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Supplementary Figures 

 

Figure S1 | UTOM can preserve the image content during transformation. Current 
unsupervised methods do not have the content-preserving ability and the image content is 
distorted when transformed to the target domain. With the saliency constraint, UTOM can 
learn content-preserving transformations and the semantic information can be well 
maintained. Adjacent sections stained with haematoxylin and eosin (H&E) are shown in 
the bottom row for reference. 
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Figure S2 | Gland segmentation for UTOM-stained and H&E-stained slides. A U-Net 
was trained to segment secretion glands form histological images. a, Segmentation of 
UTOM-stained slide (IoU=0.9455). b, Segmentation of corresponding H&E-stained 
adjacent section (IoU=0.9462). Segmentation masks were highlighted in bright purple. 
Manually annotated masks (bottom panel) serve as the ground truth. 
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Figure S3 | High-fidelity denoising with UTOM. a, The result of UTOM, the ground 
truth, and the result of supervised CARE network are shown for comparison. b, Histograms 
revealing the distributions of pixel intensity. The histogram of UTOM result is more 
approximate to the ground truth (GT) than that of the supervised method, indicating a better 
preservation of intensity distribution. 
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Figure S4 | Isotropic restoration of degraded axial resolution on zebrafish retina 
dataset. Nuclei and nuclear envelopes were labelled with DRAQ5 (magenta) and GFP-
LAP2b (green), respectively. Our method can restore the degraded axial resolution. 
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Figure S5 | High-fidelity super-resolution reconstruction by UTOM. Sub-diffraction 
structures such as a, microtubules and b, granules can be resolved from wide-field images. 
The original input images, the results of UTOM, the results of 2D CARE network, and 
corresponding ground-truth images are shown in each column. 
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Figure S6 | Merged maps of virtual fluorescence labelling. For each channel, the results 
of UTOM (magenta) and corresponding ground-truth images (green) were merged together. 
a, The blue channel that labels the nuclei of human motor neurons. b, The green channel 
that labels the dendrites. c, The red channel that labels the axons. Images in the bottom row 
are enlargements of the boxed regions. 
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Figure S7 | Saliency constraint in virtual histopathological staining. For domain A 
(autofluorescence images), saliency masks were extracted directly by sigmoid[100(a-α)]. 
For domain B (H&E images), the RGB images were first converted to its greyscale version 
by averaging the three channels. Then, the saliency masks were extracted by 1-
sigmoid[100(b-β)]. The image content should be mapped to 1 and the background should 
be mapped to 0. 

  



8 

 

 

Figure S8 | Visualization of saliency maps. Saliency maps extracted by the saliency 
constraint in histological staining, isotropic reconstruction, and fluorescence labelling. The 
saliency constraint can highlight the locations of objects (i.e., cells, nuclei, stroma, etc.) 
and keep them nearly unchanged when transformed from one domain to the other. 
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Figure S9 | Performance of UTOM when the saliency constraint was imposed with 
different constant weights. a, Averaged NRMSE/PSNR/SSIM of 8 independent 
experiments (each ρ) on the zebrafish retina dataset (Fig. S4). The saliency constraint was 
imposed with different constant weights ranging from 0 to 20. For each experiment, 
NRMSE/PSNR/SSIM were arithmetically averaged on all 144 image patches in the test set. 
b, Box-dot plots show the distributions of NRMSE/PSNR/SSIM obtained with different ρ. 
c, Typical results under different ρ. Without saliency constraint, the network was unstable 
and sometimes converged to wrong mappings. The saliency constraint can effectively 
correct the mapping bias. However, when constant ρ is relatively large, other terms will be 
less important and the performance will degrade.    
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Figure S10 | Network architectures. Here we take 256×256 input size as an example. 
Each coral rectangle represents a feature map extracted by corresponding convolutional 
kernels. a, The generator is a multi-layer residual network with downsampling input layers 
and upsampling output layers. b, The discriminator (PatchGAN classifier) uses multiple 
strided convolution for abstract representation. It generates a matrix, in which each element 
corresponds to a patch in the input image. The ultimate output is the average of the loss 
over all patches.  
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Figure S11 | Data pre-processing pipeline. Some of our training sets were from published 
datasets with paired ground-truth images. We randomly selected one half of the dataset and 
collected its raw images into domain A, and then selected the other half of the dataset and 
collected its ground-truth images into domain B.  
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Figure S12 | Tiling and stitching in pre- and post-processing. In most cases, images 
needed to be transformed are extremely large in pixel size. In our data processing pipeline, 
large images were partitioned into multiple overlapping tiles to reduce memory 
requirements and improve training efficiency. The edges of output patches were cut out 
and the rest parts were stitched together to form a large image.  
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Supplementary Notes 

Network architectures and the loss function. 

UTOM is composed of two GANs to learn the mapping between two image domains in an 

unsupervised manner. The architectures of the generator and the discriminator are 

visualized in Fig. S10. The first three layers of the generator are downsampling layers 

implemented by strided convolution to extract low-level abstract representations. Nine 

stacked residual blocks are followed to extract high-level features. The number of residual 

blocks reflects the model capacity. More residual blocks are recommended for more 

complex tasks. The last three upsampling layers are also implemented by strided 

convolution. They are used to integrate extracted features and rescale the image to its 

original size. The discriminator is a relatively shallow CNN. Each layer downsamples the 

feature maps but doubles the channel number. The last convolution layer generates a 

single-channel feature map and classification is performed on each element of this feature 

map (PatchGAN classifier). The final true or false label is generated by averaging 

individual labels of all elements. Each convolution layer in both the generator and the 

discriminator contains a nonlinear activation unit. Whether to use the sigmoid function or 

rectified linear unit (ReLU) is marked with corresponding arrows in Fig. S10.  

It is worth mentioning that the input and output channel numbers of the two generators 

should match to ensure that they can form a complete cycle, especially when images in 

domain A and those in domain B have different channel numbers. In terms of the objective 

function, the first part is the frequently-used adversarial loss, which can be formulated as 

the most common form: 
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where DA and DB represent the discriminator of the forward GAN and the backward GAN, 

respectively. Lowercase letters a and b are images from the domains represented by 

corresponding uppercase letters. E is the expectation operator.  

The second part of the loss function is the cycle-consistency loss, which is most 

essential for training the two GANs. The last part is the saliency constraint term to correct 

mapping errors and improve the success rate of training. The full objective function can be 

formulated as 
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where λ is a constant to enforce cycle-consistency loss and ρ can be constant or 

exponentially decayed to enforce the saliency constraint. If ρ is set to be a constant, the 

convergence will be faster. If it is exponentially decayed, the final effect will be better 

because the convergence direction is only constrained at the beginning of training. Cycle 

consistency will not be weakened at the end of training. Tα and Tβ are segmentation 

operators parameterized by threshold α and β. They are used to extract saliency masks of 

the images in domain A and domain B, respectively. Here, we used sigmoid(100x) to 

approximate the Heaviside step function of threshold segmentation to keep nontrivial 

gradient, i.e., 
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It is worth noting that no matter what the task is, the image content should be mapped to 1 

while the background should be mapped to 0. For virtual histopathological staining, pixel 

intensity=0 means the background in domain A while pixel intensity=255 means the 

background in domain B. The segmentation operator of domain B should be adjusted as    

 ( )=1-sigmoid 100( )x x T .                                       (S4) 

More details and some real-data examples are shown in Fig. S7-S9. 


