Supplementary Information

A versatile, compartmentalised gut-on-a-chip system

for pharmacological and toxicological analyses

Pim de Haan ^{a,b, ‡}, Milou J.C. Santbergen ^{b,c, ‡}, Meike van der Zande ^d, Hans Bouwmeester ^e, Michel W.F. Nielen ^{c,d} and Elisabeth Verpoorte ^a*

^a University of Groningen, Groningen Research Institute of Pharmacy, Pharmaceutical

Analysis, P.O. Box 196, XB20, 9700 AD Groningen, The Netherlands.

^b TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands

^c Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE

Wageningen, The Netherlands

^d Wageningen Food Safety Research, Wageningen Research, P.O. Box 230, 6700 AE

Wageningen, The Netherlands

^e Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands

* Corresponding author: E-mail: e.m.j.verpoorte@rug.nl

[‡]These authors contributed equally to this work.

Table of Contents

Supplemental Methods	. 3
Supplemental Figures	.4

Supplemental Methods

Artificial digestive juices

Compound	Saliva (mg/L)	Gastric Juice	Duodenal juice	Bile (mg/L)
		(mg/L)	(mg/L)	
CaCl ₂		302	151	167.5
Glucosamine HCl		330		
Glucose		650		
Glucuronic acid		20		
KCI	896	824	564	376
KH ₂ PO ₄			80	
KSCN	200			
MgCl ₂ .6H ₂ O			50	
Na ₂ SO ₄	570			
NaCl	298	2752	7012	5259
NaH ₂ PO ₄ .H ₂ O	1021	306		
NaHCO ₃			3388	5785
NH ₄ Cl		306		
Urea	200	85	100	250
Uric acid	15			
HCI		4.16 mM	5.57 mM	6.17 mM
NaOH	2.9 mM			
α-Amylase (Bacillus sp.)	145			
Bile (bovine)				6000
Lipase (porcine pancreas)			500	
Pancreatin (porcine pancreas)			3000	
Pepsin (porcine gastric mucosa)		1000		

 Table S1 Optimized composition of the artificial digestive juices, dissolved in ultrapure water (De Haan et al.¹)

¹ P. de Haan, M. A. Ianovska, K. Mathwig, G. A. A. van Lieshout, V. Triantis, H. Bouwmeester and E. Verpoorte, *Lab Chip*, 2019, **19**, 1599-1609

Supplemental Figures

Figure S1: Molecular structure of omeprazole.

Figure S2: Cell viability of a Caco-2/HT29-MTX-E12 co-culture after 24 h exposure to increasing concentrations of omeprazole using the WST-1 mitochondrial activity assay. Viability is given as a percentage of the control (% ± SEM; n=3).

Figure S3: Permeability of omeprazole in the absence and presence of 12.5% chyme (composition as mentioned in table S1) across a monolayer of Caco-2/HT29-MTX-E12 cells in a static transwell after 30 minutes. Permeability is given as a percentage of the apical concentration ($\% \pm$ SEM; triplicates).

Figure S4: Molecular structure of verapamil.

Figure S5: Reconstructed-ion chromatogram of m/z 455 [M+H]⁺ ion of verapamil after digestion (conditions as mentioned in table S1) in a test tube (black) or no digestion (grey).