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We would like to thank the referees for their critical reading and pertinent concerns, as they have allowed
us to improve our manuscript. We have prepared a revised version of our manuscript, which includes all the
reviewers’ observations. Bold fonts are used for the referees’ comments and regular fonts for our reply.

Reviewer 1

1) Reviewer #1: Thank you for inviting me to review this manuscript by Coronel-Oliveros and
colleagues, in which the authors adapt a Jansen-Rit neuronal model to replicate and extend pre-
vious work relating the ascending neuromodulatory arousal system to network-level topological
characteristics and temporal signatures of neural activity.

Can the authors please discuss what the ‘excitatory interneuron’ population represents in the
Jansen-Rit model. The term ‘interneuron’ is typically used to describe locally-projecting GABAer-
gic neurons (http://doi.org/10.1146/annurev-neuro-070918-050421). Although some of these neu-
rons, by virtue of their inhibitory projections to other GABAergic neurons, are thought to disin-
hibit excitatory pyramidal neurons (e.g., http://doi.org/10.1038/s41593-019-0508-y), it is hard
to know whether this is the population the authors are referring to. Alternatively, the excita-
tory interneuron population could reflect local (i.e., within column) recurrent activity, however
this would imply a different set of properties (e.g., time-scales) and responsiveness (or not) to
different classes of neuromodulatory neurotransmitters (see next point).

The reviewer raises a fair concern. Local excitatory interneurons correspond to nearby pyramidal cells in the
cortical column - layer 5, the same layer as the principal pyramidal cells. See https://doi.org/10.3389/

fncom.2019.00054 for a reference, in particular Figure 2. According to the original model description found
in subsection 2.1 of Jansen & Rit (1995): “The cortical column is modeled by a population of feedforward
pyramidal cells, receiving inhibitory and excitatory feedback from local interneurons (i.e., other pyramidal,
stellate or basket cells residing in the same column) and excitatory input from neighboring or more distant
columns (Fig. 1)”. We added, within the model description in the Results and Methods section, this brief
explanation.

“excitatory interneuron population could reflect local (i.e., within column) recurrent activity”. This in fact is
represented, in our model, by the excitatory interneurons population: recurrent excitatory activity.

“however this would imply a different set of properties (e.g., time-scales) and responsiveness (or not) to
(...) neurotransmitters”. The reviewer was right, it is known that different kind of receptors are expressed
in particular cell types within the cortical column (https://doi.org/10.1093/cercor/bhr390 for an ex-
ample related to nicotinic receptors). The intra-columnar inhibition and the responsivity to afferent inputs
are mediated by both nicotinic –fast action– (http://doi.org/10.1016/S0168-0102(00)00151-6) and mus-
carinic (http://doi.org/10.1126/science.281.5379.985) receptors. In our model, we considered the ef-
fect of these receptors in the proposed mechanisms. For example, the increase of intra-columnar inhibi-
tion, modelled by the parameter β, reflects the increment of the inhibitory tone mediated by interneurons
through nicotinic receptors (http://doi.org/10.1016/S0168-0102(00)00151-6). Regarding the timescale of
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the neuromodulatory influence in increasing the intra-columnar inhibition, acetylcholine promotes this kind
of inhibition in a faster timescale through nicotinic receptors expressed on inhibitory interneurons (http:
//doi.org/10.1016/j.neuron.2012.08.036).

Along these lines, I worry that the link between the cholinergic system and the inhibitory con-
nection introduced in their model may not be as specific as the authors hope. Importantly, this
depends on precisely how the authors (and others) conceptualize the excitatory interneuron pop-
ulation. If they are conceptualizing EI as VIP+ interneurons, then these cells have demonstrated
responsivity to serotonin (http://doi.org/10.1523/JNEUROSCI.1869-10.2010), suggesting that the
effects identified by the authors are not specific to acetylcholine. If the effects of EI are presumed
to relate to recurrent pyramidal neurons, these connections could take the form of many different
classes of cells (http://doi.org/10.1038/s41593-020-0685-8)

As we stated before, in our manuscript we consider that the excitatory interneurons population are local
pyramidal neurons. The received disynaptic inhibition is mediated by inhibitory interneurons: see http:

//doi.org/10.1177/1073858412456743 for a reference of the disynaptic inhibition that we included in our
model. We have clarified the nature of the excitatory interneurons within the model description in the Results
and Methods sections.

Have the authors tested the stability/fit of their model following the addition of the new in-
hibitory connection? It’s possible that, by adding this gain, the authors have fundamentally
altered the fit to LFP data from the original study. This could potentially explain why the au-
thors required different parameter combinations (e.g., β = 0.4 in Fig 4B) to recover the original
results from Shine et al (2018).

Thanks for raising this issue. To characterize the behavior of the modified Jansen & Rit model, we performed a
bifurcation analysis and observed typical time series at different values of β. As a bifurcation parameter we used
p(t), the external input. With β = 0, and confirming previous studies (Spiegler et al., 2010, http://doi.org/
10.1016/j.neuroimage.2009.12.081) the model presents a couple of supercritical Hopf bifurcations between
which a steady, 10Hz (alpha) oscillation develops. In addition, a mixture of subcritical Hopf, saddle-node
and saddle bifurcations creates a small region where oscillations between 0.1 and 4.6 Hz appear. Introducing
the β parameter causes these regimes to move to higher p values and around β = 0.32 the low-frequency
component disappears and only the alpha-like oscillation prevails maintaining its frequency in the 10Hz range.
More importantly, the bifurcations occur at higher p values, thus allowing the model to sustain oscillations
when receiving a stronger external input now in the form of inter-columnar connections (our α parameter). In
the new version of the manuscript, we include the bifurcation analysis as a Supplementary Figure.
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Reviewer 2

Reviewer #2: The paper by Coronel-Oliveros et al. describes the effect of including local in-
hibitory circuits and their cholinergic modulation on segregation/integration balance in a mod-
ified Jansen-Rit model. These newly added local inhibitory coupling between interneurons is
a variation of modelling inhibition-mediated control of the E/I balance which is an interesting
approach to modelling neuromodulatory systems.

General comment: While the methods are profound, the graphs are of a high quality and the
language of the manuscript is very understandable, the manuscript would benefit from clearly
stating the essential message and sticking to its focus by restricting the number of exploratory
analyses. In particular, while the introduction clearly states the interest in integration and seg-
regation as a function of cholinergic action in inhibitory interneurons, also parameters such as
Kuramoto order parameter, signal-to-noise-ratio, regularity, static FC, FCD, FCD speed, mul-
tistability (not even discussed in the methods), phase synchrony, mean oscillatory frequency
and many more have been added. To me, the advantage of so many analyses and a wealth of
companying very similar figures 2-5, 7 is not clear. Rather this approach seems like a rather
exploratory analysis of all these parameters (that were taken from various computational neuro-
science papers) without a clear focus and this approach not only dilutes the mean focus of the
paper, makes all these values and their dependence on α and β much harder to interpret. The
authors should restrict the parameters to those who answer the initial question of the manuscript
and also rewrite the results and discussion section with a clearer focus to make their message
more understandable. If more parameters than the original ones (segregation, integration) are
chosen, it should be stated in the introduction on how they contribute to answering the original
question.

We thank the reviewer for their suggestions. We hope the reviewer will find the new version of the manuscript
more focused on the original question, the main results and the message we want to communicate. Following
the suggestions of the referee, we reduced the number of measured variables in the Results section, making
some figures simpler. We summarize the changes in the following list:

1) Figure 2: We now show only the Integration and Segregation measures.

2) Figure 4: Again we focus our results in Integration and Segregation.

3) We discuss the changes in the EEG-like signals in the third section of the Results. Now, we included the
Synchrony and the Signal-To-Noise Ratio, but removed the Regularity Index from the manuscript, because it
is redundant with the SNR.

4) In Figure 6, we shown only the results related to the BOLD-like signals: the Variance and Speed of the FCD.

5) We improved the motivation for measuring each metric different from segregation and integration.

With these changes, now the Results section is structured along three ideas: 1) The effect of the inhibitory
cholinergic neuromodulation, in its interaction with the excitatory neuromodulation (Figs 2-3) and with the
noradrenergic system (Fig 4), 2) the effect of neuromodulation in the fast (EEG) time scale (Fig 5), and 3)
how the segregation/integration balance is related to dynamical variety of the network (Figs 6-7).

Detailed comments: The Results section includes many interpretations of the analyses (e.g. line
167, 161, 184, 172-183, etc). The authors should move these interpretations to the discussion
section to make the Results section more concise.

As suggested, me moved all the possibles interpretations of the results to the Discussion section.

L. 162/203/etc: at times, different values when fixing α and β were chosen. What was the
rationale between switching the fixed parameters? It would make sense to stick with the same
fixed parameters across the different analyses and explain why these exact values were chosen.

Thanks for raising this issue. Because we are in a three dimensional space –considering the α, β and r0
parameters–, we fixed the value of r0 and β in different scenarios to facilitate the parameter swiping. In the
(α, β) parameter space, we fixed r0 = 0.56 because it constitutes the default value of the Jansen & Rit model;
we also assumed that the cholinergic system modifies only the α and β parameters, and not r0. In the (α, r0)
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parameters space, we selected β = 0 and β = 0.4 as two different values of inhibitory neuromodulation influence.
The first (β = 0) corresponds the original Jansen & Rit configuration, while β = 0.4 was chosen to prevent the
model to fall into highly synchronized regimes of activity. In fact, as they both obey to the cholinergic system,
it is even more plausible that α and β changed together as we also explore in the Results (line 221 in the new
version). Nevertheless, integration can also be observed with lower or higher of values of β (see for example the
Supplementary Figure 4).

L. 498: what is the advantage to simulating a BOLD signal for these analyses? Why not stick
with the EEG signal?

The reviewer has a good point, considering that the model election is a key step in computational modeling.
We chose to work with BOLD signals, in parallel with EEG signals, because most of the experiments related
to segregation and integration were originally conceived for fMRI-BOLD. See for example Cohen & D’Esposito
(2016, http://doi.org/10.1523/JNEUROSCI.2965-15.2016), Shine et al. (2016, http://doi.org/10.1016/
j.neuron.2016.09.018), and Wylei et al. (2012, http://doi.org/10.1016/j.neuroimage.2012.06.079).
However, we chose the Jansen & Rit model that produces an EEG-like signal, because it allowed us to biophys-
ically represent the influences of cholinergin and noradrenergic systems (through the input-to-output function).
The model also incorporates mesoscopic properties (such as the excitation/inhibition balance). Therefore, we
had to incorporate the extra step of converting the excitatory levels of activity to a BOLD-like signal as it has
been done in other works (http://doi.org/10.1016/j.cub.2018.07.083).

Fig. 3: is along the lines of my first comment. I do not see the main message of this figure and
how it contributes to answering the original question Fig 1 and 4 seem almost redundant to me-
in my view, the manuscript would benefit from reducing the number of figures.

We agree with the reviewer in that we originally arranged the Results section and its figures in a way that
made difficult to follow our central ideas. We hope that the overall changes we have made to the manuscript
will fix this and will make easier to the reader to distill the main messages. Although we are keeping the same
number of figures, several of them now have less panels and less information than in the first submission.
Regarding Figure 3, in our opinion it is important to show the BOLD-like signals and their corresponding
Functional Connectivity matrices for different combinations of α and β as different regimes of integration and
segregation emerge from them. Also, showing –at least once– an intermediate step in the analysis is a way
to point out that our results are robust and not a singularity in the parameter space nor artifacts of the
simulations. The same logic applies to Figure 6, where we have chosen to show to the reader the intermediate
steps and some raw data for an analysis (FCD) that not everybody may be familiar with.
Figure 1 is the model description therefore it cannot be redundant with Fig. 4. If the reviewer was referring
to Figures 2 and 4, they are not redundant because they represent different sections of the parameter space.
While in Figure 2 the effect of the cholinergic system only is shown (with its roles in modulating excitation and
inhibition), in Figure 4 we expand the analysis to include the noradrenergic system. As now we have restricted
the first part of results only to show functional integration and segregation, we hope this will be easier to
appreciate.

L. 209: with a wealth of parameters, the critical boundaries

Thanks for the suggestion, we changed to critical boundaries in plural. We are not sure whether your suggestion
was also to remark that many parameters can cause critical transitions (and we fully agree with that), but we
prefer to restrict our observation to what is shown in Fig. 2, not to confuse the reader.

Discussion: When reading the discussion, I found it hard to understand the main focus of it-
partly it is reads like an enumeration of ideas that are only partly connected. As I said in my
first comment, the manuscript would benefit from a more precise and restricted analysis and in
a similar fashion from a more focussed discussion focussing on the original question.

Thanks for your constructive criticism regarding the Discussion. In the new version of the manuscript we have
completely reformulated the Discussion section, focusing in the original question, the main results and the
main ideas we want to communicate: 1) the dynamical consequences of the newly introduced inhibitory control
loop, 2) a brief account of observations that further justify of our model, 3) comments on the relationship
between the integration/segregation balance and behavioral performance; and 4) possible future avenues and
some concluding remarks.

L. 298: Please sum up the main results in the first section of the discussion
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As we mentioned before, we completely reformulated the Discussion section. In particular, following your
suggestion we summarized our principal results in the first paragraph of this section.

L. 309: the referenced papers (11,19) do not include any analyses of integration. Which ex-
periments do you mean exactly and what did they really show? So far, I have only seen this
relationship in whole-brain models only. Please add experimental papers that were dealing with
neuromodulation and segregation/integration.

The reviewer raises a fair concern. The inverted-U relationship between neurmodulation and functional integra-
tion was described, to the best of our knowledge, just in computational models, similarly to Shine et al. (http:
//doi.org/10.7554/eLife.31130.001). The link between neuromodulation and integration that we discussed
is indirect: in-task performance follows an inverted-U function with neuromodulation (http://doi.org/10.
1146/annurev.neuro.28.061604.135709, http://doi.org/10.1016/j.pneurobio.2011.06.002) and with
functional integration (http://doi.org/10.1162/netn_a_00042). Our model suggests that this inverted-U
function could be found between neuromodulation and functional integration. This constitutes an interesting
point for future research. We clarified this issue in the Discussion section.

L. 332: which results back that up? I missed the inverted U across the large amount of figures.
Here, I again reiterate to reduce the number of figures according to your main question and
focus on the figures with the main message.

Thanks for the suggestion. We reduced the information of several figures in the new version of the manuscript.
We back up the original results of Shine et al. (2018, Figure 2, http://doi.org/10.7554/eLife.31130.001),
who reported an inverted-U relationship between the excitatory gain (given by the parameter gamma γ, in
their case) and integration.

L. 402: here two more parameters are introduced that should be removed from the manuscript
to sharpen the focus on the original question

As we removed several other network measures from the manuscript, we have chosen to maintain Functional
Connectivity Dynamic analysis to show some dynamic consequences of segregation/integration. We realize that
the increase in integration is linked with stable Functional Connectivity patterns over time. In the new version
of the Introduction and Discussion, we motivate better the inclusion of the Functional Connectivity Dynamics
Analysis.

Code/Data availability: The authors provided a github repo with the accompanying code to
reproduce the simulations. While I did not run the simulations myself, I found the code to be
very well written and understandable and well documented. In addition to the provided codes,
it would be good to include the measures of integration and segregation into the code as these
are the main variables of interest in the paper.

Thank you for the positive comments about our Github repository. We have improved the code and now is
optimized using the Numba package. Additionally, we included code to compute the integration/segregation
metrics used in this article. The code uses the Brain Connectivity Toolbox (Rubinov & Sporns, 2010, http://
github.com/fiuneuro/brainconn) and Networkx (Aric et al., 2008, http://networkx.org/documentation/
stable//index.html).
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Reviewer 3

The authors Coronel-Oliveros, Cofré, and Orio, performed a parameter exploration of a whole-
brain network model utilizing local dynamics from a neural mass model to describe the effects of
neuromodulatory systems and functional segregation and integration in the brain on the source
network level and the level of BOLD and EEG. The presented study heavily relies on Shine
et al., 2019, and the modeling work Shine et al., 2018. The authors extended the modeling
work of Shine et al., 2018 by using a different local dynamic model. The authors considered
two neuromodulatory systems, the cholinergic and the noradrenergic system. Both are assumed
to act uniformly in the brain at the level of cortical columns. The cholinergic system is also
considered to modulate the connectivity via white-matter fiber tracts. Both systems are as-
sumed to act independently and on a slower time scale than the local dynamics. In a first
modeling study, the authors systematically varied the level of local connectivity of inhibitory
to excitatory interneurons and the level of long-range connectivity and assessed integration and
segregation by graph-theoretic measures. In a successive study, the authors performed a similar
analysis. They varied the level of long-range connectivity and the variance of firing thresholds
for fixed connectivity levels from inhibitory to excitatory interneurons. The main result is that
the cholinergic system action on both the long-range connectivity and the inhibition of excita-
tory interneurons is needed to shift from an unsynchronized regime towards a coherent activity
(integrated). The model predicts that the projection of inhibitory to excitatory interneurons is
important for controlling the dynamics of a brain area. I appreciate that kind of modeling work.
However, the paper in the present version misses a proper description of observed phenomena
associated with neuromodulation through the cholinergic and the noradrenergic system. Effects
are often too vaguely described, and it is not clear how they are reflected in brain signals such
as EEG and BOLD. I also miss a convincing motivation for the used model. For instance, the
term neuromodulation repeatedly appears in the text, but the associated parameters are con-
stants and do not change with time in the model. For the reader, it is important to know how
constant model parameters and neuromodulation go together. The authors show the effect of
the model parameters on the graph-theoretic measures (efficiency and modularity) and dynamic
functional connectivity to assess integration and segregation of functional network states. How-
ever, the authors do not show and mention any particular functional networks. I am curious to
see the occurring networks and how meaningful they are. I unfortunately cannot recommend
the manuscript in its current stage for publishing in Plos-CB.

We thank the reviewer for the positive comments about our manuscript. Following their suggestions, we
modified the Whole-Brain model and justified better in the manuscript some key aspects of our modeling
approach. We summarize the changes we made in the new version of the manuscript in the following points:

1) The content of information of the figures was reduced; the focus of Figures 2-4 relies now in the segrega-
tion/integration measures.

2) The Discussion section was completely rewritten more focused on the results and their interpretation.

3) We justify some models choices in the several parts of the Methods section.

In spite of resting-state networks being widely characterized in fMRI, our main objective was to study how
neuromodulation manages the transition from segregated to integrated states. It could be very interesting
and meaningful to characterize the functional networks in computational models but that was not our main
objective. Indeed, it is possible that the transitions that we report could be observed using network topologies
other than the empirical human connectome, and thus our main result may be independent from the specific
functional networks... or not. This is something we plan to address soon.

Major comments: My reservations concern the model and the description of the neuromodulation
systems, most of which can be addressed by improving and elaborating the text’s description.
The description of the cholinergic and the noradrenergic systems should be clearer and more
consistent throughout the paper. On the one hand, the authors should elaborate more on the
physiological aspect - why these systems are so important? On the other hand, the authors
should better motivate neuromodulation’s modeled action in the local dynamic model. From
the author’s description of the biophysical mechanisms, I could imagine other implementations
for the action of both systems, for example, the cholinergic system : lines 56/57, increasing the
excitability of pyramidal neurons” could be modeled by lowering firing threshold theta of pyra-
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midal cells and by increasing PSP gain, that is, C2, C4, and C at pyramidal cells. Why have the
authors decided to scale the input from other brain areas to describe pyramidal cells’ increased
excitability? In the model, input from other brain areas is linear in the PSP at pyramidal cells.
I agree that ”lines 70/71: pyramidal neurons become more responsive to stimulus from other
distant regions respect to the stimulus of its own cortical column.” However, is that equivalent
to ”increasing the excitability of pyramidal neurons”? Please elaborate.

The reviewer raises a fair concern. We improved the description of neuromodulatory systems in the Introduction.
We also explain better our modeling choices in several passages of the text.

Regarding the effect of the cholinergic system over pyramidal neurons, the reviewer is right that increasing the
global coupling, α, is not the same as increasing the excitability of pyramidal neurons. However, α does increase
the responsiveness of pyramidal neurons to the rest of the network, thereby augmenting their activity. As an
example, we wrote in Methods: “Although α does not control directly the excitability, increasing α amplifies
the input to pyramidal neurons [18, 19]”.

In addition, we would like to comment that several of our modeling decisions obey to making our work compa-
rable to others’. There are lots of different modeling choices that we could have implemented in order to have
(arguably) a better model, but then it would be difficult to attribute a new finding to a specific mechanism. The
main novelty in our model is the inclusion of the homeostatic inhibitory mechanism and its neuromodulation;
thus we tried to replicate everything else the way it has been published before –having as a special reference
the work by Shine et al. (2018).

Lines 67/68, enhancing the activity and firing rates of dendritic-targeting GABAergic interneu-
rons” should be modeled by β ∗ x2(t) at excitatory interneurons as well as pyramidal cells. Why
is the presented model β ∗ x2(t) affecting excitatory interneurons only and not the inhibitory
projections onto pyramidal cells?

We added a disynaptic connection described in Fino et al. (http://doi.org/10.1177/1073858412456743).
In spite of sharing, in equation (5), the same inhibitory interneurons that target the principal pyramidal cells,
we scaled the disynaptic connection by a parameter β that is independent of the projections from inhibitory
interneurons to principal pyramidal neurons. We can make this assumption if we consider that the inhibitory
interneurons, which provide the disynaptic inhibition, constitute a different population from the one that targets
directly onto pyramidal neurons.

the noradrenergic system : “Increases responsiveness to input-driven activity respect to spon-
taneous activity and filters out noise.” In my opinion, that action is better represented in the
model by the scaling α of the connections between brain areas, also because the ”lines 51/52:
the effect is more pronounced between distant brain regions.” How do the authors relate this
noradrenergic effect to a slope change in converting postsynaptic potentials to the firing rate? A
flat slope allows for a linear transfer of potential dynamics into rate dynamics. A steep transfer
function restricts the dynamic range of the conversion. Therefore, a neural mass is more likely
to be saturated: the saturated unexcited or in the saturated excited state. In both states, the
neural mass is less sensitive. In general, the slope reflects the variance of the firing thresholds
theta within a neural mass. That’s why I am curious to know why the authors have decided to
alter the slope of potential-to-rate function for all neural masses? Please explain.

The reviewer remarks an interesting point. We took inspiration from the effect of the neural gain in increasing
the signal-to-noise ratio in single neurons (http://doi.org/10.1126/science.2392679). In our model, the
increment of r0 sharpens the discrimination between below- or above-threshold inputs, decreasing the response
to the former (assumed to be unspecific noise) and increasing the response to the later. On the contrary, an
increase of α causes an overall increase in the response to inter-regional inputs. As suggested by Servan-Schreiber
et al. (http://doi.org/10.1126/science.2392679) and Aston-Jones & Cohen (http://doi.org/10.1146/
annurev.neuro.28.061604.135709), the increment of the signal-to-noise ratio promoted by r0 facilitates the
synchronization of the neural masses in our whole-brain model, considering intermediates values of α, e.g., for
α ∈ [0.3, 0.7]. Also, this modeling choice was reinforced by the fact that the previous work by Shine et al.
(2018) did it in the same manner.

The authors should elaborate on the model decision. Most of the cholinergic neurotransmission
is known on the level of neurons but the authors used a neural mass model instead of a neuronal
model. Neurotransmitters are not directly implemented in neural mass models. The associated
neurotransmitters do act on different time scales (see, Shine, 2019). What are the neurotrans-
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mitters that potentially drive the constant level changes in the presented model. The authors
should answer the question of why the level of neural masses and large-scale brain networks is
appropriate for studying neuromodulation and functional integration and segregation in general?

In fact, the model selection is not a trivial step. The rationale behind the model selection is the following:

1) Segregation and integration have been studied mainly, but not exclusively, at the macro-scale level, that is,
in the Whole-brain. On the other hand, neuromodulators usually affect a large number of neurons inside a
brain region, thus changing their mesoscale dynamics. The model we chose spans both the mesoscale (internal
dynamics of a node representing a brain area) and the macro-scale in assembling the network with the human
connectome.

2) To test our hypothesis about the neuromodulation of inhibitory circuits by acetylcholine, we needed to use
a model that considers the interactions between different neural populations inside a mass. This made the
Jansen & Rit model almost an obvious choice, because it explicitly models both the excitatory and inhibitory
feedback loops usually found within cortical columns, that we needed to alter in order to represent cholinergic
influences.

3) The complex cascades of cellular signaling, triggered by neuromodulators in a faster timescale, can produce,
in a slower timescale, changes in the properties of the input-to-output function of neurons, as remarked in
http://doi.org/10.1016/j.neuron.2018.01.008. In a similar way, we use the input-output function of
neural masses to analyze the effect of neuromodulation in our Whole-brain model.

4) “What are the neurotransmitters that potentially drive the constant level changes in the presented model”.
We modeled, starting from the ideas of Shine et al. (http://doi.org/10.7554/eLife.31130.001, http:

//doi.org/10.1038/s41593-018-0312-0), the effect of acetylcholine and noradrenaline.

For instance, it is unclear how connectivity speed is derived from the human connectomes. Here,
I guess, the authors confused transmission delay/time with transmission speed. Please clarify
and describe how to derive values with unit 1/seconds from a distance (which distance measure
was used?).

The reviewer is right, we confused transmission speed with transmission delays, additionally our model does
not have time delays. We used a distance-dependent PSP time constant (‘D’ matrix, calculated as Euclidean
distances between all brain areas) as a quick and possibly dirty way to represent transmission delays, arising
from a constant transmission speed with different distances between brain areas. However, we understand the
confusion this causes and later noticed that our results are mostly maintained with a uniform time constant for
inter-area (long-range) synaptic connections. We do not refer, in the new version of the manuscript, to time
delays.

It is also unclear why the long-range connectivity speed (delay) affects the characteristic time
constant of (dendritic) excitatory postsynaptic potentials at pyramidal cells? The impulse re-
sponse functions hE(t) and hI(t) are properties of local neural masses such as the pyramidal cells.
In contrast, long-range connectivity is a network property. The characteristic time constant of
postsynaptic potentials differs dependent on the target of synapses on the dendrite. Studies
on the single pyramidal cells show that inhibitory interneurons target closer to the soma and
excitatory interneurons more distal. Excitatory synapses from more distant areas target more
distal and show a distinct characteristic time constant in the postsynaptic potentials. So I agree
to the extent that long-range input is integrated with a different time, but I do not see the
point of having a different time constant for different lengths of long-range connections. Please
elaborate. Time delays tau would read x3,ij(t− τij) in the equation system (1).

The reviewer is right. It is not biological plausible to have different characteristic time constants for different
long-range EPSPs. As we mentioned before, we modified the model using only one characteristic time constant
for the long-range EPSPs, and we repeated the simulations using this new value.

What are the model assumptions? The modulatory systems do show spatial organization (e.g.,
http://doi.org/10.1073/pnas.1703601115). Is that an approximation? I suggest adding para-
graphs discussing model assumptions, expectations, data descriptions, predictions, and how to
test these.

The reviewer raises a fair concern. It is known that both cholinergic and noradrenergic neuromodulatory
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systems have a spatial organization (http://doi.org/10.1016/j.neuron.2014.07.002,http://doi.org/10.
1073/pnas.1703601115). We are not including this spatial organization, but we remarked this issue in the
Discussion. Furthermore, we clarified some of our model choices in several parts of the Methods section.

My specific comments (reading the manuscript from the beginning to the end). Line 3: What is
an optimal behavioral outcome?

Thanks for noting this, it is not a minor issue. We should not have referred to “optimal”, we meant “coherent”.
A coherent behavioral outcome is a behavioral response that is well-suited considering the current context. We
changed the word “optimal” for “coherent”.

Line 5: This statement should be softened. There are also other potential candidates for de-
scribing state changes (multistability dynamics, structured flow on manifolds, etc.).

The reviewer is right remarking that other elements, such as multistability and manifolds, can sustain the wide
repertory of brain states. However, both constitute substrates for network reconfiguration, but not mechanisms
that allow the transitions from segregation to integration. Indeed, neuromodulatory systems can produce a
switch between different brain states. Also, we did not modify the Author Summary, because we consider that
this level of detail is not necessary for that section.

Line 8: The point that ”segregation/integration balance is impaired in several neuropsychiatric
disorders” should be discussed in more detail in the main text. How is such an impairment of
segregation/integration balance reflected in brain signals? What are the relevant disorders?

Although it is very interesting to discuss how the alterations in the segregation/integration balance are related
to neuropsychiatric disorder, dwelling on this point may dilute the main message of our work. We added in
the Discussion two references of segregation/integration impairments in Parkinson disease (http://doi.org/
10.1007/s00415-015-7750-3) and in schizophrenia (http://doi.org/10.1038/npjschz.2016.14). There
is also a general reference for whole-brain modeling to understand the segregation/integration imbalance in
neuropsychiatric disorders (http://doi.org/10.1098/rsta.2016.0283).

Line 35: Please provide a reference for the “non-stationarity” of functional connectivity. Are fluc-
tuations at rest non-stationary or non-linear? See, for example, dx.http://doi.org/10.33892Ffnins.
2020.00493 [https://doi.org/10.3389/fnins.2020.00493].

Thanks for the suggestion. As remarked by Guan et al. (2020) resting-state activity is both non-linear and
non-stationary. We included this reference in the Introduction, and also modified the related phrase.

Line 40: “Neuromodulatory systems provide a biophysical mechanism that enhances the dynam-
ical flexibility.” What are these systems? Please provide examples? It appears to be a category
of several systems that are capable of modulating neurons. Also, a definition of ”dynamical
flexibility” is missing.

The term “dynamical flexibility” was not the most accurate. The idea is more general, and it is not exclusive
of any neuromodulatory system. We changed the entire phrase to: “Neuromodulatory systems tune the firing
properties of neurons, providing a mechanism to change the flow of information within the brain. Thus,
neuromodulation constitutes a plausible mechanism that the brain employs to manage the transitions between
different FC patterns.”.

Line 44:“Indeed, the cholinergic system increments” That is one specific neuromodulatory sys-
tem. It reads like there is no other. Please summarise for the reader what the “cholinergic
system” is and elaborate on the neurophysical role of this system and its elements.

We added a brief description of the cholinergic system in the Introduction: “The cholinergic system is involved
in cognitive and attentional selectivity [21], and in the cerebral cortex the main source of acetylcholine are
projections from the basal forebrain [23]. Acetylcholine increments the...”. Also, the physiological aspect of the
cholinergic system was addressed in the Introduction.

“[Indeed, the cholinergic system increments...] That is one specific neuromodulatory system. It reads like there
is no other”. The reviewer is right. We softened the claim and wrote the next phrase: “In that line, the
cholinergic and noradrenergic systems have been proposed as candidates to influence the cognitive processing
within the brain [20, 21], in spite of not being the unique neuromodulatory systems in the central nervous
system that can tune the firing properties of neurons [19, 22].”
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Line 49: What is the “noradrenergic system”? Please elaborate.

We added a brief explanation of the noradrenergic system in the Introduction: “On the other hand, the
noradrenergic system is related to the exploratory behavior [20], and the principal source of noradrenergic
projections to the cerebral cortex comes from the locus coeruleus [26]. Noradrenaline increases...”.

Line 50: “input-driven activity” What is the input? Do you mean stimuli like visual stimuli?
Do you mean any input that a neural population receives other than its intrinsic ”spontaneous
activity”? Please clarify.

We clarified this issue with a pair of short phrases in the Introduction: “the noradrenergic system increases
the responsivity (or selectivity) of neuronal populations to input-driven activity (e.g., visual stimuli, inputs for
distant brain areas relevant to tasks) with respect to spontaneous activity (or the internal state of the brain).”

Line 67: Please clarify the difference between“activity and firing rate”?

Thanks for pointing out this issue. The words activity and firing rates are redundant. We left only the term
firing rates.

Lines 67 to 71: “.. and second, enhancing the activity and firing rates of dendritic-targeting
GABAergic interneurons, an effect that promotes intra-columnar inhibition, reducing the local
excitatory feedback to pyramidal neurons [23,26,27].” This reads like “reducing the local exci-
tatory feedback to pyramidal neuron” is a necessary reaction of the increased “intra-columnar
inhibition” That is not necessarily the case because the pyramidal cells are also affected by
intra-columnar inhibition.

The reviewer is right, a “whole” intra-columnar inhibition would affect both the excitatory interneurons
and pyramidal neurons. However, the effect of the disynaptic inhibition that we included in our model is
more focused (http://doi.org/10.1126/science.281.5379.985). We modified the phrase to “firing rates of
dendritic-targeting GABAergic interneurons, an effect that promotes a focused intra-columnar inhibition”

Lines 89 to 91: “... excitatory gain, which increases the inter-columnar coupling. This gain mech-
anism is mediated by the action of the cholinergic system in pyramidal neurons, principally but
not exclusively, and increments pyramidal excitability [10, 11, 22].” Is it not the noradrenergic
system that acts on a large-scale between brain areas, as mentioned before?

The reviewer is right. The phrase is not accurate enough. In our model, both the coupling and the filter
gain contributes to increasing integration. In fact, we wrote this in the Introduction: “Therefore, a complex
interaction between the cholinergic and noradrenergic system seems to manage the balance between integration
and segregation. Using a whole-brain model, Shine et al.[31] showed that neuromodulation...”. Also, we
modified the phrase of lines 98-99 (previous manuscript) to: “The increase of the signal-to-noise ratio by the
noradrenergic system, alongside with the increment of global coupling, can promote functional integration”.

Lines 95 to 99: ”Finally, we incorporated a “filter gain,” that increments the pyramidal neurons
sigmoid function slope [11]. The noradrenergic system mediates this last gain mechanism; it
acts as a filter, decreasing (increasing) the responsivity to weak (strong) stimuli [15,17], boosting
signal-to-noise ratio and promoting integration [10].” The described actions are local and equal
for all neural masses. Still, the effect is described to be long-range ”lines 51 to 52: This effect
is more pronounced between distant brain regions, in which structural connectivity is relatively
low, promoting functional integration.” Please clarify.

This is an important point to clarify. The filter gain r0 does not control the global coupling, as the parameter
α does. However, increasing r0 has an effect on the signal-to-noise ratio, as we remarked above. When neural
masses are more sensitive to neural activity than noise, the synchronization likelihood of the system increases.
We remark again that this modeling choice is not ours only, it has been used before both in the interpretation
of the data and in the modeling of neuromodulatory influences.

Lines 120/121: The time delays are not defined in the Materials and Methods section. If time
delays are defined by the distance between brain areas divided by a speed, please clarify and
discuss the assumed speed (is it a spatially invariant constant). What distance measure was
applied (Euclidean as a lower bound proxy or mean streamline length?). Please elaborate.

As our representation of transmission delays turned out to be confusing and was not needed for the reproduction
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of our results, we do not refer anymore to the time delays.

Page 4, Fig. 1. ”The cholinergic system has a multiplicative effect on the sigmoid function.
α amplifies pyramidal neurons’ response to other columns’ input” What do the authors mean
exactly with multiplicative effect on the sigmoid function? Please explain in the main text?
Please clarify ”response”? Do the authors refer to postsynaptic potentials or firing rate?

In the original framework proposed by Shine et al. (http://doi.org/10.7554/eLife.31130.001,http://doi.
org/10.1016/j.tics.2019.04.002), controlling the response gain is equivalent to scaling the global coupling
of the FitzHugh-Nagumo neural network. However, in our case modifying the coupling between pyramidal
neurons is not equivalent to directly changing the properties of the sigmoid function of pyramidal neurons.
Instead, increasing α has an indirect effect on pyramidal neurons excitability, in a similar way to the external
input p(t). The reviewer is right in remarking this issue. We clarified it in the new version of the manuscript.

Lines 127 to 139: The authors should emphasize the model parameters and that these are
constant levels for each simulation. I understand the presented model in that way that there
is no neuromodulation. The model parameters α, β, and r0 are constants and are no functions
of time as readers might expect from ”neuromodulation.” The authors should highlight time
scales, separate them, and why and under which circumstances the systematic exploration of
constant parameters matters. Because this is so important for the modeling work, this should
be mentioned and discussed at several stages in the manuscript.

The reviewer raises an interesting point. We are simulating the effects of tonic neuromodulation, in the same
spirit as Deco et al. (2018, http://doi.org/10.1016/j.cub.2018.07.083) and Shine et al. (2018, http:
//doi.org/10.7554/eLife.31130.001). We remarked this issue in the new version of the manuscript within
the Discussion section: “Our model considers neuromodulation to be static, that is, the parameters α, β, and
r0 do not change over time, as in tonic neuromodulation. Among the possible improvements to our model,
there is the addition of the release and reuptake dynamics of neuromodulators, as in Kringelbachet et al. [74]
or the characterization of the dynamics under acute neuromodulation ’pulses’.”

Lines 242 to 244: There is a difference between noise and chaos in the model. A noise process
drives the model with predefined moments. Chaos can occur due to the model’s complexity
and the coupling in the network (see http://doi.org/10.1371/journal.pcbi.1002298 and http://

doi.org/10.1016/j.neuroimage.2016.02.015). Although the applied measure does not distinguish
between noise and chaos, the system’s ability to show deterministic chaos should be discussed.
Whereas the noise process represents an additional dimension and something ’unknown’ extrinsic,
the deterministic chaos is intrinsic and produced and maintained by the system itself.

We agree with the reviewer in chaos and noise being completely different in origin as well as in the effects they
may have on the system. Moreover, the Regularity measure does not discriminate between noise and chaos. To
avoid confusion, we have removed the Regularity measure and any mention of chaos or noise related to it.

Lines 259 to 297: The authors have to define the term criticality? Is it a statistical term, or does
it correspond to deterministic mechanisms such as bifurcations that occur in the local dynamic
model? Please elaborate.

In our whole-brain model, we used the term critical transitions to describe points in the parameter space,
where the network transits from unsynchronized to synchronized behavior. The ’critical parameters’ α, β and
r0 constitute the bifurcations parameters that cause the system to transit between the unsynchronized and
synchronized regimes of activity.

Line 299 to 306: The authors refer to experimental findings based on the action of nicotinic
acetylcholine (20,23,27) and somatostatin receptors (26) on spiking single neurons. How do these
electrophysiological findings translate into the hypothesis that ”cholinergic neuromodulation of
the inhibitory interneurons (that suppresses the local 300 excitatory feedback to pyramidal neu-
rons) facilitates functional integration?” Moreover, how can the utilized mesoscopic - large-scale
level of neural masses and long-range connectivity help test the hypothesis. Why do the au-
thors use forward models for EEG and BOLD? Do EEG and BOLD data exist supporting the
hypothesis linked to the electrophysiological findings?

Thanks for raising this issue. We take inspiration from the aforementioned references to define the mecha-
nisms in our model related to neuromodulatory systems. At the macro-scale level, we commented about some
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experimental works in which fMRI recordings were taken under the effects of cholinergic and noradrenergic
agonists. In the manuscript, some of the references correspond to http://doi.org/10.1016/j.neuroimage.

2012.06.079, http://doi.org/10.1016/j.neuron.2016.09.018, http://doi.org/10.1162/netn_a_00042.
The main idea in simulating BOLD-like signals is to link our results to real experiments, which were originally
conceived for fMRI. In spite of the Jansen & Rit model being a model of EEG, we chose it because it incorporates
mesoscale properties that other models lack (see for example http://doi.org/10.1073/pnas.1905534116).

Line 307 to 310: The references 11 and 19 are reviews, so I wonder which extend the presented
model can explain the, in refs 11 and 19, discussed experimental data. Does the model explain
more than the already described and modeled inverted U-shape (10,18)?

The reviewer raises a fair concern. The inverted-U relationship between neuromodulation and functional in-
tegration was described, in our knowledge, just in computational models, similarly to Shine et al. (http:
//doi.org/10.7554/eLife.31130.001). The link between neuromodulation and integration that we discussed
is indirect: in-task performance follows an inverted-U function with neuromodulation (http://doi.org/10.
1146/annurev.neuro.28.061604.135709, http://doi.org/10.1016/j.pneurobio.2011.06.002) and with
functional integration (http://doi.org/10.1162/netn_a_00042). Our model suggests that this inverted-U
function can also be found between neuromodulation and functional integration. This constitutes an interest-
ing point for future research. We clarified this issue in the Introduction and Discussion. For example, in the
Discussion we wrote a paragraph which starts with the next phrase: “From an experimental point of view,
the inverted-U relationship between neuromodulation and integration that we are reporting in our whole-brain
model, has not been observed [...]”.

“Does the model explain more than the already described and modeled inverted U-shape”. We wanted to
reproduce the inverted-U function. The difference in our approach relies on the inclusion of the inhibitory gain
β. The parameter β not only follows an inverted-U relationship with functional integration but also the extent
of integration mediated by α and r0 depends on the inhibitory gain driven by β. To study the contribution of
inhibitory interneurons alone is of relevance, considering that alterations in the excitation/inhibition balance
may impair the segregation/integration features of the healthy brain (http://doi.org/10.1098/rsta.2016.
0283).

Lines 317/18: Again, the modes as presented do not include time delays. In the model, the
transmission times of long-range connections determine the local characteristic time scale of the
excitatory postsynaptic potentials at the receiving pyramidal neurons. Here, the authors should
give motivation for that implementation in the model. To me, it does not sound biophysically
plausible.

The reviewer is right, our model does not include time-delays. We have removed the distance-dependent time
constants from the model.

Lines 449: How important are the mean and variance of the noise process for the results? What
is the effect of noise?

The parameter σ, which controls the standard deviation of p(t), has an effect on the likelihood of synchroniza-
tion. Our results did not change qualitatively with σ, but the magnitude of the synchronization/integration
decreases with the parameter. In the same manner, the mean µ of the input p(t) has an effect in decreasing
the integration and synchronization. We extended this idea in the first paragraph of the Whole-Brain Neural
Mass Model section in Methods. Also, we imclude one Supplementary Figure related to the effects of µ and σ.

Lines 465 to 468: Do the authors really mean speed here? The physical SI-unit for speed is
meter/second. So I wonder, how is the speed (m/s) derived from the connectome? Usually, the
distance is decided by a constant speed to approximate transmission delays. However, to include
transmission times as characteristic time constants in the ODEs is also not correct as these are
two different things. The characteristic times in the ODEs, in fact, hE,I(t) represent local prop-
erties of the postsynaptic responses to synaptic input and should not vary for different incoming
connections. Please elaborate. These points need to be clarified. What is the interpretation
of the distances between brain areas here? Are we talking about Euclidean distances or mean
streamline lengths between brain regions?

The reviewer is right. It is not biophysically plausible to have different characteristics time constants for
long-range EPSPs. In the new version of the manuscript we clarified this issue, and now we used an unique
characteristic time constant for long-range EPSPs.
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Pages 13 The equations in the Materials and Methods section should be consistently numbered.
In the presented manuscript are 17 equations, but only three equations have numbers.

In the previous version of the article we followed the convention of numbering only the equations that are
referenced in the text. Although PLoS Computational Biology does not specify a policy on this issue, we now
have numbered all the equations.

Page 13, equation (1):There are four sets of 2nd-order ODEs. For better understanding, it is
worth describing their function. I. The first two equations are for the excitatory projections of
pyramidal cells onto both interneurons. II. The second pair of equations is for the excitatory
projections of excitatory interneurons onto pyramidal cells. Here we see, that the external input
is assumed to be excitatory and share the characteristic time constant of intra-areal excitatory
projections at the pyramidal cells. III. The third pair of equations is for the inhibitory projections
of inhibitory interneurons onto pyramidal cells. IV. The fourth pair is very similar to the I pair of
equations only differs in the scales and is meant to explain the excitatory long-range projections
of pyramidal cells in distant areas onto target pyramidal cells.

Thanks for the suggestions. We added a more detailed explanation of the Jansen and Rit equations, for
improving the understanding of the model. Also, we changed the last pair of equations considering that we
employed, in the new version of the manuscript, a unique characteristic time constant for long-range EPSPs.

Here the time constants depend on the length of incoming connections, for which an explanation
is missing. Please elaborate.

To build the matrix D we employed the distance between the centroids of each region defined in the AAL
parcellation. The entries of D are inversely proportional to the distances between brain regions. However, as
we remarked above it is not biophysically plausible to include different characteristic time constants for the
long-range EPSPs, so we chose a unique time constant for all the long-range connections.

The notation of the incoming activity to y0 and y3 are identical (within the sigmoids). This
becomes circular with inserting zi(t) (the unnumbered equation below). I guess, the input to y3
should read (C2x1,j−C4x2,j+Cαzj) because the sigmoid looks backward into the source. That’s why
the equation for the average input should also be adapted to, for instance, za,b = sumn

b=1Mabx3,ab,
where a,b are indices of brain areas and b is the source whereas a is the target index.

Thanks for the suggestion. First, we modified the equations and used a unique value for the inverse of the
characteristic time constant, for long-range connections, instead of the matrix D as in the previous version of
the manuscript. The equations y0 and y3 may look identical because they represent the output of pyramidal
neurons, which is the same independently of the targets. The difference relies on the two different EPSPs blocks
that we used to integrate the outputs of pyramidal neurons: one for the local connections to both interneurons,
and another for the long-range connections with distant pyramidal neurons. As explained before, both occur
with different characteristic time constants (a and a, respectively).

The authors should elaborate on the fact that the connectivity weights are normalized individually per receiving
brain area. Why is that? The equation for the average input can be simplified Mab = Mij/sumjMij , where
Mij is the weight as presented in the manuscript. An overall normalization by a scalar uniformly applied to all
entries, for instance, the maximum in-strength sounds more plausible. By using an input wise normalization,
the relative weights between receiving brain areas are lost.

This is a very interesting question. The normalization that we employed is a local normalization based on
the strength of individual nodes. The local normalization constitutes a mechanism of homeostatic plasticity
which equalizes the excitatory inputs that the nodes receive while preserving the structural topology. This is
a very common assumption in network models (see http://doi.org/10.1371/journal.pcbi.1004007 as an
example) and it has been reported that this mechanism improves the fit of a whole-brain mesoscopic model
to empirical fMRI data, leading to a better estimation of the Functional Connectivity (http://doi.org/10.
1038/s41598-018-33923-9). In the new version of the manuscript, we change the notation of the structural

connectivity matrix from M to M̃ , the later being the normalized version of M . In the Methods section, we
explain the rationale of the normalization procedure of the structural connectivity matrix.

The equations show that the inhibitory interneurons have two targets: the pyramidal cells and
the excitatory interneurons. The authors motivated the scaling of inhibitory activity as neuro-
modulation. Why is it then that only the inhibitory postsynaptic potential at the excitatory
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interneurons are scales but not the inhibitory postsynaptic potential at the pyramidal cells?
However, the source of activity is identical? This modeling choice must be better motivated.

As we clarified before, we can make this assumption if we consider that the inhibitory interneurons, which
provide the disynaptic inhibition, constitute a different population from the one that targets directly onto
pyramidal neurons.

Line 473: the maximum firing rate zeta should be in 1/s it’s a rate, not a frequency.

The thank the reviewer for pointing out this issue. We have changed the units as suggested.

Lines 475 to 477: Why is only the firing rate of pyramidal cells used to calculate BOLD? Mainly,
the pyramidal cells’ postsynaptic potential is reflected in M/EEG because of the number of
pyramidal cells and their arrangement. However, that does not apply to BOLD. Here all neural
masses contribute.

BOLD fluctuations are correlated with energy expenditure. The main energy expenditure comes from restoring
the ion-gradients which sustain EPSPs. Because the sodium gradient is far from equilibrium, in comparison
with the chloride gradient related to IPSPs, preserving the sodium gradient is thermodynamically expensive.
In consequence, the energy expenditure related to the excitatory activity is higher in comparison to inhibitory
activity (http://doi.org/10.1016/j.neuroimage.2004.07.013). In fact, there is some evidence that in-
hibitory activity does not produce a measurable BOLD response, because of the lower number of inhibitory
synapses and their lower energy expenditure (http://doi.org/10.1038/35023171). In accordance with this,
similar modeling works that calculate a BOLD signal from the activity of neural masses do it from the excitatory
activity only (http://doi.org/10.1016/j.cub.2018.07.083).

We clarified this issue in the Methods section. In addition, we reproduced Figure 2 using a combined BOLD
response. Three BOLD-like signals were generated, one signal for each neural mass and the signals were summed
to produce a unique time series. We compared this approach with the original results (using only the firing rates
of pyramidal neurons) and we found no noticeable differences. The results were appended as a Supplementary
Figure.
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