
Supplementary Information:
Cavity-enhanced microwave readout of a solid-state spin sensor

I. SUPPLEMENTARY NOTE 1: SENSITIVITY AND FIDELITY

A. Johnson noise sensitivity limit

Johnson-Nyquist (thermal) noise degrades the microwave signal following interaction with the composite cavity.
The composite cavity produces Johnson-Nyquist noise VJN =

√
4kBTRs∆f , where kB is the Boltzmann constant,

T is the cavity’s temperature, Rs is the equivalent resistance of the composite cavity, and ∆f is the single-sided
measurement bandwidth. Assuming that the cavity is impedance matched to the termination resistance R = 50 Ω,
this produces a noise voltage

√
kBTR∆f at the measurement device. The Johnson-Nyquist-limited sensitivity is then

given by

ηJN =

√
kBTR

F1 · F2 ·
[
d(Im[Γ]VRMS)

dB0

]
max

, (1)

where Im[Γ]VRMS is the quadrature component of the reflected RMS MW voltage, B0 is the magnetic field, and F1

and F2 are factors of order unity depending on details of the signal and the processing architecture respectively. For
scenarios where the phase of the signal is assumed to be known (as in this work), F1 =

√
2. For architectures where

all signal is isolated into the quadrature channel of the mixer (as in this work), we expect F2 =
√

2. At 10 dBm of

applied MW power, we then estimate d(Im[Γ]VRMS)
dB0

≈ 0.05 V/G (Supplementary Fig. 3), yielding ηJN ≈ 0.5 pT/
√

Hz.

B. Spin-projection sensitivity limit

The spin-projection-limited magnetic sensitivity is given by [1]

ηsp ≈
~

geµB

1√
Nτ

, (2)

where τ is the free precession time. For a Ramsey measurement scheme, it is nearly optimal to choose a precession
time equal to the dephasing time, T ∗2 [2]. Although there is no explicit precession time in a CW measurement scheme,
we make the substitution τ = T ∗2 in the above equation as a crude estimate of the effective precession time. For our
measurement scheme, two additional factors must be considered, each of which degrades the spin-projection-noise-
limited sensitivity. First, the projection of the magnetic field on each NV− orientation is B0/

√
3, so that the magnetic

sensitivity is a factor
√

3 larger than näıvely expected. Second, the finite time required (on average) to optically
initialize a spin, T op

1 , produces an effective duty cycle for the measurement of τ/T op
1 (assuming T op

1 � τ). Again

making the substitution τ = T ∗2 , this effects a degredation of the sensitivity by the factor
√
T op

1 /T ∗2 . With these
modifications, the appropriate spin-projection-limited sensitivity for this measurement scheme (in the absence of all
technical noise) is approximately given by

ηop
sp ≈

√
3

~
geµB

1√
NT ∗2

√
T op

1

T ∗2
. (3)

To compute T op
1 , we assume that M green photons are required, on average, to polarize one NV- center. We expect

M > 1 due to the limited asymmetry of decay to |ms = 0〉 through the intersystem crossing and because green
photons may be “wasted” through radiative decay or absorption by substitutional nitrogen, NV0, and other defects.
We crudely guess the value of M is between between 1 and 10. We calculate T op

1 as

T op
1 = M

N

Rpho
(4)

where Rpho is the number of photons per second applied to the NV ensemble. For M = 3, assuming 12 W of 532 nm

light and N = 1.4× 1015 polarized NV- centers, we have T op
1 = 130 µs and ηop

sp = 75 fT/
√

Hz.
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C. Microwave photon noise limit to readout fidelity

It is instructive to calculate the expected inverse readout fidelity σR = 1/F in the absence of thermal (Johnson-
Nyquist) and other technical noise (e.g. phase noise). The inverse readout fidelity (equal to the factor over spin
projection noise) is

σR =

√
1 +

1

C2navg
, (5)

where C is the readout contrast (fringe visibility) and navg represents the average number of MW photons collected
per NV- per measurement. At 10 dBm of applied MW power, the composite cavity reflects a maximum −2.4 dBm,
which corresponds to 3.0 × 1020 MW photons/second. We assume N = 1.4 × 1015, T op

1 = 130 µs, and C = 1. This
crude estimate gives navg = 28, resulting in σR = 1.017 and F = .983. Employing instead T2 = 8 µs results in
σR = 1.254 and F = .798. Employing T ∗2 = 40 ns yields σR = 10.7 and F = 0.093. For any of these timescales, the
shot-noise-limited sensitivity ηsh = σRη

op
sp is substantially less than the Johnson-Nyquist-limited sensitivity, so that

the readout is not limited by MW photon shot noise.

II. SUPPLEMENTARY NOTE 2: SPIN ENSEMBLE SUSCEPTIBILITY

A. Static susceptibility

Optical pumping preferentially populates the |ms = 0〉 electronic ground state which is separated from the
|ms = ±1〉 states by the zero-field splitting D. In the vicinity of the resonance ωs = 2πD+γBz between the |ms = 0〉
and |ms = +1〉 states under an applied magnetic field B0, where Bz is the projection of B0 onto the quantization
axis set by the NV orientation, we consider the response of an effective two-level system. The static susceptibility is

χ0 =
µ0(gµB)2

~ωs
N0 −N+1

V
(6)

where Nms is the number of spins in the ms state, and V the volume. We define the number of polarized spins used in
the main text as N = N0 −N+1. The susceptibility of the diamond with volume Vdia evaluates to χdia

0 = 1.3× 10−5,
whereas the susceptibility of the whole composite cavity (with volume Vcav) is χ0 = 3.5× 10−7.

B. AC susceptibility

To understand the spin-ensemble susceptibility, consider the response of the magnetization M to a driving field H.
The complex magnetic susceptibility χ = χ′ − jχ′′ characterizes the response, and obeys M = χH. Evaluating the
steady-state solution of the Bloch equations under application of a linearly polarized oscillating fieldH(t) = H1 cos(ωt),
the real and imaginary components of χ [3],

χ′ = −1

2
χ0

ωs(ωd − ωs)T 2
2

1 + (ωd − ωs)2T 2
2 +

(
γB⊥1

2

)2

T op
1 T2

(7)

and

χ′′ =
1

2
χ0

ωsT2

1 + (ωd − ωs)2T 2
2 +

(
γB⊥1

2

)2

T op
1 T2

, (8)

characterize the dispersion and absorption, respectively. Here, B⊥1 = n⊥B1 is the projection of the driving field

µ0H1 = B1 onto the plane perpendicular to each of the NV axes (consequently n⊥ =
√

2
3 ), T op

1 is the optical pumping

relaxation time (in analogy to the thermalization time T1 for an NMR system), T2 is the decoherence time, and ωd is
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the drive frequency. To aid in deriving reflection and transmission coefficients, we rewrite the complex susceptibility
into the compact form

χ = −χ0ωsT2

2

j

1 + j(ωd − ωs)T2 +

(
γ B⊥1 /2

)2
T op

1 T2

1− j(ωd − ωs)T2

. (9)

III. SUPPLEMENTARY NOTE 3: COMPOSITE RESONATOR MODELS

In this section, we analyze the electromagnetic fields and equivalent circuit models of the composite dielectric
resonator [4]. Initially considering the case where only the input loop couples to the resonator, neglecting the output
coupling loop, we study the electromagnetic fields of the resonator and coupling loop. From here we derive multiple
equivalent circuit models, with circuit component values determined from analysis of the fields of the dielectric
resonator’s mode of interest, shown in Supplementary Fig. 1. After incorporating the spin-ensemble response and
output coupling loop, we obtain reflection and transmission coefficients which describe the full response of the system
presented in this work.

A. Electromagnetic field and equivalent circuit representations

We can understand the electric and magnetic fields of the resonator by analyzing a cylindrical dielectric waveguide
that has magnetic walls and is open on both ends [5]. For a dielectric resonator of height L, radius a, and relative
permittivity εr, the fields in the resonator’s TE01δ mode (Supplementary Fig. 1a) are, in cylindrical coordinates,

Hz = H1J0(kcρ)f(z̃), (10)

Hρ = −jβ
kc
H1J1(kcρ)f ′(z̃), (11)

and

Eφ = −jωµ0

kc
H1J1(kcρ)f(z̃), (12)

where we have taken the fields to have time dependence ejωt. Here Jn(x) are Bessel functions of the first kind of
order n, H1 is the field amplitude, ω is the oscillation frequency, and f(z̃) gives the longitudinal dependence,

f(z̃) =

{
cosβz, |z| < L

2

cos βL2 e
−α(|z|−L/2), |z| > L

2

. (13)

Here, kc = x01

a , where x01 is the first zero of the zeroth-order Bessel function, β =
√
εrk2

0 − k2
c is the propagation

constant in the dielectric region, and α =
√
k2
c − k2

0 is the attenuation constant outside the resonator, with k0 = ω/c
the free-space wavenumber.

From the fields, we now want to compute the impedance of the dielectric resonator in terms of its geometrical and
material properties. We start by computing the total power delivered to the resonator,

P = Pd + j2ω(Wm −We), (14)

where

Pd =
1

2

∫
resonator

dvσ|E|2 (15)

is the time-averaged power dissipated in the dielectric, and

Wm =

∫
all space

dv
1

4
µ|H|2 (16)
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Supplementary Fig. 1. Electromagnetic field and equivalent circuit representations of the dielectric resonator a)
Illustration of physical resonator and TE01δ mode with impedance Z looking in to coupling loop. b) Parallel RLC circuit as
extracted from electromagnetic field model. Coupling is implicitly contained within calculated circuit components. c) Circuit
in b) transformed as series RLC circuit. Coupling represented by mutual inductance Lm between loop inductance L0 and series
resonator inductance Ls. d) Mutual inductance coupling represented as ideal transformer with ratio n : 1 and lumped element
components Supplementary Eq. (32).

and

We =

∫
all space

dv
1

4
ε|E|2 (17)

are the respective magnetic and electric time-averaged energies stored in the resonator (and dv is a volume element).
The impedance Z looking into the loop is related to the complex conjugate of the power P ∗ delivered to the resonator
through

1

Z
=

2P ∗

|V |2
, (18)

where the electric potential V induced in the loop due to the fields of the resonator (arising from the changing magnetic
flux through the loop) is

V = −
∮
l

E · dl = jωµ0

∫
S

H · dS. (19)
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The line integral of the electric field is taken around the loop with line element dl and total length l, and the surface
integral incorporates the magnetic field through the loop of area S and area element dS oriented normal to the plane
of the loop.

The impedance looking into the loop takes the form of a parallel RLC circuit 1/Z = 1/Rp + (1/jωLp + jωCp). The
equivalent parallel circuit resistance, inductance, and capacitance,

Rp =
2S2x2

01e
−2αd cos2 βL

2

πa4Lωε0εr tan δl[J1(x01)]2
[
1 + 1

βL sinβL
] (20)

Lp =
µ0S

2

π a2L

e−2αd cos2 βL
2

[J1(x01)]2
[(

1 +
(
β
kc

)2
)(

1
2 + 1

αL cos2 βL
2

)
+

(
1−

(
β
kc

)2
)

1
2βL sinβL

] (21)

Cp =
π a4Lε0εr
S2x2

01

[J1(x01)]2
[

1
2

(
1 + 1

βL sinβL
)

+ 1
εrαL

cos2 βL
2

]
e−2αd cos2 βL

2

, (22)

can be obtained using Supplementary Eq. (10)-(19), with d the distance from the top of the cylinder to the loop,
and tan δl the loss tangent of the dielectric. These values implicitly contain the mutual inductance Lm between the
loop and the resonator. The parallel circuit in Supplementary Fig. 1b can be transformed into an equivalent series
RLC circuit representation [6] with explicit coupling between the loop and resonator (Supplementary Fig. 1c). The
equivalent series lumped-element parameters

Ls =
L2
m

Lp
, (23)

Cs =
CpL

2
p

L2
m

, (24)

Rs =
L2
m

CpLpRp
. (25)

represent the bare resonator apart from the coupling loop. We can calculate the inductance Ls of the bare resonator
directly from the magnetic energy and current in the resonator. The displacement current density Jd = ε∂E/∂t gives
the current

I =

∫
Jd · dA =

2εrk
2
0H1 sin βL

2

k2
cβ

. (26)

Using the average magnetic energy Wm = LsI
2/4 then gives the resonator inductance

Ls =
µ0π a

2Lk4
cβ

2

4ε2rk
4
0

[J1(x01)]2

sin2 βL
2

[(
1 +

(
β

kc

)2
)(

1

2
+

1

αL
cos2 βL

2

)
+

(
1−

(
β

kc

)2
)

1

2βL
sinβL

]
(27)

and we find, as expected, that Ls is independent of the coupling loop area or distance above the resonator. We then
find the mutual inductance

Lm =
µ0Sβk

2
c

2εrk2
0

cot

(
βL

2

)
e−αd (28)

which we can use to find the resonator series equivalent capacitance and resistance. We calculate

Ls = 3.88 nH, Cs = 0.776 pF, andRs = 3.17 mΩ. (29)

Using HFSS we obtain the equivalent series RLC circuit component values of the bare cavity (i.e. the resonator
cavity and diamond system in the absence of any spin polarization by the laser) which are computed using the
following procedure: first, finite element modeling software (Ansys HFSS) calculates the E and B fields for a given
stored energy in the cavity; next, the Ampere-Maxwell law is applied to determine the RMS displacement current
IRMS
D ; third, the stored magnetic energy is set equal to 1

2Ls(I
RMS
D )2 to determine the value of Ls; and finally, the

capacitance is determined from the resonant frequency and the inductance, with Cs = 1
ω2
cLs

. The series resistance Rs
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Supplementary Fig. 2. Full lumped element circuit model Illustration of the ideal-transformer-coupled parallel RLC
circuit with out- and input couplings. The lumped element components are Supplementary Eq. (32) and the input and output
coupling turns ratios are n1 and n2 respectively.

is computed by first experimentally measuring the composite cavity’s unloaded quality factor Q0, with Rs = 1
Q0

√
Ls
Cs

.

This procedure gives

Ls = 3.75 nH, Cs = 0.803 pF, andRs = 3.15 mΩ. (30)

These results quantitatively agree with the analytical model of the electromagnetic fields of the resonator TE01δ mode
described above to within 3.5%.

For ease of analysis a further transformation can then be made, where the parallel RLC circuit described by the
lumped elements in Supplementary Eq. (20) - (22) is replaced by an ideal-transformer-coupled parallel RLC circuit
with lumped elements constructed from the series equivalent RLC circuit (Supplementary Fig. 1d). The benefit of
this construction is three fold: far from resonance the correct phase relationship between the voltage and current
is maintained, the lumped element components remain independent from the coupling which allows for introducing
an arbitrary number of additional loop couplings without loss of generality, and, finally, computation of the circuit
reflection (and transmission in the case of added output couplings) coefficient becomes a trivial exercise in classical
circuit theory. We rewrite Supplementary Eq. (20) - (22) in terms of the series equivalent circuit values and an
effective turns ratio n : 1, where we have followed traditional electrical engineering convention and defined n as the
ratio of primary-to-secondary turns of an ideal transformer. The effective turns ratio is given by

n =
Lm
Ls

=
Lp
Lm

. (31)

The modification of the series inductance as a result of this transformation is given by L′s = Ls−n2L0. Here, however,
we have n2L0 << Ls, and thus we set L′s ≈ Ls [6]. The ideal-transformer-coupled parallel RLC lumped element
circuit components are

L = Ls (32)

C = Cs (33)

R =
ω2
cL

2
s

Rs
. (34)

As a result of this construction, we can add an additional output coupler (1 :n) to compute the transmission coefficient
without modifying the lumped element circuit components in the model (Supplementary Fig. 2). We write the effective
turns ratio of the input and output coupler as n1 and n2 respectively. Critical coupling of the input loop alone (with

no output coupling) is achieved when n1 =
√
Z0/R, where Z0 is the input line impedance (typically 50 Ω). The

effective turns ratios can be controlled by changing the distance from the loop to the resonator.
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B. Spin ensemble contribution to cavity response

To incorporate the spin ensemble’s effect on the composite cavity response, consider the contribution of the spin-
ensemble magnetization to the flux through the resonator. When a coil of inductance L is filled with a material of
magnetic susceptibility χm, its inductance increases to L(1 + χm) [7]. For the model investigated here, the complex
susceptibility modifies the series inductance to Ls(1 + χ′ − jχ′′). Using the approximation that χ << 1 the total
admittance of the composite cavity can be written as

Z−1 =

[
1

R
+

χ′′

ωdL

]
+

[
1

jωdL
(1− χ′) + jωdC

]
. (35)

which shows the contribution of the absorption to the real part and the dispersion to the imaginary part of the
impedance.

C. Reflection and transmission coefficients

We calculate the voltage reflection (Γ) and transmission (T) coefficients,

Γ =
n2

1 − n2
2 − Z0Z

−1

n2
1 + n2

2 + Z0Z−1
(36)

and

T =
2n1n2

n2
1 + n2

2 + Z0Z−1
, (37)

for the circuit with input and output couplers using classical circuit theory [8]. Making the near-resonance approxi-
mation for the resonator gives

Γ = −1 +
2n2

1/Z0

1/R+ j2C(ωd − ωc) + n2
1/Z0 + n2

2/Z0 − χ(jωdL)−1
(38)

and

T =
2n1n2/Z0

1/R+ j2C(ωd − ωc) + n2
1/Z0 + n2

2/Z0 − χ(jLωd)−1
. (39)

To obtain the reflection and transmission coefficients used in the main text, we identify κc0 = 1/(RC), κc1 = n2
1/(Z0C),

and κc2 = n2
2/(Z0C). Using Supplementary Eq. (9) with the approximation ωd ≈ ωc and the substitutions κs = 2/T2

and κop = 1/T op
1 and the relationship

(
γ
B⊥1
2

)2

= g2
sncav (40)

between the single-spin-photon coupling gs and the driving magnetic field B1, along with the relationship

g2
eff =

χ0

4
ωcωs (41)

between the effective collective coupling geff and the static susceptibility χ0, gives the reflection (1) and transmission (4)
expressions in the main text. These are equivalent to those obtained through the circuit QED treatment [9, 10].

To incorporate the inhomogeneous distribution of spin resonance frequencies, we integrate the spin response over the
appropriate probability density function ρ(∆) where, for example, in the numerical model discussed in Supplementary
Note 5 ρ(∆) is given by a Gaussian probability density function. The full reflection and transmission coefficients
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become

Γ = −1 +
κc1

κc0+κc1+κc2
2 + j(ωd − ωc) +

∫ ∞
−∞

ρ(∆)

[
g2
eff

κs
2 +j(ωd−ωs−∆)+

g2
sncavκs/(2κop)
κs
2

−j(ωd−ωs−∆)

]
d∆

(42)

T =

√
κc1κc2

κc0+κc1+κc2
2 + j(ωd − ωc) +

∫ ∞
−∞

ρ(∆)

[
g2
eff

κs
2 +j(ωd−ωs−∆)+

g2
sncavκs/(2κop)
κs
2

−j(ωd−ωs−∆)

]
d∆

. (43)

We note that g2
eff in the above equations may be replaced by g2

sN (see next section).

IV. SUPPLEMENTARY NOTE 4: COOPERATIVITY

A. Collective cooperativity ξ

The single-spin-photon coupling is

gs =
γ

2
n⊥B

RMS
v (r) , (44)

where BRMS
v (r) is the RMS vacuum B-field in the cavity at the spin defect location r and n⊥ denotes the projection

of B̂RMS
v onto a plane perpendicular to the NV axis (i.e., the component of BRMS

v capable of driving a transition
|ms = 0〉 → |ms = ±1〉). We take BRMS

v ‖ B1, where B1 is the magnetic field of the cavity-enhanced MW drive. The
factor of 1

2 results from a combination of the rotating wave approximation and the linear polarization of B1 in the

lab frame. For estimation purposes, we assume the B1 field projects equally onto all four NV axes so that n⊥ =
√

2
3 .

Assuming the spins are located at the cavity antinode, which is a reasonable approximation for this geometry, we
have

BRMS
v =

√
~ωcµ0

Vcav
, (45)

where Vcav is the cavity mode volume defined as

Vcav =

∫
|B(r)|2dV
|Bmax|2

. (46)

Then Supplementary Eq. (44) gives [11, 12]

gs =
γ

2
n⊥

√
~ωcµ0

Vcav
. (47)

Based on finite element software modeling of the cavity, we find that gs/(2π) = 0.02 ± 0.001 Hz. When the number
of cavity photons ncav � 1, the Rabi frequency ΩR can be approximated as

ΩR ≈ γn⊥
√

~ωcµ0

Vcav

√
ncav. (48)

Then we have

gs =
ΩR

2
√
ncav

. (49)

The effective collective (ensemble) spin-photon coupling is given by geff = gs
√
N [13, 14] , where N is the number

of polarized spins. From the data in Fig. 2 (in the main text), geff is found to be 2π × 0.7 MHz. Then we find
N ≈ 1.4× 1015. Finally, the collective cooperativity is given by [15]

ξ =
4g2

eff

κcκs
, (50)

where κc = ωc/QL is the cavity loss rate and κs is the spin decoherence time (each in angular frequency units).
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V. SUPPLEMENTARY NOTE 5: DISPERSIVE READOUT ANALYSIS

A. Optimizing the NV magnetometer

To optimize MW cavity readout for magnetometry, we investigate the spin-cavity system behavior at higher MW
powers by plotting the reflection signal as a function of ωs−ωc for a range of MW amplitudes (Supplementary Fig. 3a).
For incident MW powers above -20 dBm the fractional absorption is suppressed, resulting in little reflected power on
resonance. We use the slope ∂VRMS/∂(ωs − ωc) as a figure of merit to determine the optimal applied MW power for
best signal-to-noise ratio, which, for the selected diamond, occurs at 10 dBm. As shown in Supplementary Fig. 3a,
an increase in the applied MW power above 10 dBm yields a reduced slope due to excessive MW power broadening
of the spin resonance. For magnetometry, the reflected signal is mixed to baseband using an in-phase and quadrature
(IQ) mixer. Supplementary Fig. 3b plots a measured IQ mixer output (corresponding to 5 dBm incident MW power)
where the dispersion effect on the cavity is isolated to the quadrature channel and the absorption effect is isolated to
the in-phase channel. The maximum slope and consequently the greatest sensitivity occurs in the quadrature channel
at ωs = ωc.

B. Numerical model

The need for a numerical model of our system (rather than an analytical model) arises primarily due to a single
complexity: the line centers of individual NV- defects within the ensemble vary due to inhomogeneous strain. The
presence of hyperfine structure can similarly be viewed as effectively corresponding to triplets of NV− defects with
differing line centers. We find that these effects must be accounted for in our model to reproduce the experimental
results; this is expected, given that the line-center variation is large compared to both 2/T2 and 1/T op

1 . When data
is fit using the 2D nonlinear least-squares solver (e.g., for Fig. 2 in the main text), these effects are accounted for by
interpreting κs = 2/T2 in the reflection and transmission equations as an effective κ∗s = 2/T ∗2 parameter including the
effects of strain broadening and hyperfine structure.
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Supplementary Fig. 3. Optimizing MW cavity readout for magnetometry. a) The 2.901 GHz reflection signal is
terminated into the 50 Ω input of a 40 GS/s oscilloscope. The reflected RMS voltage into 50 Ω is plotted vs the spin-cavity
detuning for various MW powers. Above approximately 10 dBm, MW-induced broadening of the NV- ground state transition
reduces the achievable magnetic sensitivity of the sensor; consequently 10 dBm is the near-optimal applied MW power. b)
Measured in-phase and quadrature channels of an IQ mixer during MW cavity readout at 5 dBm of applied MW power. The
MW drive ωd is set to the bare cavity frequency ωc, and, using the test coil, the spin-cavity detuning (ωs − ωc) is swept
from −15 MHz to 15 MHz. Finally, the phase of reference component (See Fig 1) is adjusted manually until the dispersive
and absorptive signals are isolated to the quadrature and in-phase channels of the mixer, respectively. Data was taken under
lower MW irradiation than in Figures 2-3 to avoid saturating the output of the low noise amplifier. The voltage signal here is
measured after amplification and mixing with an effective gain (comprised of the amplifier gain 18 dB and mixer conversion
loss 10.5 dB) of 7.5 dB.
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In contrast, strain broadening and 14N hyperfine structure are built into the full numerical model by integrating
Supplementary Eq. (7) and Supplementary Eq. (8) over a distribution of line centers rather than a single resonance
frequency. The strain broadening is approximated by a Gaussian probability density function

pG(δω) =
1√

2πσ2
G

e−δω
2/(2σ2

G) (51)

where σG is the standard deviation and δω denotes the deviation from the mean line center at ωs. We achieve
good agreement with experimental data using σG = 2π × 2.1 MHz. The 14N hyperfine are treated as a triplet with
2π × 2.16 MHz spacing between adjacent lines; the final line-center distribution is a convolution of the Gaussian
strain distribution given by Supplementary Eq. (51) with the hyperfine triplet spectrum (where each hyperfine line
is represented by a delta function).

The cavity is modeled as a series RLC circuit with the values given by Supplementary Eq. (30). The cavity
inductance Ls is modified by the complex susceptibility; equations Supplementary Eq. (7) and Supplementary Eq. (8)
are adapted by replacing ωs with ωs+ δω and integrating with the line-center distribution described above. The total
impedance of the cavity is calculated using Supplementary Eq. (35). Reflection and transmission are then calculated
using Supplementary Eq. (36) and Supplementary Eq. (37).
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Supplementary Fig. 4. 2D MW cavity readout spectrum. a) Data taken at 0 dBm of applied MW power. b) A red vertical
cross section (solid red line) reveals the reflection spectrum of the composite cavity, i.e. in electrical engineering terminology,
an S11 measurement of the composite resonator. c) A blue horizontal cross section (solid blue line) at ωd − ωc = 0 shows the
reflected power as the spin resonance is tuned over the cavity resonance. In experiment, this curve is produced by setting the
MW drive ωd to the bare cavity resonance ωc and changing the spin transition frequency ωs. The slight offset of the minimum
from zero detuning, visible in b) and c), is attributed to thermal drift between when the detuning was calibrated and when the
measurements were taken.
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The parameters are then tuned manually to match the data. The value of χ0 is varied until the peak-to-peak
dispersive shift in the numerical model matches that observed in the experiment for very low applied microwave
power (below -50 dBm). Thereafter χ0 is fixed. Next, the value of H1 for a given input power is computed from the
finite element software model for the composite cavity. The values of T op

1 , T2, and the strain distribution are adjusted
manually until acceptable agreement with data is reached, and these parameter values are then checked by comparing
simulations to reflection data taken at a range of input powers (-20 dBm to 20 dBm in 5 dBm increments). Ultimately
we achieve good agreement using T2 = 20 µs, T op

1 = 500 µs, n⊥χ0 = 2.3 × 10−7 and the strain distribution detailed
above.
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