
Supplementary Information for
Optimized Collusion Prevention for Online Exams

during Social Distancing

Mengzhou Li,1 Lei Luo,2 Sujoy Sikdar,3 Navid Nizam,1 Shan Gao,1

Hongming Shan,1 Melanie Kruger,4 Uwe Kruger,1 Hisham Mohamed,1

Lirong Xia,2 and Ge Wang1∗

1Department of Biomedical Engineering, Rensselaer Polytechnic Institute,
Troy, NY 12180, USA

2Department of Computer Science, Rensselaer Polytechnic Institute,
Troy, NY 12180, USA

3Department of Computer Science and Engineering, Washington University in St. Louis,
St. Louis, MO 63130, USA

4Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute,
Troy, NY 12180, USA

∗To whom correspondence should be addressed; E-mail: wangg6@rpi.edu.

Supplementary Figures
Supplementary Figure 1 Supplementary illustration of the GAS. 1

Supplementary Tables
Supplementary Table 1 Summation of Notations 2
Supplementary Table 2 Summation of Metrics. 3

Supplementary Notes

1 Proof of Collusion Control Theorem 4

2 Anti-Collusion Algorithms 5

3 Performance Comparison of the Algorithms 10

4 Final Exam Design 14

5 Statistical Testing: Did Significant Collusion Occur 18

6 DOT Platform 20

7 Random Sampling 23

Supplementary Figure 1

Supplementary Figure 1: Supplementary illustration of the grouping-based anti-collusion
scheme (GAS). Circular shifting demos with a, M2 = M1 = 6, and b, M2 = 6, M1 = 4
demonstrate that using consecutive sequences and reducing the test length M1 help reduce the
maximum question leakage; A simple example of 4 questions from the pool of 6 questions
properly assigned to 6 students for suppression of the collusion gain via grouping: c, primitive
assignment of four questions (in black) to six students via circular shifting, yielding a maximum
individual collusion gain 48.75% and an average collusion gain in the worst case ∼14.6%, and
d, an assignment follows the general grouping-based anti-collusion scheme, reducing the max-
imum individual collusion gain to 10% and the average collusion gain in the worst case ∼3%.
Note that in d, the students are grouped by similarity in their competence levels to bound the
maximum collusion gain.

1

Supplementary Table 1

Supplementary Table 1: Summation of Notations

Symbol Definition

N The number of students, [N] = {1, 2, · · · , N} means the student set.
M2 The number of questions in the MCQ bank, [M2] means the total question set.
M1 The number of questions to be asked each student.
Q The number of choices for each MCQ and only one of them is correct.
Y The competence profile of students, yi ∈ [1/Q, 1] (i ∈ [N]) represents the probability

of student i correctly answers a question. yi in Y is ranked in a descending order.
P The colluding matrix, pj,i (i, j ∈ [N]) depicts the probability for student i to actively

cheat from student j if i 6= j (The first index indicates the source of the answers while
the second indicates the destination of the information).
pj,i = 0 if j > i due to the assumption (1), and pi,i = 1−

∑i−1
j=1 pj,i.

A The assignment, A = {ai ∈ PSQ|i = 1, 2, · · · , N}, composed of a set of SQs from PSQ
and depicting the mapping from students [N] to the permutation pool of SQs PSQ, and
ai represents the SQ assigned to student i. si mapping from the students to PSQ

PSQ All possible M1-length SQs formed by the permutation of M2 MCQs, which is also
referred as the permutation pool.

n The size of the permutation pool PSQ, n =M2!/(M2 −M1)!.
qi(A) The expected score of student i ∈ [N] with collusion in the exam with assignment A,

which can also be referred as the cheating score for short. Noted that qi(A) is also
related to how P is defined.

q∗i The expected honest score of student i ∈ [N] without collusion (irrelevant to sequence
assignment A), which can also be referred as the honest score for short.

Z The positional matrix, and zj,i (i, j ∈ [N]) depicts the number of questions that student
i can cheat from student j if j 6= i, and the special case zi,i is defined as M1. Noted that
Z is directly calculated from the assignment A and irrelevant to P or Y .

D The competence difference matrix D defined as (dj,i)i,j∈[N] and dj,i = max(yj − yi, 0)
for the easy of expression of other variables.

gi The expected collusion gain for student i under assignment A is defined as the differ-
ence between his/her cheating score and honest score, calculated by qi(A)− q∗i .

2

Supplementary Table 2

Supplementary Table 2: Summation of Metrics.

Metric Definition

g The average collusion gain g is defined as the sum of expected collusion gains
over all students [N], which is also the main metric that our optimizations tend to
minimize.
g(A) = 1

N

∑N
i=1 gi(A).

gW The worst case average collusion gain gW is defined as the average collusion gain
g in the situation where all students manage to achieve their maximum possible
collusion gain (the maximum possible collusion gain of the student i is achieved by
setting the probability of i cheats with the student j to 1, from whom i will obtain
the maximum gain among other choices of i);
gW (A) = 1

NM1
sum

{
maxj∈[N]{Z(A) ◦D}

}
.

gMI The maximum individual collusion gain is the maximum of the maximum possible
collusion gains for all students (maxi[maxP (gi)]).
gMI(A) =

1
M1

maxi,j∈[N]{Z(A) ◦D}, where ◦ stands for Hadamard multiplication
(element-wise).

Note: gW and gMI are irrelevant to P , and can be used to revisit the optimized results for the
worst case analysis. gW can be treated as a reliable upper limit estimation of the collusion gain
under the given competence profile Y . gMI can be used to estimate the fairness of the exam
from the aspect of the maximum collusion gain any student can achieve.

3

1 Proof of Collusion Control Theorem
Theorem 1. Given sequences of M1 questions from the bank of M2 MCQs and with only one
correct choice out of Q choices for each question, the maximum individual collusion gain is no
more than (1− 1/Q)/(M2 −M1 + 1) using the grouping-based anti-collusion scheme.

Proof. For any two same length question sequences s1 and s2, let Fz(s1, s2) stand for the
number of questions that can be copied from s1 to s2. Let us denote the M2 questions as
{1, 2, 3, . . . ,M2}.

Following the grouping-based anti-collusion scheme, (1) by circular shifting, we can easily
create M2 − M1 + 1 sequences: s1 = [1, 2, 3, . . . ,M1], s2 = [2, 3, . . . ,M1,M1 + 1], . . .,
sM2−M1+1 = [M2 − M1 + 1,M2 − M1 + 2, . . . ,M2]. It is easy to check for any pair of si
and sj out of them, we have Fz(si, sj) = 0 if i < j. (2) Let us divide the maximum possible
student competence score range [1/Q, 1] into M2 −M1 + 1 intervals, and the length of each
interval is (1−1/Q)/(M2−M1+1), as shown in Supplementary Figure 2. Then, we can group
the students whose competences are in the same interval, and obtain M2 − M1 + 1 groups.
We assign the sequences s1, s2, . . . , sM2−M1+1 to the groups ranked in the descend order of
their competences. By doing so, we have achieved two goals: first, there is no collusion gain
between groups ensured by (1); second, the individual maximum gain inside a group cannot
be greater than (1 − 1/Q)/(M2 −M1 + 1) which is the interval length, ensured by (2), and
regardless of how many students are in the group. Hence, we have proved the theorem. �

Supplementary Figure 2: Illustration of the collusion control theorem to control the maximum
individual collusion gain to be below any desired level. By dividing the competence range into
C intervals and grouping students into these intervals can controls the maximum individual gain
below the length of the interval (1− 1/Q)/C, where C =M2 −M1 + 1.

4

2 Anti-Collusion Algorithms

2.1 Algorithm 1: Grouping-based Anti-collusion Scheme (GAS)
For general exam designs with flexible M2 and M1, we can just replace the M2 −M1 + 1 with
the predefined C in line 4 of the Algorithm 1.

Algorithm 1 GAS

1: Input: A DOT instance ([N], [M2],M1, Y).
2: Generate PCS = {s1, s2, . . . , sM2} from [M2] by left circular shifting
3: Sort Y in the descending order
4: Partition [min(Y),max(Y)] into M2 −M1 + 1 intervals I1, I2, . . . , IM2−M1+1 with equal

length.
5: Initialize the index for interval t = 1.
6: for i = 1, . . . , N, do
7: if yi ∈ It then
8: ai ← st . Students inside one interval receive the same sequence
9: else

10: t = t+ 1;
11: ai ← st
12: return A.

5

2.2 Algorithm 2: Cyclic Greedy Searching (CGS)
Building on Algorithm 1, we propose CGS (Algorithm 2) as an extension to search PCS to
greedily improve upon the assignment computed by Algorithm 1. Algorithm 2 proceeds in
two phases as follows: In Phase 1, we use the result A0 from Algorithm 1 as our preferred
initialization, and together with other reasonable/random initializations we will find the best
one among the respectively optimized results. In Phase 2, in each of N rounds, a student is
selected based on the competence order from high to low, and a sequence which minimizes the
average collusion gain is selected from PCS to be assigned to the student (the assignment is
updated only if the update reduces current average collusion gain to ensure convergence). For
any assignment A, we will use (s, a−i) to denote the assignment where student i’s sequence ai
is replaced with a sequence s ∈ PCS . The steps in Phase 2 will be repeated for a maximum of
Nrep times or until a local minima is reached.

Algorithm 2 CGS

1: Input: A DOT instance ([N], [M2],M1, Y, P,A0).
2: Generate PCS = {s1, s2, . . . , sM2} from [M2] by left circular shifting
3: A← A0. . Initialization A0

4: Nrep = 30. . Maximum repetition time
5: tA = A0.
6: for iter = 1, . . . , Nrep, do
7: for i = 1, . . . , N, do . Greedy improvements
8: for j = 1, . . . ,M2, do
9: if g((sj, a−i), P) < g(A,P) then

10: ai ← sj

11: if tA == A then
12: break . Assignment does not change, and stop
13: else
14: tA = A
15: return A.

6

2.3 Algorithm 3: Min-Max Greedy Matching (MMM)
Our next algorithms remove the restriction on the search space to the cyclic pool PCS , and
search for assignments in the pool of all possible question sequences PSQ. The pseudo code of
Algorithm 3 is presented below, and some notations are copied from the main text for clarity.
Given any s ∈ PSQ:

1. For each j ∈ [M2], we define s(j) = l if j appears in the l-th position in s, and s(j) = 0
otherwise;

2. For each j ∈ [M2], α(s, j) = 1 if s(j) ≥ 1, and α(s, j) = 0 otherwise, to indicate
whether question j is on sequence s;

3. For each j ∈ [M2], each l ≤ M1, β(s, j, l) = 1 if s(j) ≥ 1, s(j) ≤ l, and β(s, j, l) = 0
otherwise, to indicate whether question j appears at or before position l on sequence s;

4. For each j ∈ [M2], each l ≤ M1, γ(s, j, l) = 1 if s(j) ≥ l, and γ(s, j, l) = 0 otherwise,
to indicate whether question j appears at or after position l on sequence s;

5. For any s, s′ ∈ PSQ, and any j ∈ [M2], δ(s, s′, j) = 1 if s(j) > 1, s′(j) > 1, and
s′(j) ≤ s(j), and δ(s, s′, j) = 0 otherwise to indicate whether a student assigned s can
cheat on question j from a student assigned s′.

Algorithm 3 MMM

1: Input: A DOT instance ([N], [M2], [M1], Y).
2: A← a random assignment.
3: for i ≤ N, do
4: G← ([M1] ∪ [M2], E = {(l, j) : l ≤M1, j ≤M2}). . bipartite
5: for l ≤M1, j ≤M2, do . Edge weights are the marginal gain over A by placing j as i’s
l-th question.

6: w(l,j) ← 0.
7: for k ≤ i, do
8: w(l,j) ← w(l,j) + pk,i

[
[ykβ(ak, j, l) + yi(1 − β(ak, j, l))] − [ykδ(ai, ak, j) + yi(1 −

δ(ai, ak, j))]
]

9: for h > i, do
10: w(l,j) ← w(l,j)+

∑
h>i pi,h

[
[yiγ(ai, j, l)+yh(1−γ(ai, j, l))]− [yiδ(ah, ai, j)+yi(1−

δ(ah, ai, j))]
]

11: Matching ← minimum weight maximum matching on G.
12: For each (l, j) ∈Matching, ai,l ← j.
13: return A.

7

2.4 Algorithm 4: Integer Linear Programming (ILP)
We cast the assignment optimization problem into an integer linear programming problem to
find a globally optimal assignment in the permutation space, as shown below in Algorithm 4.

Algorithm 4 ILP

1: Input: A DOT instance ([N], [M2],M1, Y).
2: Solve the ILP in Supplementary Figure 3 below and set assignment A as follows: for each
i ∈ [N], j ∈ [M2], such that si,j > 0, ai(j)← si,j .

3: return A.

8

min
s

∑
i∈[N],j∈[M2]

qi,j, objective

Variables
qi,j∈ [0, 1], ∀i ∈ [N], j ∈ [M2] expected scores
si,j∈ {0, 1, . . . ,M1}, ∀i ∈ [N], j ∈ [M2] rank of question
xi,j∈ {0, 1}, ∀i ∈ [N], j ∈ [M2] indicate assignment
ei,j,l∈ {0, 1}, ∀i ∈ [N], j ∈ [M2], l ∈ [M1] indicate si,j ≥ l
fi,j,l∈ {0, 1}, ∀i ∈ [N], j ∈ [M2], l ∈ [M1] indicate si,j ≤ l
mi,j,l∈ {0, 1}, ∀i ∈ [N], j ∈ [M2], l ∈ [M1] indicate si,j = l
ci,k,j∈ {0, 1}, ∀i ∈ [N], k ∈ [N], j ∈ [M2] indicate i can copy k on j
ui,k,j∈ {0, 1}, ∀i ∈ [N], k ∈ [N], j ∈ [M2] indicate both i, k assigned j
vi,k,j∈ {0, 1}, ∀i ∈ [N], k ∈ [N], j ∈ [M2] indicate k sees j before i

Constraints∑
j∈[M2]

si,j=
∑

l∈[M1]

l, ∀i ∈ [N] feasible assignment

xi,j≥ si,j
M2
, ∀i ∈ [N], j ∈ [M2] feasible assignment

xi,j≤ si,j, ∀i ∈ [N], j ∈ [M2] feasible assignment
ei,j,l≥ 1+si,j−l

M2+1
, ∀i ∈ [N], j ∈ [M2], l ∈ [M1] feasible assignment

ei,j,l≤ M2+si,j−l
M2

, ∀i ∈ [N], j ∈ [M2], l ∈ [M1] feasible assignment
fi,j,l≥ 1+l−si,j

M2+1
, ∀i ∈ [N], j ∈ [M2], l ∈ [M1] feasible assignment

fi,j,l≤ M2+l−si,j
M2

, ∀i ∈ [N], j ∈ [M2], l ∈ [M1] feasible assignment
mi,j,l≤ ei,j,l, ∀i ∈ [N], j ∈ [M2], l ∈ [M1] feasible assignment
mi,j,l≤ fi,j,l, ∀i ∈ [N], j ∈ [M2], l ∈ [M1] feasible assignment
mi,j,l≥ ei,j,l + fi,j,l 9 1, ∀i ∈ [N], j ∈ [M2], l ∈ [M1] feasible assignment∑

j∈[M2]

mi,j,l= 1, ∀i ∈ [N], l ∈ [M1] feasible assignment

ui,k,j≤ xi,j, ∀i ∈ [N], k ∈ [N], j ∈ [M2] both assigned j
ui,k,j≤ xk,j, ∀i ∈ [N], k ∈ [N], j ∈ [M2] both assigned j
ui,k,j≥ xi,j + xk,j 9 1, ∀i ∈ [N], k ∈ [N], j ∈ [M2] both assigned j
vi,k,j≥ 1+si,j−sk,j

M2+1
, ∀i ∈ [N], k ∈ [N], j ∈ [M2] k has seen j

vi,k,j≤ M2+si,j−sk,j
M2

, ∀i ∈ [N], k ∈ [N], j ∈ [M2] k has seen j
ci,k,j≤ ui,k,j, ∀i ∈ [N], k ∈ [N], j ∈ [M2] i can copy k on j
ci,k,j≤ vi,k,j, ∀i ∈ [N], k ∈ [N], j ∈ [M2] i can copy k on j
ci,k,j≥ ui,k,j + vi,k,j 9 1, ∀i ∈ [N], k ∈ [N], j ∈ [M2] i can copy k on j
qi,j=

∑
k∈[N]

ykpk,ici,k,j +

yi(1 9
∑
k∈[N]

pk,ici,k,j)

, ∀i ∈ [N], j ∈ [M2] expected score

Supplementary Figure 3: ILP to compute an assignment with minimum gain.

9

3 Performance Comparison of the Algorithms
We evaluate the performance of the proposed algorithms in the previous section on multiple
synthetic datasets with different settings corresponding to the choice of values for N , M2, and
M1, over 100 instances for each setting. For each setting, we generate the competences of
N students i.i.d. uniformly at random from [0.25, 1), and generate the colluding probabilities
for each student i ∈ {2, . . . , N} to cheat from the students k < i (i − 1 in total) from the
(i − 1)-variate Dirichlet distribution with a concentration parameter of α = 10, meaning that∑

k<i pk,i = 1 and p1,1 = 1 in our experiments. In addition to random assignments and assign-
ments obtained directly by circular shifting, we consider four algorithms: CGS (Algorithm 2),
MMM (Algorithm 3), MMM-CGS, and ILP (Algorithm 4, which computes an optimal assign-
ment with minimized gain). CGS was first initialized with the assignment generated from GAS
which provides a proven upper bound of the collusion gain, and then was randomly initialized
from the cyclic pool PCS for 9 times, and the best result was selected for comparisons and used
as the initialization of MMM-CGS. Experiments were performed on a computer equipped with
a AMD Ryzen 7 2700X processor running at 4.0GHz and 16GB of system memory. Due to
practical considerations of running time and system memory, we evaluate against the ILP on
instances with at most N = 10, M2 = 5, and M1 = 3. We evaluate the relative performance
of our greedy heuristic algorithms on larger instances with N = 100, M2 = 30, and different
values of M1 ∈ {10, 20}.

Supplementary Figure 4 presents our experimental results. For each of the four algorithms
and additionally random and cyclical assignments (Y-axis), Supplementary Figure 4 shows the
gain over the honest score computed using Equation 7 (from the main text) (X-axis) over 100
instances, with a box representing the upper and lower quantiles, an orange line within the box
representing the median, a green arrowhead representing the mean, and whiskers extending
from the box on either end representing the range of values observed. Statistic outliers are
plotted individually using the ‘o’ symbol.

Comparing the different algorithms, we observe immediately from Supplementary Figure 4
that each of our greedy algorithms displays significantly lower gain than the random assign-
ments on average, which demonstrates the usefulness of our anti-collusion schemes in reducing
the collusion gains. Second, the low average collusion gain exhibited by the optimal solution
computed by ILP on average validates our approach for minimizing the gain from collusion.
Third, MMM-CGS and CGS approximated the minimum gain computed by ILP well, high-
lighting the effectiveness of the greedy algorithms in practice.

Comparing the optimized solutions computed under different settings, it is easy to observe
that optimized average collusion gain (with the optimal ILP algorithm for example) does not
necessarily correlate to the permutation space size; e.g., (5, 3, 2)1 and (5, 3, 3) have the permu-
tation space of the same size but different optimal gains; from (10, 3, 2) to (10, 5, 3), the size
of the permutation space increased but the optimal gains decreased; and from (10, 5, 3) to (10,

1* N = 5,M2 = 3,M1 = 2 is noted as (5, 3, 2) for brevity.

10

Supplementary Figure 4: Comparison of the greedy algorithms with the ILP method in terms
of the average collusion gains.

11

5, 5), the size of the permutation space increased but the optimal gains increased. However,
the optimized collusion gains do correlate to the difference between M2 −M1 (which has been
implied by Theorem 1); i.e., an increased M2 −M1 value significantly reduces the collusion
gain as demonstrated by (5, 3 ,3) versus (5, 3, 2), as well as (10, 5, 5) and (10, 3, 2) versus (10,
5, 3). In addition, increasing the number of students can also raise the collusion gain as shown
in the case of (5, 3, 2) versus (10, 3, 2).

For each of the settings presented in Supplementary Figure 4, the ILP solution has very low
collusion gain on average, validating our approach of suppressing collusion by question assign-
ment without proctoring. Surprisingly, the CGS solution matches the minimum possible gain
as obtained by ILP in over 95 out of a 100 instances in the settings of (5, 3, 2), (5, 3, 3) and (10,
3, 2), and matches the gain of ILP over 65 out of 100 instances in the settings of (10, 5, 3) and
(10, 5, 5), validating the usefulness of our greedy heuristic algorithms. Additionally, the sim-
ple MMM-CGS algorithm dominates the other heuristic algorithms, but does not significantly
outperform CGS in our experiments, which performs close to optimally, even thought its search
space is restricted to the set of circular sequences. It appears that MMM which is initialized by
a random assignment is sensitive to the initial assignment, and is prone to being stuck in locally
optimal solutions, but still significantly outperforms random assignments.

Our experiments provide two key takeaways for educators: For a given number of students
N : (1) The minimum collusion gain that can be obtained by our approach (eg. the ILP solu-
tion) is determined by the permutation space available to assign sufficiently different sets of
questions and in orderings that minimize collusion, which can be controlled by the either in-
creasing the size M2 of the pool of questions, or decreasing the number of questions on each
students’ sequence M1. (2) Greedy heuristic algorithms significantly outperform random as-
signments, and often approach the minimum possible average collusion gain in settings with a
small permutation space for question assignment.

In Supplementary Figure 5, we compare our greedy algorithms on relatively large instances
with N = 100 students, a pool of M2 = 30 questions, and between M1 = 10 and 20 questions
per student. Our experiments demonstrate again that (1) our greedy algorithms significantly
outperform random assignment, and (2) MMM-CGS and CGS significantly outperforms MMM
initialized with random assignments.

12

Supplementary Figure 5: Comparison of the average gain of greedy algorithms on large in-
stances.

13

4 Final Exam Design
On April 28, 2020, 78 out of 85 undergraduate students in two classes separately taught by two
instructors took the final exam of an undergraduate imaging course according to our optimized
design [1]. The course is based on a standard textbook [2], with all video lectures available
online [3] complemented with online lecture notes [4].

The class itself is divided in two main parts, fundamentals and imaging. Fundamentals
cover measurements, linear systems, convolution, Fourier analyses, basic signal processing
techniques such as filtering and sampling, basic imaging definitions, and measuring tests accu-
racy. Imaging covers medical imaging modalities; x-ray, computed tomography (CT), nuclear
imaging such as PET (Positron Emission Tomography) and SPECT (Single Photon Emission
Computed Tomography), Magnetic Resonance Imaging (MRI), ultrasound, and optical tech-
niques such as microscopy and optical coherence tomography (OCT). The final exam covered
signal processing and all imaging modalities. From this, a pool of multiple choice questions was
created, each question with four options. The questions tested the main concepts of the class
subjects and were similar in length since they all had equal grade points and a time period of
two minutes each to answer. The number of questions was proportional to the materials taught
in class, i.e., 20% of the questions covered x-ray and CT combined. Similarly, nuclear imag-
ing, MRI, and ultrasound, each was the subject of 20% of the questions. 10% of the questions
were about optical techniques and the remaining 10% covered basic imaging definitions, and
measuring tests accuracy.

The questions included a mix of text, formulas, and figures, and were designed for open-
book tests. To simplify the testing platform and add the difficulty in direct online searching of
questions, all questions were included in the exam as images, and the students have four boxes
labeled A to D to choose from by clicking on the desired option. The students could change
their answer within the time period allocated for every question, but could not make changes
afterwards. The length of the time window was empirically adjusted so that it is enough for
high-competence students to finish the question comfortably but insufficient for unprepared
students to search the answer without a good understanding of the content.

For the final exam, a pool of 80 questions was created, 60 of which were used, i.e.,M2 = 60.
The remaining 20 were for students who requested a makeup exam. The exam consisted of 40
questions (M1 = 40). Therefore, not all students were tested using the same 40 questions. Ad-
ditionally, students were asked to join a WebEx video conference session with their respective
instructor for questions or technical difficulties, which also served as a simple online proctor-
ing. Students also need to log into our DOT platform with their RCS ID and RIN (unique IDs
assigned to each student by our institute) to attend the exam. The identities of students were
double-checked through the video by the instructor.

14

4.1 Sequence Assignment
Based on our anti-collusion scheme, an optimized assignment of the final exam N = 85, M2 =
60, M1 = 40, Q = 4 was first designed by GAS and then refined with our heuristic CGS
algorithm.

4.1.1 Competence Estimation

The students’ competences are estimated with their performance in the mid-term exam before
the social distancing. The two classes were taught by different instructors, and have different
mid-exams, but they will take the same final at the same time. Thus, their relative performances
in the class were treated as their competence score rather than their real scores. The grades
distribution of two classes were first normalized to the distribution with zero mean and unit
standard deviation, and then combined together. It is worth mentioning that the students did
not participate the mid-term exam were picked out before the normalization procedure, and
then put back to the combined profile with 0 (using the averaged performance to estimate their
performance). Finally, combined normalized grades were then linearly transformed to the range
[0.25, 1) to form the prior knowledge of the competence profile Y of the combined set of the
students.

4.1.2 Colluding Matrix Construction

To perform the optimization, we heuristically construct a colluding matrix P depicting the
probability of every student cheating from another student. Following the notations in main text,
reasonable assumptions about colluding mechanisms are made as follows: (1) The probability
of student i actively cheating is related to his/her competence yi; Student 1 tends not to cheat
since he/she could obtain no gain (risk greater than benefit), while student N will try all means
to cheat since he/she will always gain (benefit greater than risk); (2) The probability of colluding
happens between two students A and B is related to the difference of yA and yB. Student i will
have the strongest willingness to cheat from student 1, but the least willingness to cheat from
student j if yi = yj since he/she cannot trust j more than himself/herself, and he/she will never
cheat from j if yi > yj .

Based on the assumptions above, the colluding matrix P is heuristically constructed as
follows:

pj,i =

0, yj ≤ yi
yj−yi∑nf (i)

k=1 (yk−yi)
(1− pi,i), yj > yi

(S1)

pi,i =

[
1−

∑nf (i)

k=1 (yk − yi)∑N
k=1 (yk − yN)

]η
(S2)

where nf (i) is defined as the number of elements in Y that are greater than yi, and η is a non-
negative constant which can be used to adjust students’ willingness to cheat. Larger η will

15

increase the colluding probability, and students are supposed to always commit active cheat-
ing if η = ∞. Eqs. (S2) and (S1) define the probabilities of the cheating and non-cheating
states of student i respectively, and in the cheating state, the possibility of student i will cheat
from student j is proportional to their competence difference yj − yi normalized by the sum of
competence differences in all possible cases.

We further assume that students have different competences (y1 > y2 > . . . > yN), without
losing generality (due to the fact that adding tiny differences to two equal y negligibly affects
the result of g), we simplify the expression of nf (i) as

nf (i) = i− 1 (S3)

Hence, pji can be written more explicitly as follows:

pj,i =


0, j < i

(1− pi,i)(yj − yi)/(
∑i

k=1 yk − iyi), j > i[
1−

∑i
k=1 (yk − yi)/

∑N
k=1 (yk − yN)

]η
, j = i

(S4)

Note that this heuristic colluding matrix P may not exactly match real life but it is a rea-
sonable start for optimization. In our construction, P puts a larger weight on the collusion
between students with a larger competence difference than that with a small competence differ-
ence, which helps limit the collusion gain in the worst case. Since mismatches are very likely to
exist between the model and the practice, the worst-case analysis needs to be performed on the
optimized result. If the collusion gain calculated in the worst situation for the output assignment
is not acceptable, the result should be used with caution or just use different initializations to
generate diverse solutions and pick the best one.

4.1.3 Optimization Results

After optimization with CGS, the average collusion gain was reduced to 0.0073%, with the
worst case collusion gain and the maximum individual collusion gain as 0.91% and 6.88%
respectively, and the distribution of individual collusion gain in the worst case is shown in
Supplementary Figure 6. From the figure, it can be seen that 90% students holds a maximum
possible collusion gain below 2% while the others sparsely range from 3% to 7%, suggesting
this is a practically good result.

Besides the anti-collusion feature, the nature of circular shifting sequences enabled us to
ensure that every student can receive the same number of questions from the same lecture, i.e,
every student shares 2 questions in Digital Signal Processing, 8 questions in CT, 7 questions in
nuclear imaging, 5 questions in optics, 7 questions in MRI and 4 general questions. The ratio
of questions in different topics can be arbitrarily adjusted. This feature could be easily achieved
by arranging the positions of questions in the question bank with a proper pattern. With this
feature, the exam could better measure the students’ mastering of knowledge in different topics,
and hence the instructors can obtain a well-rounded feedback with the exam.

16

Supplementary Figure 6: The distribution of individual collusion gains in the worst case of the
assignment after optimization (N = 85,M2 = 60,M1 = 40, Q = 4).

4.2 Robustness Relative to Noisy Y
The proposed general anti-collusion scheme works very well in terms of the maximum individ-
ual collusion gain in the simulation. To be mentioned, this does not rely on accurate student
competence profiling. It can work well even with only the rank of the students’ competences,
and control the collusion gain to a desired level, as shown in the proof of Theorem 1 that only
the ranking information has been used for implementing the scheme.

During the design of the exam, one would ask how robust of our method on the students’
competences data with noises, since we need to infer Y from students previous performance,
and randomness will inevitably make the Y noisy. In principle, it should be robust even if there
are noises in the competence data. This can be readily understood that small noises will only
make few students across the interval boundaries. The down-dropping student (DDS) could
increase the maximum individual collusion gain gMI since other students in the augmented
group can cheat from the DDS, and the increment in gMI will be no larger than the noise
magnitude. Clearly, this will increase the worst case gW due to the fact that all students in the
same group will gain benefits. On the other hand, students in the upper group but with lower
competences than the DDS can potentially cheat with the DDS which creates the inter-group
collusion gains but this collusion gain is negligible in terms of gW and gMI since this inter-group
gain should be much smaller than their maximum intra-group gains. As for the Up-floating case,
only the up-floating student (UFS) will obtain an increased collusion gain through intra-group
collusion but again the increment in gMI should be smaller than the noise magnitude. The UFS
will also benefit from inter-group collusion but the gain is much smaller than his/her intra-group
collusion gain. The increment in gMI will be smaller than the magnitude of noise. Thus, the
grouping-based anti-collusion scheme should be robust against noise in students’ competences.

17

5 Statistical Testing: Did Significant Collusion Occur
To assess whether the optimized DOT approach resulted in significant collusion, we formulated
the hypotheses for aspects (i) and (ii). For testing the hypothesis for aspect (ii), there is no
difference in the average number of correct answers for the first and the last 20 questions, we
utilized the Wilcoxon signed-rank test, which is a standard non-parametric hypothesis test. To
formulate a hypothesis for aspect (i), we considered that significant collusion did occur. This
section provides details on how we tested this hypothesis, which is based on examining cases
for which pairs of students gave the same answer to particular questions.

The format of the final exam stipulated that the 78 students were divided into 22 groups. As
each group received a different set of problems, our focus here is on assessing the potential for
intra-group collusion. More precisely, we can examine abnormal trends within the exam results
a posteriori. With this in mind, we designed the following test procedure that focused on the 17
groups that had at least 3 students. We started by selecting a random integer number between
1 to 17, therefore identifying a group randomly. Next, from the selected group, we randomly
selected two students which we considered to have engaged in collusion. Finally, we randomly
selected 5 ≤ nq ≤ 40 questions for which we assumed that collusion had occurred.

If the pair of students gave the same answer to one of the nq problems, irrespective of
whether the answer given is correct or not, we assigned a logic 0 to this case. Conversely,
if the two students gave different answers to a particular problem, we assigned the label 1
to describe this. To test for significant collusion, we repeated the procedure laid out in the
preceding paragraph in a Monte Carlo fashion [5], i.e. randomly selecting groups, student pairs
and problems.

The next step is combining 5 ≤ mp ≤ 30 randomly selected student pairs. To construct a
random variable, we define the indicator function

Ij(i) =
{

0 We consider the students cheated
1 The students did not cheat

where the index 1 ≤ i ≤ nq refers to a randomly selected question. The index j ≥ 1 labels
the set of mp randomly selected student pairs. The random variable X = xj then describes the

sample mean for the jth set of mp randomly selected student pairs, i.e. 0 ≤ xj =
1
nq

nq∑
i=1

Ij(i) ≤

1. Finally, by selecting M , e.g. M = 30, the number of Monte-Carlo runs is M × nq.
Based on the above procedure, we translate aspect (i) that there was significant collusion

into the following null hypothesis:

H0 : µX = 0 There is significant collusion
H1 : µX > 0 The students did not cheat

To test the above hypothesis, we can utilize the random variable X . Following from the well-
known central limit theorem, X has an asymptotic normal distribution. Using the sample con-
taining the M observations of the random variable X = xj , i.e. x1, ..., xM , we can determine

18

the value of the test statistic T = t, t = x/s, where s is the sample mean. The test statistic T
has a t-distribution with M − 1 degrees of freedom [6]. This allows computing the p-value for
rejecting the null hypothesis if p < α with α being the significance of the test, selected to be
α = 0.05.

The final step is to repeat the above procedure a total of K times, which yields p1, p2,
. . . , pk, . . . , pK . As advocated in [7], to statistically evaluate these p-values, we computed
the adjusted p-values to adjust for the false discovery rate. This, in turn, allows determining
the false discovery rate (FDR) threshold. A FDR threshold below the significance α implies
that each of the adjusted p-values are below α. For K = 100 repetitions of this Monte-Carlo
method, 5 ≤ nq ≤ 20 randomly selected problems (# Problems), 5 ≤ mp ≤ 30 randomly
selected student pairs (# Comparisons), Figure 3 in the main text shows that the FDR threshold
is below α = 0.05.

Even the extreme cases, describing a set of 100 times 5 randomly selected student pairs
(two students within the same group) shows that there is no case where we fail to reject the null
hypothesis. We therefore reject the hypothesis that the students engaged in significant collusion.
In sharp contrast, we cannot make any statistically sound judgment as to whether individuals
have assisted each other in answering the 40 questions. More precisely, there is no empirical
evidence to accept that significant collusion occurred, for instance using cellphones for taking
pictures and sending text messages or sending short emails of answers to particular problems.

It is interesting to observe that the number of questions has a negligible effect on the false
detection rate threshold. This was not expected, as we considered the case of occasional col-
lusion (a smaller value of nq, say 5) to be more likely than systematic collusion (a larger value
of nq that is closer to 40). Conversely, the increase in the false discovery rate threshold when
reducing the number of student pairs mp is expected. By decreasing the sample size, or mp, the
size of the acceptance region increases accordingly, which reduces the probability of rejecting
an incorrect null hypothesis (Type II error).

Reducing the lower boundary for mp from 5 is not advisable, as mp constitutes the sample
size. More precisely, we observed a reduction in the FDR threshold for mp = 3, 4 compared
to the values obtained for mp = 5, which we attributed to the lack of statistical information in
the small sample. A point of contention is the assumption that the average over 10 ≤ nq ≤ 40
is drawn from a normal distribution. To verify that this is a valid assumption, we utilized the
Anderson-Darling test [8] to test whether each sample of mp observations was drawn from a
normal distribution. By accepting 10% of violations, we observed that violations arose for
around 18% of cases, nq < 25. In practice, the use of the t-tests over alternative standard non-
parametric hypothesis tests if the assumption of normality is violated often yields satisfactory
results, i.e. [9]. Moreover, we repeated the same testing procedure using the standard sign
test [6], which produced similar result to that depicted in Figure 3.

19

6 DOT Platform
To implement our DOT technology, we developed a software system using Flask [10], a web
application written in Python [11]. This prototyping framework supports real-time commu-
nications between a secured database system and a frontend user-friendly interface. Post-
greSQL [12] was used to record the information from users, and all data between PostgreSQL
and Flask were transmitted with Psycogn2 [13], a PostgreSQL database adapter library be-
cause typically, the Psycogn database adapter can handle multiple database requests simultane-
ously. Furthermore, we used Jinja [14] embedded in Flask as the frontend interface, which is a
designer-friendly HTML language for web development in Python. Through this mediator, and
connected to PostgreSQL in the web framework, DOT is capable of handling a large number of
requests at the same time.

Several interface screenshots of this DOT Platform are shown as Supplementary Figures 7
to 11. The aforementioned online exam as well as the data collection was conducted on this
DOT platform.

Supplementary Figure 7: The log in interface where students input their accounts and passwords
to join the exam.

20

Supplementary Figure 8: The instruction interface displaying the general guidelines for the
exam. This is right after students login, and students will read the guidelines and listen to the
proctor’ instructions waiting for the exam starts. Students can also choose whether to activate
the beep function to remind them to put in their answers when there are only ten seconds left.

Supplementary Figure 9: The exam interface where questions are displayed. On the top of the
questions, there is a timer counting down the left time allocated to this question. When the left
time gets smaller than ten seconds, the timer will turn red to remind students to put in answers.
If the student activates the beep function, he/she will also help a short beep when timer counts
down to 10 seconds.

21

Supplementary Figure 10: The exam interface where questions are displayed. Students will
have four boxes to click to indicate their choices of answers below each question.

Supplementary Figure 11: The finish interface when a student finishes the exam (the exam
period ends), he/she will be automatically directed to this interface to indicate the end of the
exam. Students can also provide feedback by clicking the feedback bottom and answering a
questionnaire

22

7 Random Sampling
As we mentioned in the Cyclic Greedy Searching Section, in the scenario without prior knowl-
edge of students’ competences, we prefer randomly assigning the students with random question
sequences from the cyclic pool PCS rather than from the permutation pool PSQ. In this section,
we calculate the expected collusion gain under randomly sampling from PCS and random sam-
pling from PSQ, and prove that the former is more desirable (i.e. smaller expected collusion
gain) than the latter.

Let us define an operation EZ(·) on a SQ pool S which calculates the expectation of
Fz(s1, s2) where s1 and s2 are two randomly selected elements from S. In other words,
EZ(S) = mean{Z(S)}, where Z(S) is the positional matrix of S with diagonals set to the
length of a sequence element from S, if replacement is allowed; otherwise, EZ(S) equals to
the mean of non-diagonal elements of Z(S).

Theorem 2. Suppose we randomly samplem different sequences from a SQ pool S (i.e. without
replacement) and form V = {vi ∈ S|, i = 1, 2, . . . ,m} where 2 ≤ m ≤ |S|. Then, EZ(V) =
EZ(S).

Proof. If we first randomly select two sequences v1 and v2 from S, by definition, we have

E(Fz(s1, s2)) = E(Fz(s2, s1)) = EZ(S). (S5)

Then we can continue to randomly select the rest sequences from the rest of S, but this does not
affect the result we already have shown in Equation (S5). On the other hand, these two steps can
be taken as one step that we randomly select m different sequences from S, hence, we cannot
differentiate the m sequences from each other. In that sense, the expectation of Fz between any
two of them should be the same. Combining with Equation (S5), we have

E(Fz(si, sj)) = E(Fz(sj, si)) = EZ(S), (S6)

for i, j = 1, 2, . . . ,m, and i 6= j. Hence, the mean of the non-diagonal elements of the positional
matrix of V equals to EZ(S). This proves the theorem. �

Theorem 3. Suppose we randomly sample m sequences from a SQ pool S with replacement
and form V = {vi ∈ S|, i = 1, 2, . . . ,m} where 2 ≤ m ≤ |S|. Then, EZ(V) = EZ(S).

Proof. Follow the same idea of the proof of Theorem 2, but in one by one manner. �

Theorem 4. For any two M1-length sequences s1 and s2 composed from the same M ques-
tions, Fz(s1, s2) + Fz(s2, s1) =M1 + nspos where nspos equals to the number of the questions
appearing at the the same positions in s1 and s2.

Proof. Let us denote the M questions as [M1] = {1, 2, . . . ,M1}. For the case that a question
i ∈ [M1] appears at the same positions in s1 and s2, i contribute 1 to both Fz(s1, s2) and
Fz(s1, s2). For the other case that a question i ∈ [M1] does not appears at the same positions
in s1 and s2, i contribute 1 to either Fz(s1, s2) or Fz(s1, s2). There are M different questions
in the sequences, hence, Fz(s1, s2) + Fz(s2, s1) =M1 + nspos. �

23

Theorem 5. For any two M1-length sequences s1 and s2 that share ncom common questions,
Fz(s1, s2) + Fz(s2, s1) = ncom + nspos where nspos equals to the number of the questions
appearing at the the same positions in s1 and s2.

Proof. For unique questions only in s1 or s2, they do not contribute to neither Fz(s1, s2) or
Fz(s1, s2). For the other two cases, we have the same conclusions as Theorem 4. There are
only ncom questions contribute to Fz(s1, s2) + Fz(s2, s1), hence, Fz(s1, s2) + Fz(s2, s1) =
ncom + nspos.

Now let us look at our problem, the notations remain the same as that in the Optimization
Model Section. The expectation of collusion gain without prior knowledge of students’ com-
petences is the mean of the off-diagonal elements of the positional matrix of the assignment A,
since all students are taken as identical and all collusion cases share the same weight. Theorems
2 and 3 tell us that the EZ(·) value of an assignments A generated by randomly sampling from
a pool S should equal to EZ(S), no matter of replacement is allowed or not. Hence, we have

E(g(A)) = EZ(S)N (S7)

�

7.1 Circularly-shifting Pool
Now let us look at the cyclic sequence pool PCS first, where no questions appear at the same
position in any two sequences due to the nature of circular shifting.

7.1.1 M1 =M2

When replacement is allowed, we have

EZ(PCS) =
1

M2
2

M2∑
i,j=1

Zi,j(PCS) (S8)

where Z(PCS) is the positional matrix of PCS and Zi,i(PCS) =M1 for i = 1, 2, . . . ,M2. Based
on Theorem 4, it is easy to know that

Zi,j(PCS) + Zj,i(PCS) =M1, (S9)

holds for the off-diagonal elements. Hence, it is easy to obtain

EZ(PCS) =
1

M2
2

(
M2(M2 − 1)

2
M1 +M2M1

)
=
M1 + 1

2
(S10)

Similarly, when replacement is not allowed, we have

EZ(PCS) =
1

M2(M2 − 1)

[
M2∑
i,j=1

Zi,j(PCS)−M2M1

]
=
M1

2
(S11)

24

7.1.2 M1 < M2

The definition of EZ(·) reminds us that the mean of the positional matrix of a sequence pool
can be calculated by the expectation of Fz number between two randomly sampled sequences
from the pool. Without the loss of generality, we can assume the first sequence is sref =
[1, 2, . . . ,M1] for convenience, because for other cases, i.e., [k1, k2, . . . , kM1], we can relabel
tag 1 to k1, 2 to k2, . . ., M1 to kM1 . To be noted, by re-indexing, we have not changed the
questions themselves.

For the case with replacement, sref can be combined with any sequence from PCS with
equal chance. If we list the sequences in PCS in a right circular shifting manner started with
sref , it is easy to find that for the second sequence si to be chosen from PCS , where integer i
indicates the position of the sequence in the sorted list of PCS ,

Fz(sref , si) =

{
M1 − i+ 1, i < M1 + 1

0, M1 + 1 ≤M2

(S12)

To be mentioned, si = sref for i = 1. Thus, we have the values of Fz(sref , si) as [M1,M1 −
1, . . . , 1, 0, 0, . . . , 0] for i = 1, 2, . . . ,M2, with M2 −M1 zeros in total. Hence,

EZ(PCS) =
1

M2

M2∑
i=1

Fz(sref , si) =
M1(M1 + 1)

2M2

(S13)

Similarly for the case without replacement, the second choice can be only chosen from the
rest of the pool, resulting M2 − 1 choices (no sref). We have the values of Fz(sref , si) as
[M1 − 1,M1 − 2, . . . , 1, 0, 0, . . . , 0] for i = 2, 3, . . . ,M2, with M2 −M1 zeros in total. Hence,

EZ(PCS) =
1

M2 − 1

M2∑
i=2

Fz(sref , si) =
M1(M1 − 1)

2(M2 − 1)
(S14)

7.2 Complete Permutation Pool
Now let us look at the permutation pool PSQ. Similar ideas can be followed to the calculation
of EZ(PCS) with the M1 < M2 case. EZ(PSQ) can be calculated by the expectation of Fz
number between two randomly sampled sequences from the pool. Similarly, we can assume
the first sequence is sref = [1, 2, . . . ,M1] for convenience. Now we are going to calculate the
mean Fz value of all the combinations of sref and any sequence in PSQ for the case allowing
replacement, and the mean Fz value of all the combinations of sref and the other sequences in
PSQ for the case without replacement.

Suppose the second sequence si has been chosen from PSQ, and si = [v1, v2, . . . , vM1]
where vj for j = 1, 2, . . . ,M1 are the question tags. Now that we have sref = [1, 2, . . . ,M1]

25

and si = [v1, v2, . . . , vM1], it is easy to find that si can copy the problem vj if vj ≤ j, so an easy
criterion can be formed to judge whether a question vj ∈ si contributes to Fz(sref , si),

f(vj) =

{
1, vj ≤ j

0, vj > j
(S15)

7.2.1 M1 =M2

Note that, by random permutation, we can generate much more question sequences than that
obtained through circular shifting. PSQ actually contains M2! elements. Suppose that si is a
placeholder for a sequence, then the sum of all Fz(sref , si) values can be calculated by question
positions instead of by sequences, and for the case allowing replacement, it is

sumsi∈PSQ
Fz(sref , si) =

∑
si∈PSQ

[
M1∑
j=1

f(vj)

]
=

M1∑
j=1

 ∑
si∈PSQ

f(vj)

 . (S16)

and for the case not allowing replacement, it is

sumsi∈PSQ,i 6=1Fz(sref , si) =
∑

si∈PSQ,i 6=1

[
M1∑
j=1

f(vj)

]
=

M1∑
j=1

 ∑
si∈PSQ,i 6=1

f(vj)

 . (S17)

Each question from {1, 2, . . . ,M2} has an equal possibility to be vj (the jth question in a
sequence), and the frequency of each question to be the jth question all equals n/M2 in PSQ,
where n is the number of sequences in PSQ which is equal to M2!. Thus, based on the criterion
Equations (S15) and (S16) can be easily calculated with∑

si∈PSQ

f(vj) =
j

M2

n, for j = 1, 2, . . . ,M1 (S18)

sumsi∈PSQ
Fz(sref , si) = n

M1∑
j=1

j

M2

=
nM1(M1 + 1)

2M2

=
n(M1 + 1)

2
(S19)

and Equation (S17) with

sumsi∈PSQ,i 6=1Fz(sref , si) = sumsi∈PSQ
Fz(sref , si)− Fz(sref , s1) (S20)

=
n(M1 + 1)

2
−M1 (S21)

Hence, we can calculate the mean of all Fz(sref , si) values by normalizing the results in Equa-
tions (S19) and (S20) with their corresponding number of cases, and obtain EZ(PSQ) with and
without replacement as follows:

EZ(PSQ) =
n(M1 + 1)/2

n
=
M1 + 1

2
(S22)

26

EZ(PSQ) =
n(M1 + 1)/2−M1

n− 1
=
M1 + 1

2
− M1 − 1

2(n− 1)
(S23)

7.2.2 M1 < M2

Similar calculations can be done with the case of M1 < M2, and the only changes are the size
of PSQ which n = M2!/(M2 −M1)! now and M2 6= M1 now. Thus, we can easily obtain the
results for the cases with and without replacement as

EZ(PSQ) =
nM1(M1 + 1)/2M2

n
=
M1(M1 + 1)

2M2

(S24)

EZ(PSQ) =

nM1(M1+1)
2M2

−M1

n− 1
=

n

n− 1

M1(M1 + 1)

2M2

− M1

n− 1
(S25)

7.3 Comparison between Pools
For the ease of comparison, the EZ(·) values of random assignments in those cases have been
put in Supplementary Table 3. Based on Equation (S7), we know the expected average collusion
gain of a random assignment actually equals to the EZ(·) value of the pool that the assignment
has been sampled from, i.e., E(g(ACS))/N = EZ(PCS) and E(g(ASQ))/N = EZ(PSQ).
Comparing the results in Supplementary Table 3, we can find for the random sampling with
replacement, there is no difference between EZ(PCS) and EZ(PSQ) in both cases of M1 =
M2 and M1 < M2. But for the random sampling without replacement, the results are little
tricky. For the case M1 = M2 without replacement, it is easy to find that EZ(PSQ) is always
greater than M1/2 except the equality at M1 = 2. Since n = M2! increases rapidly, we have
EZ(PSQ) ≈ (M1 + 1)/2 and approximates to the value with replacement. Hence, in this case
(M1 = M2 without replacement), random sampling from PCS is better than from PSQ. For the
other case without replacement, we scale the EZ(PSQ) a little bit for easier analysis,

EZ(PSQ) =
n

n− 1

M1(M1 + 1)

2M2

− M1

n− 1
(S26)

=
n

n− 1

M1

2

(
M1 + 1

M2

− 2

n

)
(S27)

>
M1

2

(
M1 + 1

M2

− 2

n

)
(S28)

=
M1

2

(
M1 − 1

M2 − 1
+
M1 + 1

M2

− 2

n
− M1 − 1

M2 − 1

)
(S29)

= EZ(PCS) +
M1

2

(
M1 + 1

M2

− 2

n
− M1 − 1

M2 − 1

)
(S30)

27

Supplementary Table 3: Comparison between EZ(PCS) and EZ(PSQ).

Conditions M1 =M2 M1 < M2, n = M2!
(M2−M1)!

EZ(PCS)
w/ replacement M1+1

2
M1(M1+1)

2M2

w/o replacement M1

2
M1(M1−1)
2(M2−1)

EZ(PSQ)
w/ replacement M1+1

2
M1(M1+1)

2M2

w/o replacement M1+1
2
− M1−1

2(n−1)
n
n−1

M1(M1+1)
2M2

− M1

n−1

The residual part in Equation (S30) can be proved to be non-negative when M2 ≥ 3 and
M1 ≥ 2 as

M1 + 1

M2

− 2

n
− M1 − 1

M2 − 1
=

2M2 −M1 − 1

M2(M2 − 1)
− 2

n
(S31)

=
2M2 −M1 − 1

M2(M2 − 1)
− 2(M2 −M1)!

M2!
(S32)

≥ 2M2 −M1 − 1

M2(M2 − 1)
− 2(M2 − 2)!

M2!
(S33)

=
1

M2(M2 − 1)
[2M2 −M1 − 1− 2] (S34)

=
1

M2(M2 − 1)
[M2 −M1 +M2 − 3] ≥ 0 (S35)

Thus, we have EZ(PSQ) > EZ(PCS) when M2 ≥ 3 and M1 ≥ 2. It is easy to check that for
the case M1 = 1, EZ(PSQ) = EZ(PCS) = 0. Since M2 > M1, if M1 ≥ 2 then M2 ≥ 3.
Therefore, we have EZ(PSQ) ≥ EZ(PCS), and equality only holds on the situation M1 = 1.

Overall, we always have EZ(PSQ) ≥ EZ(PCS), and the equality only holds in the case
with replacement or in the case with M2 = M1 = 2 or M2 > M1 = 1. Thus, sampling
from the cyclic pool for random assignment tends to have a smaller expectation of the average
collusion gain than sampling from the permutation pool, and should be a preferred choice if
without sequence size issues.

28

References
[1] DOT, Distanced online testing, https://wang-axis.github.io/dot/ (2020).

[2] A. G. Webb, Introduction to biomedical imaging (John Wiley & Sons, 2017).

[3] G. Wang, Lecture, http://www.fully3d.org/rpi/ (2020).

[4] G. Wang, Lecture note, http://www.fully3d.org/rpi/assets/
mile-v2-031818.pdf (2020).

[5] R. Y. Rubinstein, D. P. Kroese, Simulation and the Monte Carlo Method (John Wiley &
Sons, 2016), third edn.

[6] D. C. Montgomery, G. C. Runger, Applied Statistics and Probability for Engineers (John
Wiley & Sons, 2007), fourth edn.

[7] Y. Benjamini, Y. Hochberg, Journal of the Royal Statistical Society: Series B (Method-
ological) 57, 289.

[8] T. W. Anderson, D. A. Darling, Annals of Mathematical Statistics 23, 193.

[9] G. D. Ruxton, Behavioral Ecology 17, 688–690.

[10] Flask, Flask, https://flask.palletsprojects.com/en/1.1.x/ (2020).

[11] Python, Python, https://www.python.org/about/ (2020).

[12] PostgreSQL, Postgresql, https://www.postgresql.org/ (2020).

[13] Psycogn2, Psycogn2, https://pypi.org/project/psycopg2/ (2020).

[14] Jinja, Jinja, https://jinja.palletsprojects.com/en/2.11.x/ (2020).

29

https://wang-axis.github.io/dot/
http://www.fully3d.org/rpi/
http://www.fully3d.org/rpi/assets/mile-v2-031818.pdf
http://www.fully3d.org/rpi/assets/mile-v2-031818.pdf
https://flask.palletsprojects.com/en/1.1.x/
https://www.python.org/about/
https://www.postgresql.org/
https://pypi.org/project/psycopg2/
https://jinja.palletsprojects.com/en/2.11.x/

	Proof of blackCollusion Control Theorem
	Anti-blackCollusion Algorithms
	Performance Comparison of the Algorithms
	Final Exam Design
	Statistical Testing: Did Significant blackCollusion Occur
	DOT Platform
	Random Sampling

