1	Supplemental Material
Т	Supplemental Material.
2	
3	Figure S1. The <i>clpSA-lacZ</i> fusion is not regulated by Fur or IscR.
4	Figure S2. The transient phenotype of the Hpx ⁻ <i>clpSA</i> mutant is statistically robust.
5	Figure S3. ClpX and ClpP exhibit independent effects upon cell growth.
6	Figure S4. The $\Delta clpSA \Delta clpX$ mutant remains viable even when 8 μ M H ₂ O ₂ blocks its growth.
7	Figure S5. Hpx ⁻ Δ <i>clpSA</i> Δ <i>clpPX</i> cells do not exhibit a significant growth defect in aerobic LB
8	media.
9	Figure S6. ClpX and ClpSA are not necessary to recover from an abrupt nutritional downshift.
10	Figure S7. The Clp proteins work independently of the Suf cluster-assembly system.
11	Figure S8. The protective effect of a <i>clpX</i> mutation depends upon Dps in a <i>recA</i> strain.
12	Figure S9. Unlike Dps, ferritin and bacterioferritin did not affect the level of free iron available to
13	participate in Fenton chemistry.
14	Figure S10. Mn does not poison Hpx⁻ cells or Hpx⁺ Clp⁻ cells.
15	Table S1. Strains.
16	Table S2. Primers.
17	

Supplementary Figure 1. The *clpSA-lacZ* fusion is not regulated by Fur or IscR. The cells were
grown aerobically in medium that included histidine and aromatic and branched-chain amino
acids. Where indicated, 100 µM of the cell-permeable iron chelator desferrioxamine (DFO) was
supplied to deactivate the Fur:Fe(II) repressor. Apo-IscR strains lack the Fe-S cluster in IscR.
Strains: ASE149, ASE227, ASE242, ASE248.

31 Supplementary Figure 2. The transient phenotype of the Hpx⁻ *clpSA* mutant is statistically

robust. Anaerobic cultures were diluted into aerobic medium with or without 8 μ M H₂O₂ at

time zero. The time points were measured after 12 hours. Strains: LC106, ASE11.

37

38 Supplementary Figure 3. ClpX and ClpP exhibit independent effects upon cell growth.

39 Anaerobic cultures were diluted into aerobic medium containing 8 μ M H₂O₂ at time zero. The

40 clpX mutant consistently exhibits greater sensitivity to H₂O₂ than does a clpP mutant. A clpX

41 plasmid complements the *clpX* but not the *clpP* mutation, indicating that the *clpP* phenotype

42 does not arise from a polar effect upon *clpX*. Strains: ASE398, ASE400, ASE413, ASE414.

43

47 Supplementary Figure 4. The $\Delta clpSA \Delta clpX$ mutant remains viable even when 8 μ M H₂O₂

blocks its growth. Anaerobic cultures of Hpx⁻ $\Delta clpSA \Delta clpX$ cells (ASE21) were diluted at time

49 zero into aerobic media containing 8 μ M H₂O₂. At intervals aliquots of the cells were removed

50 the cells were plated on anoxic medium to determine viability.

55 Supplementary Figure 5. Hpx⁻ ΔclpSA ΔclpPX cells do not exhibit a significant growth defect in

- **aerobic LB media.** Anaerobic cultures were diluted into aerobic LB at time zero. Strains:
- 57 ASE125, ASE217.

62 Supplementary Figure 6. ClpX and ClpSA are not necessary to recover from an abrupt

nutritional downshift. The cells were precultured aerobically in LB media to OD 0.1. They were

64 then centrifuged and resuspended at time zero in minimal glucose medium containing Phe, Tyr,

65 Trp, and His. Strains: MG1655, ASE3, ASE9.

69

70 Supplementary Figure 7. The Clp proteins work independently of the Suf cluster-assembly

system. Anaerobic cultures of Hpx⁻ mutants were diluted at time zero into aerobic medium.

72 No additional H_2O_2 was added, indicating that the phenotypes arise from only the ~ 1 μ M H_2O_2

that arises in Hpx⁻ cultures. Strains: LC106, SJ1017, ASE213, and ASE300.

74

77

78 Supplementary Figure 8. The protective effect of a *clpX* mutation depends upon Dps in a *recA*

79 strain. Anaerobic cultures were aerated, and 2.5 mM H₂O₂ was added for 2 minutes. Catalase

80 was then added, and viability was determined by plating on anaerobic LB plates. The use of

81 *recA* strains allowed DNA damage to be perceived without the amplification of Fenton

82 chemistry by cystine addition, as in Fig. 10. Strains: ASE386, ASE388, ASE390.

- 83
- 84

- 85
- 86

87 Supplementary Figure 9. Unlike Dps, ferritin and bacterioferritin did not affect the level of

88 free iron available to participate in Fenton chemistry. Anaerobic cells were then aerated for

two hours. They were diluted in the same medium, incubated for 3 min with 0.5 mM cystine,

90 and exposed to 2.5 mM H₂O₂ for 2 minutes. Catalase was added, and viability was determined

- 91 by plating. Strains: LC106, ASE125, ASE308, ASE310.
- 92
- 93

Supplementary Figure 10. Mn does not poison Hpx⁻ cells or Hpx⁺ Clp⁻ cells. Anaerobic cultures 97 of Hpx⁻ cells (LC106) were diluted into aerobic medium at time zero, with or without the 98 addition of 4 μ M manganese. The Hpx⁺ $\Delta clpSA \Delta clpX$ cells (ASE217) were precultured 99 aerobically and then diluted in media with or without 4 μ M manganese.

103	
104	Table S1: Strains
105	
MG1655	F ⁻ wild-type E. coli
LC106	ΔahpF::kan Δ(katG17::Tn10)1 Δ(katE12::Tn10)1
AS015	LC106 with p <i>clpSA</i>
ASE3	MG1655 ΔclpX::cat
ASE7	LC106 ΔclpX::cat
ASE9	MG1655 ΔclpSA::cat~zbj-1230::Tn10
ASE11	LC106 Δ <i>clpSA::cat~zbj-1230::</i> Tn10
ASE15	ASE11 with pWKS30
ASE17	ASE11 with p <i>clpSA</i>
ASE21	LC106 ΔclpX::cat ΔclpSA::cat~zbj-1230::Tn10
ASE36	LC106 with pclpPX
ASE38	ASE7 with pWKS30
ASE40	ASE7 with p <i>clpPX</i>
ASE67	LC106 ΔclpP::cat
ASE117	LC106 Δdps::cat Δ(clpX::cat)
ASE119	LC106 ΔclpPX::cat
ASE125	LC106 ΔclpPX::cat Δ(clpSA::cat)
ASE149	MG1655 att λ ::[pSJ501::clpS'-lacZ ⁺]~cat
ASE151	ASE125 with pWKS30
ASE153	ASE125 with p <i>clpSA</i>
ASE155	LC106 $att\lambda$::[pSJ501::clpS'-lacZ ⁺]~cat
ASE157	LC106 $\Delta oxyR$::spec att λ ::[pSJ501::clpS'-lacZ ⁺]~cat
ASE173	MG1655 $att\lambda$::[pSJ501::clpS'-lacZ ⁺] with pACYC184
ASE175	MG1655 <i>attλ</i> ::[pSJ501:: <i>clpS'-lacZ</i> ⁺] with p <i>GS058</i>
ASE197	MG1655 ΔclpPX::cat
ASE201	MG1655 clpX::cat Δ(clpSA::cat)
ASE203	MG1655 ΔclpP::cat
ASE207	LC106 $\Delta(clpP::cat) \Delta(clpSA::cat)$
ASE213	LC106 Δ(clpPX::cat) Δ(clpSA::cat)
ASE217	MG1655 Δ(clpPX::cat) Δ(clpSA::cat)
ASE225	MG1655 $\Delta oxyR$::spec att λ ::[pSJ501::clpS'-lacZ ⁺]
ASE227	MG1655 Δfur::kan attλ::[pSJ501::clpS'-lacZ ⁺]
ASE242	MG1655 $\Delta iscR1::cat att \lambda::[pSJ501::clpS'-lacZ^+]$
ASE248	MG1655 <i>iscR-(C92A/C92A/C104A)~zfh-3600::</i> kan <i>attλ</i> ::[pSJ501:: <i>clpS'-lacZ</i> ⁺]
ASE252	MG1655 $att\lambda$::[pSJ501::clpPX'-lacZ ⁺]~cat
ASE254	LC106 att λ ::[pSJ501::clpPX'-lacZ ⁺]~cat
ASE270	MG1655 Δdps::cat
ASE272	LC106 Δdps::cat Δ(clpPX::cat) Δ(clpSA::cat)
ASE282	LC106 Δdps::cat

ASE296	LC106 ∆bfr::cat
ASE298	LC106 Δbfr::cat Δ(clpPX::cat) Δ(clpSA::cat)
SJ1017	LC106 ΔsufBCDSE1::cat
ASE300	LC106 ΔsufBCDSE1::cat Δ(clpPX::cat) Δ(clpSA::cat)
ASE308	LC106 ΔftnA::cat Δ(bfr::cat)
ASE310	LC106 ΔftnA::cat Δ(bfr::cat) Δ(clpPX::cat) Δ(clpSA::cat)
ASE386	MG1655 ΔclpX::cat recA56-srlC300::Tn10
ASE388	MG1655 Δdps::cat recA56-srlC300::Tn10
ASE390	MG1655 ΔclpX::cat Δ(dps::cat) recA56-srlC300::Tn10
ASE394	LC106 with pCKR101
ASE396	LC106 with p <i>clpX</i>
ASE398	ASE7 with pCKR101
ASE400	ASE7 with <i>pclpX</i>
ASE402	ASE119 with pCKR101
ASE404	ASE119 with <i>pclpX</i>
ASE406	ASE207 with pCKR101
ASE408	ASE207 with <i>pclpX</i>
ASE412	LC106 iucC::lacZ ΔclpX::cat
ASE413	ASE67 with pCKR101
ASE414	ASE67 with <i>pclpX</i>
ASE425	MG1655 pColV(<i>iucC</i> ::lacZ) Δ <i>clpX</i> :: <i>cat</i>

107 MG1655 (1) is a wild-type strain that was obtained from the *E. coli* Genetic Stock Center. LC106

108 (2) is an Hpx⁻ derivative of it. The plasmids pWKS30 (3) and pACYC184 and pGS058 are

109 described (4). Derivative strains listed above were constructed using alleles that were provided

110 by colleagues. The $\Delta dps::cat$ and $\Delta oxyR$::spec (5) alleles were obtained in strains from Stephen

111 Finkel and Gigi Storz, respectively. The Δfur::kan allele was transduced from EM1256 (6). The

112 ΔiscR1::cat allele was generated in (7). The iscR-(C92A/C92A/C104A)~zfh-3600::kan allele was

113 obtained in PK7887 (8); the Δ*sufBCDSE1::cat* allele (7) was made in our lab. The pCKR101

114 plasmid (7) was provided by Jeff Gardner. The *recA56* allele was reported (9). The

115 pColV(*iucC::lacZ*) plasmid (10) was obtained from Joe Nielands.

clpSA deletion	5'-GGCGTTCTGCCGATAACCGTAACCGAAGATGATAACTGACATGTAGGCTGGAGCTGCTTCG-3'
	5'-TTCGAGATTACGGACTTGACCAACCTACCTAACAATCAGACATATGAATATCCTCCTTAG-3'
<i>clpX</i> deletion	5'-GTGTGCGGCACAAAGAACAAAGAAGAGGTTTTGACCCATGTGTAGGCTGGAGCTGCTTCG-3'
	5'-CCCTTTTTGGTTAACTAATTGTATGGGAATGGTTAATTACATATGAATATCCTCCTTAG-3'
clpP deletion	5'-CGGTACAGCAGGTTTTTTCAATTTTATCCAGGAGACGGAATGTAGGCTGGAGCTGCTTCG-3'
	5'-ATGAAGCGCCATAAGTTCATTCATGCGCCCTTTAACTTTCCATATGAATATCCTCCTTAG-3'
suf deletion	5'-CTGTTATACGCTGAAAGCGATGAAGTGAGGTAAATCGATGTGTAGGCTGGAGCTGCTTCG-3'
	5'-CAATGTGAGCCAACCGGATGAAAGCTGTCCTTTTAGTTTACATATGAATATCCTCCTTAG-3'
dps deletion	5'-TAATTACTGGGACATAACATCAAGAGGATATGAAATTATGTGTAGGCTGGAGCTGCTTCG-3'
	5'-TATCGGGTACTAAAGTTCTGCACCATCAGCGATGGATTTACATATGAATATCCTCCTTAG-3'
bfr deletion	5'-TCTACTCTTCAAAGAGTGGAAGCGAAGGAGTCAAAAAATGTGTAGGCTGGAGCTGCTTCG-3'
	5'-TCTTATTAACCGGGAGGGTTCTCCCTCCCGACACGGCTCACATATGAATATCCTCCTTAG-3'
ftnA deletion	5'-GCCACAGCAACAAATATAACCTTTGTGGAGCACTATCATGTGTAGGCTGGAGCTGCTTCG-3'
	5'-TTTGAAACGGCGGCAGTAAACCTGCCGCCGGAGAGCATTACATATGAATATCCTCCTTAG-3'
clpSA::lacZ	5'-AAGATCGTCGGTACCCTGGCATTTTGCCTTTAGGA-3'
	5'-GCGTAGCGCGAATTCCATTGTCAGTTATCATCTTC-3'
clpPX::lacZ	5'-ACGTAACTGCTGCAGCGGTGTTAGCGTAACAACAA-3'
	5'-ATGCTAGCTGGTACCCATGGGTCAAAACCTCTTC-3'
Cloning <i>clpPX</i>	5'-TGACAGGGATCCAAAGCCTCTTTCGGTGTTAGCGT-3'
	5'-ATACGTATCTGCAGGATGTTTCCCCCACATTCAA-3'
Cloning clpSA	5'-TAATATAATGGATCCATAAACCGGGGTCAGAGAGG-3'
	5'-ATAATATAACTGCAGACCTCCTCCACCCCATAAAC-3'
Cloning clpX	5'-ACGTACGTGGTACCCAAAGAAGAGGTTTTGACCCATGACAGATAAACGC-3'
	5'-AGTTCACTTGTCGACGGTTAATTATTCACCAGATGCCTGTTGC-3'
110	

121		References for supplementary material.
122		
123	1.	Neidhardt FC (ed). 1996. Escherichia coli and Salmonella. ASM Press, Washington D C.
124	2.	Seaver LC, Imlay JA. 2001. Alkyl hydroperoxide reductase is the primary scavenger of
125		endogenous hydrogen peroxide in <i>Escherichia coli</i> . J Bacteriol 183:7173-7181.
126	3.	Wang RF, Kushner SR. 1991. Construction of versatile low-copy-number vectors for
127		cloning, sequencing and gene expression in <i>Escherichia coli</i> . Gene 100:195-199.
128	4.	Kullik I, Stevens J, Toledano MB, Storz G. 1995. Mutational analysis of the redox-
129		sensitive transcriptional regulator OxyR: regions important for DNA binding and
130		multimerization. J Bacteriol 177:1285-91.
131	5.	Park S, You X, Imlay JA. 2005. Substantial DNA damage from submicromolar intracellular
132		hydrogen peroxide detected in Hpx ⁻ mutants of <i>Escherichia coli</i> . Proc Natl Acad Sci USA
133		102:9317-9322.
134	6.	Masse E, Gottesman S. 2002. A small RNA regulates the expression of genes involved in
135		iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 99:4620-4625.
136	7.	Jang S, Imlay JA. 2010. Hydrogen peroxide inactivates the Escherichia coli Isc iron-
137		sulphur assembly system, and OxyR induces the Suf system to compensate. Mol
138		Microbiol 78:1448-67.
139	8.	Nesbit AD, Giel JL, Rose JC, Kiley PJ. 2009. Sequence-specific binding to a subset of IscR-
140		regulated promoters does not require IscR Fe-S cluster ligation. J Mol Biol 387:28-41.
141	9.	Imlay JA, Linn S. 1986. Bimodal pattern of killing of DNA-repair-defective or anoxically
142		grown Escherichia coli by hydrogen peroxide. JBact 166:519-527.
143	10.	Bagg A, Neilands JB. 1985. Mapping of a mutation affecting regulation of iron uptake
144		systems in <i>Escherichia coli</i> K-12. J Bacteriol 161:450-453.
145		
146		