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1 EXPERIMENTAL PROCEDURES
1.1 Subcellular fractionation

Livers were fractionated into cytosolic and microsomal membrane fractions essentially as described
before (Chao et al., 1986). Briefly, freshly excised liver sections were homogenized (10% w/v) in ice-cold
buffer (0.25M sucrose, 3mM Tris and 1mM EGTA, pH 7.4). Homogenates were spun at low speed (9,000
g) to remove cellular debris followed by high-speed centrifugation (105,000 g) to separate the cytosolic
lipid fraction from the intact microsomal membrane fraction.

1.2 Statistics
Experimental data are presented as mean ± standard deviation. For nonparametric statistical analysis the

Mann–Whitney U test was used.

2 HEPALIP2 MODEL
2.1 Description

A mathematical multi-compartment model, named HepaLip2, was constructed. The mathematical model
contains three compartments representing the liver cytosol, liver endoplasmic reticulum and blood plasma.
The liver includes the production, utilization and storage of triglycerides and cholesterol in lipid droplets, as
well as the mobilization of these metabolites to the endoplasmic reticulum (ER) where they are incorporated
into nascent very low density lipoprotein (VLDL) particles. These VLDL particles are subsequently secreted
in the plasma compartment and provide nutrients for peripheral tissues. The model furthermore includes the
hepatic uptake of free fatty acids (FFA) from the plasma that predominantly originate from adipose tissue.
As FFA derived from triglycerides are oxidized in mitochondria, which are located in the cytosol, it was
assumed that no oxidation takes place in the endoplasmic reticulum compartment (Gibbons et al., 2000).
Finally, the model includes the reverse cholesterol transport pathway, i.e., the net transport of cholesterol
from peripheral tissues back to the liver via high density lipoproteins (HDL). Note that the transport of
dietary lipids via chylomicrons was not included in the model, because the experiments were performed in
the fasting state. A graphical representation of the model is provided in the main text (Figure 1).

2.2 Model equations
The mathematical model contains eleven metabolic species, which are the model state variables ~x (Table

1 in the main text ), interlinked by twenty-nine fluxes ~f (Table S1). The flux equations are based on
mass-action kinetics, introducing twenty-two parameters ~p. The model is written as a system of first order
nonlinear ordinary differential equations:

dxFC

dt
= FFCprod

+ FCEdefcyt + FCEdefER
− FFCmet − FCEforcyt − FCEforER

dxCEcyt

dt
= FCEforcyt − FCEdefcyt + Vplasma

(
FCEupthep + FCEuptHDL

)
dxCEER

dt
= FCEforER

− FCEdefER
− FV LDL−CE
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dxTGcyt

dt
= FTGforcyt − FTGforER

− FTGmetcyt

+ Vplasma

(
FFFAupt

3
+ FTGupthep + FTGhydhep

)
dxTGER

dt
= FTGforER

− FTGforcyt − FV LDL−TGndnl

dxTGdnlcyt

dt
= FTGdnlcyt − FTGdnlmetcyt + FTGdnlforcyt − FTGdnlforER

dxTGdnlER

dt
= FTGdnlER

+ FTGdnlforER
− FTGdnlforcyt − FV LDL−TGdnl

dxTGV LDL

dt
=
FV LDL−TG

Vplasma
− FTGupthep − FTGuptper − FTGhydhep − FTGhydper

dxCV LDL

dt
=
FV LDL−CE

Vplasma
− FCEupthep − FCEuptper

dxCHDL

dt
= FCEforHDL

− FCEuptHDL

dxFFA

dt
= FFFAprod

− FFFAupt

Two state variables in the model (xTGdnlcyt and xTGdnlER
) represent the fractions of de novo produced

triglycerides in the cytosol and endoplasmic reticulum, respectively. The blood plasma volume Vplasma

was assumed to be 1 mL (Rand, 2001).

The HepaLip2 model contains lumped reaction equations, and does for example not describe the dynamics
of the amount and activity of the enzymes. The law of mass-action states that the rate of an elementary
reaction is proportional to the product of the concentrations of the participating substrates. Consequently,
the rate of product formation shows a linear response to increasing substrate. Mathematical models of
enzyme-catalyzed reactions often include kinetic equations in which reaction rates saturate and the product
formation depends nonlinearly on substrate concentrations. We had tested before if the simplification
introduced by mass-action kinetics might impede the accuracy of the model, or if introducing saturable
enzyme kinetics (Michaelis-Menten) would make the ADAPT approach obsolete or superfluous. Both
hypotheses were rejected, hence a mathematical model based on mass-action kinetics with time varying
parameter is sufficient to describe our data and cannot be replaced by Michaelis-Menten kinetics with
constant parameters (Tiemann, C. A., 2014).
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Table S1. Fluxes included in HepaLip2 model, see Figure 1 in the main text .

Flux Name Equation Description

f1 FFCprod p1 Hepatic de novo synthesis of free cholesterol
f2 FFCmet p2 · xFC Net hepatic catabolism of free cholesterol
f3 FCEforcyt p3 · xFC Hepatic synthesis of cholesteryl ester

(cytoplasm)
f4 FCEdefcyt p4 · xCEcyt Hepatic conversion of cholesteryl ester

(cytoplasm) to free cholesterol
f5 FCEforER

p5 · xFC Hepatic synthesis of cholesteryl ester (ER)
f6 FCEdefER

p6 · xCEER
Hepatic conversion of cholesteryl ester (ER) to
free cholesterol

f7 FTGdnlcyt p7 Hepatic de novo synthesis of triglyceride
(cytoplasm)

f8 FTGmetcyt p8 · xTGcyt Hepatic catabolism of triglyceride (cytoplasm)
f9 FTGforcyt p9 · xTGER

Hepatic transport of triglyceride from the ER to
the cytoplasm

f10 FTGdnlER
p10 Hepatic de novo synthesis of triglyceride (ER)

f11 FTGforER
p11 · xTGcyt Hepatic transport of triglyceride from the

cytoplasm to the ER
f12 FFFAupt p12 · xFFA Hepatic uptake of free fatty acid
f13 FFFAprod

p13 Net efflux of free fatty acid from peripheral
tissues to plasma

f14 FV LDL−TG p14 · (xTGER
+ xTGdnlER

) Hepatic secretion rate of VLDL-triglyceride
f15 FV LDL−CE p15 · xCEER

Hepatic secretion rate of VLDL-cholesterol
f16 FTGupthep p16 · xTGV LDL

Hepatic uptake of triglyceride via whole-particle
uptake

f17 FCEupthep p16 · xCV LDL
Hepatic uptake of cholesterol via whole-particle
uptake

f18 FTGuptper p17 · xTGV LDL
Peripheral uptake of triglyceride via whole-
particle uptake

f19 FCEuptper p17 · xCV LDL
Peripheral uptake of cholesterol via whole-
particle uptake

f20 FCEforHDL
p20 Peripheral efflux of cholesterol to HDL particles

f21 FCEuptHDL
p21 · xCHDL

Hepatic uptake of HDL-cholesterol
f22 FTGhydhep p18 · xTGV LDL

Hepatic uptake of triglyceride via lipolytic
enzymes

f23 FTGhydper p19 · xTGV LDL
Peripheral uptake of triglyceride via lipolytic
enzymes

f24 FapoBprod
p22 Hepatic secretion rate of apolipoprotein B

f25 FTGdnlmetcyt p8 · xTGdnlcyt Hepatic catabolism of de novo triglyceride
(cytoplasm)

f26 FTGdnlforcyt p9 · xTGdnlER
Hepatic transport of de novo triglyceride from
the ER to the cytoplasm

f27 FTGdnlforER
p11 · xTGdnlcyt Hepatic transport of de novo triglyceride from

the cytoplasm to the ER
f28 FV LDL−TGndnl p14 · xTGER

Hepatic secretion rate of non de novo VLDL-
triglyceride

f29 FV LDL−TGdnl p14 · xTGdnlER
Hepatic secretion rate of de novo VLDL-
triglyceride

Note f14 = f28 + f29.
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2.3 Relating experimental data to model components
An overview of the quantities that were experimentally measured and their relation to corresponding

model components is presented in Table 2 in the main text. A model output yi was coupled to experimental
data dm,i (Figure 2 in the main text) for the estimation of parameter trajectories.

2.3.1 Calculation of the VLDL particle diameter
The size and composition of VLDL particles change over time. The following approach was used to

calculate nascent VLDL particle diameters (DV LDL) in the mathematical model. As each VLDL particle
contains one apolipoprotein B particle, the number of triglyceride and cholesterylester molecules per
VLDL particle can be determined by correcting the specific lipid fluxes for the number of apolipoprotein B
proteins. The core volume of a VLDL particle was subsequently determined assuming a molecular volume
of 946.84 mL/mol for triglyceride (TGmv) and a molecular volume of 685.48 ml/mol for cholesterylester
(CEmv) (Teerlink et al., 2004). A core radius (Rc) was calculated from the core volume assuming a
spherical shape of the VLDL particles. Furthermore, the thickness of the particle membrane (Rs) accounts
for an additional two nanometers (Miller and Smith, 1973).

DV LDL(t) = 2 (Rc(t) +Rs) (S1a)

Rc(t) =
3

√
3Vc(t)

4π
(S1b)

Vc(t) = 1021
TGcnt(t) · TGmv + CEcnt(t) · CEmv

NA
(S1c)

TGcnt(t) =
f14(t)

f24(t)
(S1d)

CEcnt(t) =
f15(t)

f24(t)
(S1e)

where NA is the constant of Avogadro.

2.3.2 Calculation of de novo lipogenesis
Model output y11 is the normalized VLDL catabolic rate (CRV LDL), which represents the whole-body

capacity to clear lipoproteins from the circulation. The equation is given by:

CRV LDL(t) =
p16(t) + p17(t)

p16(0) + p17(0)
(S2)

Model output y13 is the fractional contribution of de novo lipogenesis (FCDNL). This quantity represents
the fraction of the total hepatic triglyceride pool that is obtained via de novo lipogenesis. The equation is
given by:

FCDNL(t) =
xTGdnlcyt(t) + xTGdnlER

(t)

xTGcyt(t) + xTGER
(t) + xTGdnlcyt(t) + xTGdnlER

(t)
(S3)
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Figure S1. ADAPT methodology workflow. ADAPT combines mechanistic simulation models with
machine learning to estimate unobserved system state variables and parameters. Metabolic time-series
data is assimilated using Maximum Likehood estimation. Transcriptomics time-series data assimilated via
regularization to constrain parameter trajectories.

3 ADAPT
ADAPT combines mechanistic simulation models with machine learning to estimate unobserved system
state variables and parameters (Figure S1 ). The computational model functions as a state-estimator and
is applied to monitor the effect of therapeutic interventions and detect critical transitions of the system.
ADAPT and other data assimilation approaches enable the development of so-called digit twins in which
computer simulation models are connected to their biological counterparts by different types of data (van
Riel et al., 2020).

Figure S2. Determination of regularization weight coefficient λ. Trade-off between fitting the data as
closely as possible (red line; left side of the horizontal axis) and enforcing smooth parameter trajectories
(blue line; right side of the horizontal axis).
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3.1 Monte Carlo sampling of gene regularization constants
ADAPT estimates parameter trajectories by minimizing an objective function χ2 that is composed of the

(weighted) sum of squared errors (SSE) of the metabolic data and model outputs (χ2d) and a regularization
function (χ2r) (Figure S2). In multi-objective optimization and regularized regression approaches the
weights of the different components in the objective function are important meta-parameters of the
algorithm that are problem dependent and need to be tuned for adequate performance (Tiemann et al., 2011;
Dolejsch et al., 2019).

To assimilate the transcriptomics time-series data, the regularization as originally introduced in ADAPT
(Tiemann et al., 2011) has been extended with a second regularization function. Two hyper-parameters are
introduced: λg1 and λg2 (Equation 3 in the main text). The influence of the regularization constants λg1
and λg2 on the estimation of the parameter trajectories was investigated using a Monte Carlo approach.
Combinations of random values for λg1 and λg2 were sampled from a log-uniform distribution (10−12 to
10−2). Subsequently, ADAPT was performed for each sampled combination. Note that the initial values for
the parameters and the cubic smoothing splines were selected randomly as well. Parameter trajectories
were estimated using Nt = 200 time intervals. Finally, a collection of 20, 000 parameter trajectory sets was
obtained. The effect of the regularization constants λg1 and λg2 on the objective function was investigated
by summation of the three components of the objective function for the entire treatment period:

Υd(~̂p) =

Nt∑
n=1

χ2d(~̂p(n∆t)) (S4)

Υg1(~̂p) =

Nt∑
n=1

χ2g1(~̂p(n∆t)) (S5)

Υg2(~̂p) =

Nt∑
n=1

χ2g2(~̂p(n∆t)) (S6)

where χ2d is the (weighted) sum of squared errors of metabolic data and model outputs (Equation 7 in the
main text), χ2g1 reflects the temporal correlation between parameter trajectories and gene expression profiles
(Equation 8 in the main text), and χ2g2 penalizes parameter fluctuations (Equation 11 in the main text).

Figure S3 presents 2D histograms of the sampled regularization constants, where the intensity indicates
corresponding mean values of Υd (Figure S3A), Υg1 (Figure S3B) and Υg2 (Figure S3C). Note the
intensities in the three figure panels have a different (log10) scale. Several observations can be made
from these graphs. First, the variation in the data error Υd is relatively small within the selected range of
regularization constants. All solutions describe the experimental data adequately (simulations are within the
95% confidence intervals of the data). However, when λg2 is increased towards and beyond 10−2, the data
error becomes considerably higher. Only a negligible amount of acceptable solutions were found for λg1
and / or λg2 larger than 10−2. Secondly, the light-gray region in the bottom-right part of Figure S3B clearly
illustrates for which combinations of regularization constants χ2g1 becomes effective and parameter-gene
couples start to display temporal correlation. Finally, Figure S3C illustrates that a small value for λg1 is
sufficient to reduce unnecessary parameter trajectory fluctuations.
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Figure S3. Monte Carlo sampling of gene regularization constants. The influence of the regularization
constants λg1 and λg2 (in Equation 3 in the main text) on the estimation of the parameter trajectories was
investigated using a Monte Carlo approach. ADAPT was performed for 20, 000 random combinations for
λg1 and λg2 (sampled from a log-uniform distribution between 10−12 and 10−2). The figures represent
2D histograms of the sampled regularization constants, where the intensity indicates corresponding mean
values of Υd (A), Υg1 (B) and Υg2 (C), defined in equations (S4)-(S6). The higher Υ is, the larger the
contribution of that component is in the objective function χ2 summed over the complete time course.
Results for λg1 = 0 (no penalty if parameter trajectories and temporal gene expression do not correlate)
or λg2 = 0 (no penalty on parameter changes) are shown to the left and at the bottom of each panel,
respectively.

A limitation of using one regularization constant for all included genes, is that a single parameter-gene
couple could seriously restrict the value for this constant. In principle, the current approach can be extended
by introducing a regularization constant for each parameter-gene couple.
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3.2 Classification of trajectory solution groups
The characteristics of trajectory solutions corresponding to a specific combination of gene regularization

constants were investigated. Of particular interest are the solutions with a low value of Υg1 (Figure
S3B, bottom-right part). Parameter trajectories corresponding to these solutions display a high temporal
correlation with the included gene expression data. In subsequent analyses we compared different groups
of trajectory solutions corresponding to different values of Υg1 . We use the following notation: a group of
trajectory solutions is denoted by Gi where i represents the fraction of all 20, 000 solutions with lowest
Υg1 values. A lower value of i indicates a group with lower values for Υg1 (higher temporal correlations)
and hence a more effective integration of the gene expression data. Furthermore, G0 is defined as the group
of solutions corresponding to λg1 = λg2 = 0 (solutions obtained without integration of gene expression
data and without penalty on parameter fluctuations).

As an example, Figure S4 shows the temporal correlation between parameter-gene couples for the
full treatment period for group G0.05 (Figure S4, top part) and group G0 (Figure S4, bottom part). In
some cases parameter-gene couples in G0 already displayed a (high) temporal correlation when no gene
expression data was included (for instance c8,1···5 and c9,1···5). As expected, in many cases a large increase
in temporal correlation between the assigned parameter-gene couples was obtained when gene expression
data was included (G0.05). Interestingly, in one case (couple c5) a predominantly negative correlation
was observed for all solution groups. The gene expression data imposes soft constraints on the parameter
trajectories. Hence, parameter trajectories and corresponding gene expression levels do not necessarily have
to display temporal correlation when this is in contradiction to the metabolic data. In this specific case, the
observed negative correlation of couple c5 can be explained as follows. Couple c5 concerns parameter p22
(or flux f24) which represents the VLDL particle secretion (or apolipoprotein B secretion) to the plasma. In
Figure S7 (and Tiemann et al. (2013)) we show that the VLDL particle secretion decreased rapidly over
one week of treatment and subsequently stabilized upon prolonged treatment. The predicted adaptations
of this flux were constrained by experimental data of the VLDL particle size (y9) and the VLDL-TG
production flux (y10). In contrast to the apolipoprotein B secretion flux, the expression of the corresponding
gene in the liver was not reduced (Figure 3 in the main text). This is not surprising as apolipoprotein B
expression is known to be regulated post-transcriptionally (Adeli et al., 1995; Dixon and Ginsberg, 1993;
Pullinger et al., 1989).

8



Supplementary Material

Figure S4. Temporal correlation between parameters and gene expression data. Histograms of
Pearson correlation coefficients between parameter-gene couples for the full treatment period for group
G0.05 (top) and group G0 (bottom). G0.05 consists of 5% (1, 000) of all 20, 000 trajectory solutions with the
lowest Υg1 values, hence largest correlation between parameter trajectories and temporal gene expression.
G0 is the group of solutions for λg1 = λg2 = 0 (without integration of gene expression data and without
penalty on parameter fluctuations). A darker color represents a higher density of solutions with that specific
Pearson correlation coefficient. The parameter-gene couples are presented in Table 3 in the main text.

3.3 Integration of gene data constrains metabolic predictions
The reduction in the uncertainty in model predictions by implicit integration of gene expression data was

investigated. To assess whether the variance of a specific model prediction C at time step n is reduced in
group Gi compared to group Gj , the following measure for variance reduction V r was defined:

V r
ij(n∆t) = 1 −

Var(~CGi
(n∆t))

Var(~CGj
(n∆t))

(S7)

where Var represents the variance operator, and ~CGi
(n∆t) the vector of predictions of output C at time step

n from group Gi. Note that the maximal value for V r
ij(n∆t) is 1 (maximal attainable variance reduction),

and V r
ij(n∆t) = 0 indicates that no variance reduction is obtained. The variance reduction in model

predictions was calculated for different groups Gi compared to G0, with 0.05 ≤ i ≤ 1. In many cases a
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Figure S5. Correlation of parameter trajectories and temporal gene expression reduces model
variance. The variance reduction (according to equation S7) in model estimates was calculated for different
solution groups Gi (with 0.05 ≤ i ≤ 1). For many model estimates a reduction in variance was obtained by
regularization using gene expression data. Typically, the reduction in variance increased with decreasing
values for i. High correlation between parameter trajectories and temporal gene expression means the
penalty introduced by χ2g1 is small. Those solutions are found in the groups Gi with the smaller values for i.
Three examples are depicted: hepatic cytosolic cholesterylester (A), hepatic cytosolic triglyceride (B), and
hepatic cholesterylester synthesis (C). The thick lines indicate the mean, whereas the thin lines represent
the standard deviation.

reduction in prediction variance was obtained. Furthermore, in general a higher variance reduction was
obtained for lower values of i. Figure S5 shows three examples: hepatic cytosolic cholesterylester, hepatic
cytosolic triglyceride, and hepatic cholesterylester synthesis. Model estimates of group G0.05 are presented
in the main text in more detail.

3.4 Numerical aspects
Parameter updates are preferred such that resulting parameter trajectories and corresponding gene

expression profiles display temporal correlation. This was effectuated by maximizing the Pearson
correlation coefficient. Other correlation metrics can be incorporated as well. However, some correlation
metrics are not usable in combination with certain numerical optimization algorithms. Many optimization
algorithms calculate the second-order derivative of the objective function with respect to the parameters (or
an approximation thereof) to propose a new optimization step (Fletcher, 2013; Snyman, 2005). Hence, for
these methods the correlation metric must be second-order differentiable with respect to the parameters.
For some metrics this is not possible, such as the Spearman correlation coefficient and the Kendall tau
correlation coefficient, as their calculation involves the ranking of variables (Kendall, 1948). For these
cases one should resort to non-gradient based optimization methods, e.g., simplex optimization methods
such as Nelder-Mead (Nelder and Mead, 1965).

Another numerical aspect to consider is the use of a variable step integration method to solve the ODE
model for each of the time segments ∆t (Figure S6). We used SUNDIALS CVode and built in Matlab
solvers like ode15s. If ∆t is chosen sufficiently small, the ODE’s in principle could also be solved using
a fixed step integration algorithm, like forward Euler. In such case integration of the ODE’s could be
combined with updating of the model parameters in a single numerical algorithm.
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Figure S6. ADAPT simulation. Discretization of the time span. The original experimental data are
depicted by black error bars. For a selected data interpolant (see Figure 9B in the main text) the values at
discrete, equidistant time points n∆t, n = 0, .., Nt are selected (green dots). The model (red) is fitted to
these data interpolants per time segment. For each time segment, the model parameters are re-estimated
taking the parameter values of the previous time segment as initial guesses, hence each time segment is
modelled using a specific parameter set (red). For each time segment the ODE’s are solved given that
specific parameter set, using a variable step integration method and the piece-wise model solutions become
a fully continuous, smooth trajectory (orange).

4 HEPATIC TRIGLYCERIDE ACCUMULATION
ADAPT simulation of HepaLip2 provides estimates for system variables that were not experimentally
observed, such as the synthesis rate and composition of VLDL particles (Figure S7). As observed before
(Tiemann et al., 2013), VLDL particle secretion is reduced upon LXR activation. Although the secretion of
VLDL particles decreased, an increased release of VLDL-TG to the plasma was experimentally observed
(Figure S7B). Similarly, the computational analysis showed an increased production of VLDL-CE to the
plasma (Figure S7C). According to the model the progressive increase of these fluxes was facilitated by an
increased loading of triglycerides and cholesterol onto VLDL particles (Figure S7D,E). These predictions
were obtained using only the metabolic data as input for ADAPT.

Gene expression data was integrated in ADAPT to further constrain metabolic predictions. It was
estimated that hepatic triglycerides are mainly stored in the cytosol, as reported in the main text (Section
2.8). The parameter and flux trajectories were investigated to determine which processes are responsible for
the observed compartmentalization of hepatic triglycerides between cytosolic and nascent VLDL fractions.
It appeared that the calculation of constrained predictions for the nascent VLDL triglyceride content was
enabled by two factors. First, the nascent VLDL triglyceride content is co-determined by the hepatic
capacity to load these triglycerides onto nascent produced VLDL particles (p14). The loading capacity
depends among other things on the activity level of the microsomal transfer protein (Mtp) (Aggerbeck et al.,
1992; Hussain et al., 2012). The expression level of the Mtp gene was experimentally measured (Figure 3
in the main text) and coupled to parameter p14 (couple c3,1, Table 3 in the main text). A second factor is the
VLDL-TG production flux which increases progressively during the treatment (Figure S7). The VLDL-TG
production flux is (mathematically) related to the aforementioned loading capacity and the nascent VLDL
triglyceride content. Figure S8 (left) shows a scatter plot of all 20, 000 solutions at t = 21 days of the
normalized loading capacity (p14) and the nascent VLDL triglyceride content (x5 +x7). The color indicates
the temporal correlation of c3,1. As the Mtp gene expression level increased during the treatment, solutions
with an increased lipid loading capacity displayed a high temporal correlation. An increased lipid loading
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Figure S7. The VLDL flux and composition upon LXR activation. 2D histograms were calculated
from the 10, 000 acceptable sets to determine the density of trajectories during the treatment period. A
darker color represents a higher density of trajectories in that specific region and time point. The white lines
enclose the central 67% of the densities. A) VLDL particle secretion. B) VLDL-TG production. The data is
represented by mean ± standard deviation. C) VLDL-CE production. D) Ratio of VLDL-TG production to
VLDL particle secretion. E) Ratio of VLDL-CE production to VLDL particle secretion. These results were
obtained by using the metabolic data (Figure 2 in the main text) as input for ADAPT; gene expression data
was not included.

capacity is in turn associated with low nascent VLDL triglyceride levels (approximately at the level of
untreated controls). Consequently, the increased triglyceride fluxes should be stored in the cytosol, to obey
these mathematical relations. Figure S8 (right) shows the transition of the temporal correlation c3,1 as
function of the nascent VLDL triglyceride content during the treatment period. Well-defined ranges of the
nascent VLDL triglyceride content can be observed for each stage during the treatment that coincide with
high temporal correlations of couple c3,1.

To study the origin of LXR induced hepatic steatosis the sum of all fluxes contributing to the hepatic
triglyceride pool Fa and the sum of fluxes that catabolize hepatic triglycerides Fs were calculated as
follows:

Fa(t) = FTGdnlcyt(t) + FTGdnlER
(t) + Vplasma

(
FFFAupt(t)

3
+ FTGupthep(t) + FTGhydhep(t)

)
(S8)

Fs(t) = FV LDL−TG(t) + FTGmetcyt(t) + FTGdnlmetcyt(t) (S9)

Results are reported in the main text (Figure 7).
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Figure S8. The hepatic lipid loading capacity to lipoproteins is increased. Left) Scatter plot of all
20, 000 solutions at t = 21 days of the normalized loading capacity of lipid onto VLDL particles (p14) and
the nascent VLDL triglyceride content (ER-TG, x5 + x7). The color indicates the temporal correlation of
couple c3,1, which is parameter p14 with gene Mtp. Solutions with an increased lipid loading capacity (to
the right of the vertical dashed line) display a high temporal correlation with expression of Mtp, which also
increased during treatment. Right) Transition of the temporal correlation of c3,1 as function of the nascent
VLDL triglyceride content (ER-TG) during the treatment period. The color of the lines indicates a specific
time point during the treatment. Throughout the complete time course solutions with the highest temporal
correlation correspond to low nascent VLDL TG levels.
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