Temporal (T) L hippocampal sclerosis Hippocampal sclerosis L I N 6 0

11 F 27 14 Frontal (F/F-T) L frontal scar (abcess) Gliosis L IV Y 3 0

12 F 19 9 Bilateral temporo-frontal
(F/F-T)

Bilateral hippocampal &
amygdala T2-hypersignal NA R&L NA N 2 2

13 M 2 17 Frontal (F/F-T) Normal Slight gliosis L I N 2 0

14 F 5 18 Premotor (M/I-O) Normal FCD2b L I Y 0 0

15 M 8 33 Temporal (T) R temporal PMG & multiple
PNH NA R NA N 2 1

16 M 6 23 Temporo-operculo-fronto-
parietal

R temporo-parieto-insular &
L temporo-parietal necrosis NA R>L NA N 4 1

17 M 5 21 Temporal (T) L temporo-polar hypothrophy
and hippocampal sclerosis

Hippocampal sclerosis;
gliosis L I Y 4 1

18 M 2 22 Parieto-temporal (P/P-T) L Parieto-occipital necrosis
(perinatal anoxy) NA L NA N 2 2

19 M 29 15 Temporo-insular (T) Normal NA L>R NA N 5 0

20 F 17 10 Temporal (T) Normal Hippocampal sclerosis R I Y 3 0

21 F 9 14 Occipital (P/P-T) Normal FCD1c L II Y 2 0

22 F 7 23 Parietal (P/P-T) L parietal FCD FCD2b L I Y 0 0

23 M 35 28 Temporal (T) Normal NA L NA N 2 2

24 M 14 15 Temporal (T) Normal NA R NA N 4 1

25 M 7 35 Insular (M/I-O) Normal NA L I Y 4 0

26 F 4 24 Occipital (P/P-T) PNH NA R NA N 0 0



Table 3. Patient table (continued).

Patient Gender
Age at

epilepsy
onset (y)

Epilepsy
duration

(y)
Epilepsy type MRI Histopathology Side Engel

score
Post-op

MRI
Number

of
seizures

Number
of SG

seizures

27 M 17 12 Frontal (F/F-T) R prefrontal gliotic scar (AVM) Gliosis R>L II N 3 3

28 F 8 14 Temporo-frontal (F/F-T) Anterior temporal necrosis Gliosis R III Y 3 0

29 F 21 9 Bilateral temporal (T) Bilateral posterior PNH NA R>L NA N 3 0

30 M 11 45 Temporo-frontal (F/F-T) R Frontal FCD FCD 2 R I Y 1 0

31 F 20 18 Occipital (P/P-T) Normal NA R NA N 3 0

32 F 15 21 Bilateral temporal with HH (T) L HH NA R&L NA N 5 0

33 F 18 5 Temporo-parieto-opercular
(P/P-T) Normal Hippocampal sclerosis R IV Y 9 0

34 F 33 8 Temporal (T) Multiple R temporo-parietal
PNH & temporal PMG NA R NA N 2 2

35 M 4 27 Bilateral occipito-temporal
(P/P-T) R occipital mesial FCD NA R&L NA N 4 2

36 F 8 13 Temporo-insular (T) R temporal anterior resection
cavity Gliosis R IV Y 3 0

37 M 28 5 Temporal mesial (T)
R temporo-polar & amygdala
FCD, L post-chiasmal pilocytic

astrocyrtoma
FCD 2b R III Y 4 2

38 M 11 22 Bilateral temporal (T) Normal NA L&R NA N 8 2

39 M 40 4 Temporo-frontal (F/F-T) R fronto-temporal necrosis
(gunshot injury) Gliosis R I Y 3 0

40 F 16 19 Temporal mesial (T) Hippocampal sclerosis Hippocampal sclerosis L II Y 2 0

41 M 0.7 26 Bilateral, temporal predominant R perisylvian necrosis (perinatal
stroke) NA R>L NA N 4 1

42 F 9 19 Temporal mesial (T) Bilateral hippocampal sclerosis NA L NA N 6 0

43 F 7 16 Premotor (M/I-O) R precentral FCD NA R NA N 1 1

44 M 0.5 39
Multifocal:

parieto-operculo-premotor;
temporal mesial

L hippocampal & amygdala T2
hypersignal NA L NA N 2 0

45 F 24 17 Temporal mesial (T) Normal NA L IV Y 3 0

46 M 1.5 31 Insulo-parieto-premotor
(M/I-O) Normal NA R NA N 0 0

47 M 16 13 Bilateral frontal (F/F-T) Normal NA R&L NA N 2 2

48 F 15 7 Premotor (M/I-O) R parietal DNET NA R NA N 1 1

49 F 1 21 Motor-opercular (M/I-O) R fronto-opercular resection
cavity NA R NA N 1 1

50 M 14 21 Motor-premotor (M/I-O) L insulo-opercular necrosis
(stroke) NA L I Y 0 0


