## Supplementary Information

## Modulating Electronic Structure of Metal-Organic Frameworks by Introducing Atomically Dispersed Ru for Efficient Hydrogen Evolution

Sun et al.



**Supplementary Figure 1.** Crystal structures. (a) crystal structure of  $Ni_2(OH)_2(C_8H_4O_4)$  (named by Ni-BDC), (b) Crystal structure of  $NiRu_{0.13}$ -BDC derived from the known crystal structure of  $Ni_2(OH)_2(C_8H_4O_4)$ .



**Supplementary Figure 2.** SEM images of different catalysts. (a) and (d) Ni-BDC, (b) and (e) NiRu<sub>0.09</sub>-BDC, (c) and f) NiRu<sub>0.21</sub>-BDC.



**Supplementary Figure 3.** HRTEM images of different catalysts. (a) and (b) NiRu<sub>0.13</sub>-BDC, (c) and (d) Ni-BDC



**Supplementary Figure 4.** XRD patterns of Ni-BDC, NiRu<sub>0.09</sub>-BDC, NiRu<sub>0.13</sub>-BDC and NiRu<sub>0.21</sub>-BDC on nickel foam.



Supplementary Figure 5. XRD patterns of NiRu<sub>0.13</sub>-BDC powder.



**Supplementary Figure 6.** XPS spectroscopic studies. (a) C 1*s* and Ru 3*d* spectra of Ni-BDC and NiRu<sub>0.13</sub>-BDC. (b) Ru 3*p* spectra of NiRu<sub>0.09</sub>-BDC and NiRu<sub>0.21</sub>-BDC.

**Supplementary Table 1.** The molar ratio of Ni/Ru in NiRu<sub>x</sub>-BDC.

| Molar ratio(Ni:Ru) | NiRu <sub>0.09</sub> -BDC | NiRu <sub>0.13</sub> -BDC | NiRu <sub>0.21</sub> -BDC |
|--------------------|---------------------------|---------------------------|---------------------------|
| ICP-MS analysis    | 1:0.09                    | 1:0.13                    | 1:0.21                    |



**Supplementary Figure 7.** X-ray absorption spectra. (a) The magnified Ru *K*-edge XANES spectra of NiRu<sub>0.13</sub>-BDC, Ru foil and RuO<sub>2</sub>, respectively. (b) Ru *K*-edge EXAFS oscillation functions  $k^3\chi$  of NiRu<sub>0.13</sub>-BDC, Ru foil, and RuO<sub>2</sub>, respectively. c) EXAFS fitting curve for NiRu<sub>0.13</sub>-BDC.

**Supplementary Table 2.** Fitting parameters of Ru K-edge EXAFS curves for NiRu<sub>0.13</sub>-BDC.

| Sample                    | Path | $R(\text{\AA})^{[a]}$ | N <sup>[b]</sup> | $\sigma^2 (10^{-3} \text{\AA}^2)^{[c]}$ |
|---------------------------|------|-----------------------|------------------|-----------------------------------------|
| NiRu <sub>0.13</sub> -BDC | Ru-O | 2.09±0.02             | 6                | 7.59±3.7                                |

[a] R: distance between absorber and backscatter atoms; [b] N: coordination number; [c]  $\sigma^2$ : Debye-Waller factor



**Supplementary Figure 8.** X-ray absoption spectroscopic studies. (a) Ni *K*-edge Fourier transformed EXAFS spectra of Ni-BDC and NiRu<sub>0.13</sub>-BDC. (b) Ni *K*-edge EXAFS oscillation functions  $k^3\chi$  of Ni-BDC and NiRu<sub>0.13</sub>-BDC, respectively.



**Supplementary Figure 9.** HER performance. (a) The corresponding overpotentials in 1M PBS and (b) in 1 M KOH of Ni-BDC, NiRu<sub>0.09</sub>-BDC, NiRu<sub>0.13</sub>-BDC and NiRu<sub>0.21</sub>-BDC at 10 mA cm<sup>-2</sup> and 100 mA cm<sup>-2</sup>. (c) LSV curves of Ni-BDC, NiRu<sub>0.09</sub>-BDC, NiRu<sub>0.13</sub>-BDC and NiRu<sub>0.21</sub>-BDC toward HER in 1 M HCl. (d) The corresponding overpotentials of different catalysts in 1M HCl.

| Catalyst                                                       | Media                                | Overpotential at 10 mA cm <sup>-</sup><br><sup>2</sup> (mV) | Substrate    | Reference |
|----------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|--------------|-----------|
|                                                                | 1 M PBS                              | 36                                                          | Nickel foam  | This work |
| NiRu <sub>0.13</sub> -BDC                                      | 1 M KOH                              | 34                                                          | Nickel foam  | This work |
|                                                                | 1 M HCl                              | 13                                                          | Nickel foam  | This work |
| karst NF                                                       | 1 M PBS                              | 60                                                          | Nickel foam  | 1         |
| CrO <sub>x</sub> /Cu–Ni                                        | 1 M PBS                              | 48                                                          | Cu foam      | 2         |
| Ni <sub>0.89</sub> Co <sub>0.11</sub> Se <sub>2</sub> MNSN/ NF | 1 M PBS                              | 82                                                          | Nickel foam  | 3         |
| N-Co <sub>2</sub> P/CC                                         | 1 M PBS                              | 42                                                          | Carbon cloth | 4         |
| NiCo <sub>2</sub> P <sub>x</sub> /CF                           | 1 M PBS                              | 63                                                          | Carbon fiber | 5         |
| Mn-CoP/Ti                                                      | 1 M PBS                              | 86                                                          | Ti mesh      | 6         |
| PtSA-NT-NF                                                     | 1 M PBS                              | 24                                                          | Nickel foam  | 7         |
| N-Ni                                                           | 1 M PBS                              | 64                                                          | Nickel foam  | 8         |
| N,Mn-MoS <sub>2</sub> /NF                                      | 1 M PBS                              | 70                                                          | Nickel foam  | 9         |
| NiFeRu-LDH                                                     | 1 M KOH                              | 29                                                          | nickel foam  | 10        |
| Ni, Zn dual-doped CoO NRs                                      | 1 M KOH                              | 53                                                          | CFP          | 11        |
| R-MoS <sub>2</sub> /NF                                         | 1 M KOH                              | 71                                                          | nickel foam  | 12        |
| CoSe <sub>2</sub>                                              | 1 M KOH                              | 79                                                          | nickel foam  | 13        |
| Ni-N <sub>0.19</sub>                                           | 1 M KOH                              | 42                                                          | CFP          | 14        |
| Ni <sub>3</sub> N/Ni foam                                      | 1 M KOH                              | 100                                                         | nickel foam  | 15        |
| $V_8C_7$                                                       | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 38                                                          | nickel foam  | 16        |
| CoMoNiS-NF-31                                                  | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 103                                                         | nickel foam  | 17        |
| FLNPC@MoP-NC/MoP-C                                             | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 74                                                          | Carbon Fiber | 18        |
| Mo <sub>2</sub> C-MoOx/CC(                                     | 1 M HClO <sub>4</sub>                | 74                                                          | Carbon cloth | 19        |
| Fe-doped CoP/Ti                                                | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 78                                                          | Ti mesh      | 20        |

**Supplementary Table 3.** Comparisons of HER activity for  $NiRu_{0.13}$  and other reported state of art elelctrocatalysis.



**Supplementary Figure 10.** Turnover frequency (TOF) of different materials at an overpotential of 100 mV.



**Supplementary Figure 11.** Faradic efficiency measurements. The amount of theoretically calculated and experimentally measured hydrogen at different reaction times on NiRu<sub>0.13</sub>-BDC with a current density of 20.5, 15.5, 17.6 mA in 1 M PBS (a), 1 M KOH (b) and 1 M HCl (c), respectively.



**Supplementary Figure 12.** CV plots and double-layer capacitance of different catalysts. CV plots of (a) Ni-BDC, (b) NiRu<sub>0.09</sub>-BDC, (c) NiRu<sub>0.13</sub>-BDC and (d) NiRu<sub>0.21</sub>-BDC at different scan rates. (e) Double-layer capacitance of Ni-BDC, NiRu<sub>0.09</sub>-BDC, NiRu<sub>0.13</sub>-BDC and NiRu<sub>0.21</sub>-BDC.



**Supplementary Figure 13**. Electrochemical performance of NiRu<sub>0.13</sub>-BDC. (a) Electrochemical impedance spectra of different catalysts, (b) chronoamperometry curves of NiRu<sub>0.13</sub>-BDC in 1 M PBS.

| Catalyst                  | Solution series resistances R <sub>s</sub> | Charge transfer resistance R <sub>ct</sub> |  |
|---------------------------|--------------------------------------------|--------------------------------------------|--|
|                           | $(\Omega)$                                 | $(\Omega)$                                 |  |
| Ni-BDC                    | 1.42                                       | 19.56                                      |  |
| NiRu <sub>0.09</sub> -BDC | 1.45                                       | 11.41                                      |  |
| NiRu <sub>0.13</sub> -BDC | 1.68                                       | 0.31                                       |  |
| NiRu <sub>0.21</sub> -BDC | 1.67                                       | 0.66                                       |  |

**Supplementary Table 4**. EIS results of Ni-BDC, NiRu<sub>0.09</sub>-BDC, NiRu<sub>0.13</sub>-BDC and NiRu<sub>0.21</sub>-BDC



**Supplementary Figure 14**. SEM images of NiRu<sub>0.13</sub>-BDC afters stability test. (a) before HER, (b) (c) after 10h, 30h electrocatalytic stability test at an overpotential of 50 mV in 1 M PBS.



**Supplementary Figure 15.** XRD patterns of NiRu<sub>0.13</sub>-BDC before HER, after 10h, 30h electrocatalytic stability test at an overpotential of 50 mV in 1 M PBS.



**Supplementary Figure 16.** XPS spectra of NiRu<sub>0.13</sub>-BDC after stability test. (a) Full range XPS patterns, (b) Ru 3p, (c) Ni 2p, (d) O 1s and (e) C 1s and Ru 3d XPS spectra of NiRu<sub>0.13</sub>-BDC before HER and after 10 h, 30 h electrocatalytic test.



Supplementary Figure 17. Crystal structure models. (a) Ni-BDC, (b) NiRu<sub>0.13</sub>-BDC.



Supplementary Figure 18. Calculated total DOS of Ni-BDC and NiRu<sub>0.13</sub>-BDC.



Supplementary Figure 19. Calculated partial density of states (PDOS) of Ni-BDC and NiRu<sub>0.13</sub>-BDC.

## References

- 1. Gao, X. *et al.* Karst landform-featured monolithic electrode for water electrolysis in neutral media. *Energy Environ. Sci.* **13**, 174-182 (2020).
- 2. Dinh, C.-T. *et al.* Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. *Nat. Energy* **4**, 107-114 (2018).
- 3. Liu, B. *et al.* Nickel-Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An All-pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution. *Adv. Mater.* **29**, 1606521 (2017).
- 4. Men, Y. *et al.* Tailoring the Electronic Structure of Co<sub>2</sub>P by N Doping for Boosting Hydrogen Evolution Reaction at All pH Values. *ACS Catal.* **9**, 3744-3752 (2019).
- Zhang, R. *et al.* Ternary NiCo<sub>2</sub>P<sub>x</sub> Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. *Adv. Mater.* 29, 1605502 (2017).
- 6. Liu, T. *et al.* Mn Doping of CoP Nanosheets Array: An Efficient Electrocatalyst for Hydrogen Evolution Reaction with Enhanced Activity at All pH Values. *ACS Catal.* **7**, 98-102 (2016).
- Zhang, L., Han, L., Liu, H., Liu, X. & Luo, J. Potential-Cycling Synthesis of Single Platinum Atoms for Efficient Hydrogen Evolution in Neutral Media. *Angew. Chem. Int. Ed.* 56, 13694-13698 (2017).
- 8. You, B. *et al.* Universal Surface Engineering of Transition Metals for Superior Electrocatalytic Hydrogen Evolution in Neutral Water. *J. Am. Chem. Soc.* **139**, 12283-12290 (2017).
- Sun, T. *et al.* Engineering the Electronic Structure of MoS<sub>2</sub> Nanorods by N and Mn Dopants for Ultra-Efficient Hydrogen Production. *ACS Catal.* 8, 7585-7592 (2018).
- 10. Chen, G. *et al.* Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites. *Adv. Mater.* **30**, 1706279 (2018).
- 11. Ling, T. *et al.* Well-Dispersed Nickel- and Zinc-Tailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction. *Adv. Mater.* **31**, 1807771 (2019).
- 12. Anjum, M. A. R., Jeong, H. Y., Lee, M. H., Shin, H. S. & Lee, J. S. Efficient Hydrogen Evolution Reaction Catalysis in Alkaline Media by All-in-One MoS<sub>2</sub> with Multifunctional Active Sites. *Adv. Mater.* **30**, 1707105 (2018).
- 13. Zhang, J. Y. *et al.* Anodic Hydrazine Oxidation Assists Energy-Efficient Hydrogen Evolution over a Bifunctional Cobalt Perselenide Nanosheet Electrode. *Angew. Chem. Int. Ed.* **57**, 7649-7653 (2018).
- Li, Y. *et al.* Processable Surface Modification of Nickel-Heteroatom (N, S) Bridge Sites for Promoted Alkaline Hydrogen Evolution. *Angew. Chem. Int. Ed.* 58, 461-466 (2019).

- Ledendecker, M., Schlott, H., Antonietti, M., Meyer, B. & Shalom, M. Experimental and Theoretical Assessment of Ni-Based Binary Compounds for the Hydrogen Evolution Reaction. *Adv. Energy Mater.* 7, 1601735 (2017).
- Xu, H. *et al.* A New Platinum-Like Efficient Electrocatalyst for Hydrogen Evolution Reaction at All pH: Single-Crystal Metallic Interweaved V<sub>8</sub>C<sub>7</sub> Networks. *Adv. Energy Mater.* 8, 1800575 (2018).
- Yang, Y. *et al.* Hierarchical Nanoassembly of MoS<sub>2</sub>/Co<sub>9</sub>S<sub>8</sub>/Ni<sub>3</sub>S<sub>2</sub>/Ni as a Highly Efficient Electrocatalyst for Overall Water Splitting in a Wide pH Range. *J. Am. Chem. Soc.* 141, 10417-10430 (2019).
- 18. Liu, B. *et al.* Few Layered N, P Dual-Doped Carbon-Encapsulated Ultrafine MoP Nanocrystal/MoP Cluster Hybrids on Carbon Cloth: An Ultrahigh Active and Durable 3D Self-Supported Integrated Electrode for Hydrogen Evolution Reaction in a Wide pH Range. *Adv. Funct. Mater.* **28**, 1801527 (2018).
- 19. He, L. *et al.* Molybdenum Carbide-Oxide Heterostructures: In Situ Surface Reconfiguration toward Efficient Electrocatalytic Hydrogen Evolution. *Angew. Chem. Int. Ed.* **59**, 3544-3548 (2020).
- 20. Tang, C. *et al.* Fe-Doped CoP Nanoarray: A Monolithic Multifunctional Catalyst for Highly Efficient Hydrogen Generation. *Adv. Mater.* **29**, 1602441 (2017).