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The following code requires epiR (version 2.0.17 or higher). To download the latest version go to
https://cran.r-project.org/web/packages/epiR/index.html.

Box 1: Prevalence estimation

The expected seroprevalence of brucellosis in a population of cattle is thought to be in the order of 15%.
How many cattle need to be sampled and tested to be 95% certain that our seroprevalence estimate is
within 20% (i.e. 0.20 X 0.15 = 0.03, 3%) of the true population value, assuming use of a test with perfect
sensitivity and specificity? This formula requires the population size to be specified so we set N to a large
number, 1,000,000:

library(epiR); library(ggplot2); library(nlme); library(RColorBrewer); library(readstatal3)

z <- 1.96
N <- 1000000
Py <- 0.15

epsilon.r <- 0.2

num <- z"2 * N * Py * (1 - Py)

den <- ((N - 1) * epsilon.r”2 * Py”2) + (z"2 * Py * (1 - Py))
n <- ceiling(num / den); n

#> [1] 544

epi.sssimpleestb(N = 1E+06, Py = 0.15, epsilon.r = 0.20, se = 1, sp = 1, nfractional =
FALSE, conf.level = 0.95)

#> [1] 545

Minor differences between the sample size estimates calculated manually and those from epiR due to
rounding.

Box 2: Prospective cohort study

A prospective cohort study of dry food diets and feline lower urinary tract disease (FLUTD) in mature male
cats is planned. A sample of cats will be selected at random from the population and owners who agree to
participate in the study will be asked to complete a questionnaire at the time of enrolment. Cats enrolled
into the study will be followed for at least 5 years to identify incident cases of FLUTD. The investigators
would like to be 0.80 certain of being able to detect when the risk ratio of FLUTD is 1.4 for cats habitually
fed a dry food diet, using a 0.05 significance test. Previous evidence suggests that the incidence risk of
FLUTD in cats not on a dry food (i.e. ‘other’) diet is around 50 per 1000 per year. Assuming equal numbers
of cats on dry food and other diets are sampled, how many cats should be enrolled into the study?



irexp@ <- 50 / 1000
irexpl <- 70 / 1000
FT <- 5
r<-1

z.beta <- 0.84
z.alpha <- 1.96

lambda® <- irexp®
lambdal <- irexpl
lambda <- mean(c(lambdal, lambda®))

flambda® <- (lambda®”3 * FT) / ((lambda® * FT) - 1 + exp(-lambda® * FT))
flambdal <- (lambdal”3 * FT) / ((lambdal * FT) - 1 + exp(-lambdal * FT))
flambda <- (lambda”3 * FT) / ((lambda * FT) - 1 + exp(-lambda * FT))

num <- (z.alpha * sqrt((1 + r) * flambda) + z.beta * sqrt((r * flambdal + flambda®)))"2
den <- (r * (lambdal - lambda®)”"2)

n <- ceiling(num / den); n

#> [1] 1039

epi.sscohortt(irexpl = 50/1000, irexp® = 70/1000, FT = 5, n = NA, power = 0.80, r = 1,
design = 1, sided.test = 2, nfractional = FALSE, conf.level = 0.95)$%n.total
#> [1] 2080

A total of 2080 male cats need to be sampled to meet the requirements of the study (1040 cats habitually
fed dry food and 1040 cats habitually fed ‘other’ diet types).

Box 3: Case-control study

A case-control study of the association between white pigmentation around the eyes and ocular squamous
cell carcinoma in Hereford cattle is planned. A sample of cattle with newly diagnosed squamous cell
carcinoma will be compared for white pigmentation around the eyes with a sample of controls. Assuming
an equal number of cases and controls, how many study subjects are required to detect an odds ratio of
2.0 with 0.80 power using a two-sided 0.05 test? Previous surveys have shown that around 0.30 of
Hereford cattle without squamous cell carcinoma have white pigmentation around the eyes.

z.beta <- 0.84
z.alpha <- 1.96

OR <- 2
r<-1
po <- 0.3

Pc <- (p@ / (r + 1)) * ((r *OR / (1 + (OR - 1) * p@)) + 1)
t1 <- (r+1) * (1 + (OR - 1) * po)"2

t2 <- r * pBr2 * (p@ - 1)72 * (OR - 1)72

t3 <- z.alpha * sqrt((r + 1) * Pc * (1 - Pc))

t4 <- OR * p@ * (1 - po)

t5 <- 1 + (OR - 1) * po

t6 <- t4 / (t5°2)

t7 <- r * po * (1 - po)



t8 <- z.beta * sqrt(té6 + t7)
n <- ceiling((t1 / t2) * (t3 + t8)"2); n
#> [1] 281

epi.sscc(OR = 2.0, p@ = 0.30, n = NA, power = 0.80,
r =1, rho = 0, design = 1, sided.test = 2, conf.level = 0.95,
method = "unmatched", nfractional = FALSE, fleiss = FALSE)$n.total
#> [1] 282

If the true odds for squamous cell carcinoma in exposed subjects relative to unexposed subjects is 2.0, we
will need to enrol 141 cases and 141 controls (282 cattle in total) to reject the null hypothesis that the odds
ratio equals one with probability (power) 0.80. The Type | error probability associated with this test of this
null hypothesis is 0.05.

Box 4: Non-inferiority trial

Suppose a pharmaceutical company would like to conduct a clinical trial to compare the efficacy of two
antimicrobial agents when administered orally to patients with skin infections. Assume the true mean cure
rate of the treatment is 0.85 and the true mean cure rate of the control is 0.65. We consider a difference of
less than 0.10 in cure rate to be of no clinical importance (i.e. delta = -0.10). Assuming a one-sided test
size of 5% and a power of 80% how many subjects should be included in the trial?

treat = 0.85
control = 0.65
z.alpha <- 1.64
z.beta <- 0.84
delta <- -0.10

tl <- treat * (1 - treat) + control * (1 - control)
t2 <-r

t3 <- z.alpha + z.beta

t4 <- treat - control - delta

n <- ceiling((t1 / t2) * (3 / t4)"2); n

#> [1] 25

epi.ssninfb(treat = 0.85, control = 0.65, delta = -0.10, n = NA,
r = 1, power = 0.80, nfractional = FALSE, alpha = 0.05)%$n.total
#> [1] 50

A total of 50 subjects need to be enrolled in the trial, 25 in the treatment group and 25 in the control group.

Freecalc

A cross-sectional study is to be carried out to confirm the absence of brucellosis in dairy herds using a bulk
milk tank test assuming a design prevalence of 5%. Assume the total number of dairy herds in your study
area is unknown and large and the bulk milk tank test to be used has a diagnostic sensitivity of 0.95 and a
specificity of 1.00. How many herds need to be sampled if you want to be 95% certain that the prevalence
of brucellosis in dairy herds is less than the design prevalence if all tests are negative?



rsu.sssep.rs(N = NA, pstar = 0.05, se.p = 0.95, se.u = 0.95)
#> [1] 62

A total of 62 herds need to be sampled and tested.

Imagine the test we’re using has a diagnostic sensitivity of 0.95 (as before) but this time it has a specificity
of 0.98. How many herds need to be sampled to be 95% certain that the prevalence of brucellosis in dairy
herds is less than the design prevalence if less than a specified number of tests return a positive result?

rsu.sssep.rsfreecalc(N = 5000, pstar = 0.05, mse.p = 0.95,
msp.p = 0.95, se.u = 0.95, sp.u = 0.98, method = "hypergeometric",
max.ss = 32000)$summary

#> n N ¢ pstar pl se.p sp.p

#> 1 194 5000 7 ©.05 0.04898102 0.951019 ©.9573939

A system sensitivity of 95% is achieved with a total sample size of 194 herds, assuming a cut-point of 7 or
more positive herds are required to return a positive survey result.

Note the substantial increase in sample size when diagnostic specificity is imperfect (194 herds when
specificity is 0.98 compared with 63 when specificity is 1.00). The relatively low design prevalence in
combination with imperfect imperfect specificity means that false positives are more likely to be a problem
in this population so the number tested needs to be (substantially) increased.

Box 5: One-stage cluster sampling

An aid project has distributed cook stoves in a single province in a resource-poor country. At the end of
three years, the donors would like to know what proportion of households are still using their donated
stove. A cross-sectional study is planned where villages in a province will be sampled and all households
(approximately 75 per village) will be visited to determine if the donated stove is still in use. A pilot study of
the prevalence of stove usage in five villages showed that 0.46 of householders were still using their stove
and the intracluster correlation coefficient (ICC) for stove use within villages is in the order of 0.20. If the
donor wanted to be 95% confident that the survey estimate of stove usage was within 10% of the true
population value, how many villages (clusters) need to be sampled?

b <- 75

Py <- 0.46
epsilon.r <- 0.10
rho <- 0.20

z <- 1.96

D<-1+ ((b - 1) * rho)
n.psu <- ceiling((z”2 * Py * (1 - Py)) * D / ((Py * epsilon.r)”2 * b)); n.psu

#> [1] 96

epi.sscluslestb(b = 75, Py = 0.46, epsilon.r = 0.10, rho = 0.20, conf.level = 8.95)$n.psu
#> [1] 96

A total of 96 villages need to be sampled to meet the requirements of the study.

Box 6: One-stage cluster sampling (continued)



Continuing the example presented in Box 5, we are now told that the number of households per village
varies. The average number of households per village is 75 with a 0.025 quartile of 40 households and a
0.975 quartile of 180. Assuming the number of households per village follows a normal distribution the
expected standard deviation of the number of households per village is in the order of (180 - 40) + 4 = 35.
How many villages need to be sampled? In the code below, bcv standards for coefficient of variation
defined as the standard deviation of the cluster sizes divided by the mean of the cluster sizes.

bmu <- 75

bsigma <- 35

Py = 0.46
epsilon.r <- 0.10
rho <- 0.20

z <- 1.96

bcv <- bsigma / bmu

D <- 1+ ((bcv*2 + 1) * bmu - 1) * rho

n.psu <- ceiling((z”*2 * Py * (1 - Py)) * D / ((Py * epsilon.r)”2 * bmu)); n.psu
#> [1] 115

epi.sscluslestb(b = c(75,35), Py = 0.46, epsilon.r = 0.10, rho = 0.20, conf.level =
0.95)%n.psu

#> [1] 115
A total of 115 villages need to be sampled to meet the requirements of the study.

Box 7: Design effect

Continuing the example provided in Box 1, being seropositive to brucellosis is likely to cluster within herds.
Otte and Gumm (1997) cite the intracluster correlation coefficient for Brucella abortus in cattle to be in the
order of 0.09. We now adjust our sample size estimate of 545 to account for clustering at the herd level.
Assume that, on average, b = 20 animals will be sampled per herd:

z <- 1.96
N <- 1000000
Py <- 0.15

epsilon.r <- 0.2
D<- 1+ ((20 - 1) * 0.09)

num <- z*2 * N * py * (1 - Py)

den <- ((N - 1) * epsilon.r”2 * Py”2) + (z"2 * Py * (1 - Py))
n <- ceiling((num / den) * D); n

#> [1] 1475

ceiling(epi.sssimpleestb(N = 1E+06, Py = 0.15, epsilon.r = 0.20, se = 1, sp = 1,
nfractional = FALSE, conf.level = 0.95) * D)
#> [1] 1477

After accounting for the presence of clustering at the herd level we estimate that a total of (545 X 2.71) =
1477 cattle need to be sampled to meet the requirements of the survey. If 20 cows are sampled per herd
this means that a total of (1477 - 20) = 74 herds are required.



Box 8: Hierarchical data

Dohoo et al. (2001) provide details of an observational study of the reproductive performance of dairy
cows on Reunion Island. If this study were to be repeated, how many lactations would need to be sampled
to be 95% confident that the estimated logarithm of calving to conception interval was within 5% of the true

population value?

From Dohoo et al. (2001) the standard deviations of the random effect terms from a multilevel model of
factors influencing log transformed calving to conception interval at the herd, cow and lactation level were
0.1157, 0.1479 and 0.5116, respectively. A copy of the Reunion Island dairy cow fertility data set

( reu_cc.dta ) is available from https://projects.upei.ca/ver/. This next code chunk can be skipped if you

don’t have access to the data:

dat <- read.dtal3("reu_cc.dta", convert.factors = FALSE)

# Number of herds:
g3 <- length(unique(dat$herd)); g3
#> [1] 50

# Number of cows:
g2 <- length(unique(dat$cow)); q2
#> [1] 1345

# Number of Llactations:
gl <- length(unique(dat$obs)); q1l
#> [1] 2509

# Frequency histogram of calving to conception intervals:
par(mfrow = c(1,2), pty = "s")

hist(exp(dat$lncc), xlab = "CC interval"”, ylim = ¢(0,500), main
hist(dat$lncc, xlab = "Log CC interval"”, ylim = c(©,500), main
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Sample size calculations:

# Sample size to estimate calving to conception interval assuming no clustering:
ccmu <- mean(dat$lncc); ccmu

#> [1] 4.59008

ccsigma <- sd(dat$lncc); ccsigma

#> [1] ©.5444898

# Mean log transformed calving to conception interval 1s 4.6; the standard deviation of Llog
transformed calving to conception interval is ©0.54. Calculate the number of
Lactations required, assuming the data are independent:

z <- 1.96
N <- 1000000
Vx2 <- ccsigma”2 / ccmu”2

epsilon.r <- 9.05

ml <- ceiling((z”2 * N * Vx2) / ((1.96 * Vx2) + (N - 1) * epsilon.r”2)); ml
#> [1] 22

ml <- epi.sssimpleestc(N = 1E@6, xbar = ccmu, sigma = ccsigma, epsilon.r = epsilon.r,
conf.level = 0.95); ml

#> [1] 22
# A total of 22 lactations are required.

# Calculate the design effect:

dat.lme@l <- lme(lhcc ~ 1, random = ~1 | herd / cow, data = dat)
VarCorr(dat.1lmeol)

#> Variance StdDev



#> herd = pdLogChol (1)
#> (Intercept) 0.01340103 0.1157628
#> cow = pdLogChol (1)
#> (Intercept) 0.02187348 ©0.1478969
#> Residual 0.26172336 0.5115890

# Calculate herd and cow level ICCs. Standard deviations of the herd, cow and Llactation
Level random effect terms calculated above:

sigma3 <- ©.1157628 # [Herds]
sigma2 <- 0.1478969 # [Cows]
sigmal <- ©.5115890 # [Lactations]

# Herd level ICC:
rho2 <- sigma3”2 / (sigma3”~2 + sigma2”2 + sigmal”~2); rho2
#> [1] 0.04512163

# Cow level ICC:
rhol <- (sigma3”2 + sigma2”2) / (sigma3”2 + sigma2”2 + sigmal”~2); rhol
#> [1] ©.1187703

# If we elect to sample two Llactations per cow, calculate the design effect to account for
clustering of lactations within cows:

nl <- 2
D1 <- rhol * (n1 - 1) + 1; D1
#> [1] 1.11877

# How many Llactations are required, accounting for clustering of Llactations within cow?
m2 <- ceiling(D1 * ml); m2
#> [1] 25

# How many cows are required?
n2 <- ceiling(m2 / nl); n2
#> [1] 13

# Design effect to account for clustering of cows within herds:
D2 <- 1 + (n1 * (n2 - 1) * rho2) + ((n1 - 1) * rhol); D2
#> [1] 2.201689

# How many Llactations are required, accounting for clustering of Llactations within cows and
cows within herds?

m3 <- ceiling(D2 * ml); m3
#> [1] 49

# How many herds required?
n3 <- ceiling(m3 / (n1 * n2)); n3
#> [1] 2

# Total number of Llactations required:
nl * n2 * n3

#> [1] 52

# We need to sample 2 Llactations from 13 cows from 2 herds (a total of 52 lactations) to
meet the requirements of the study.



The required sample size assuming the data were independent was 22. The required sample size
accounting for lack of independence in the data was 52, a 2.5-fold difference.

Simulation to estimate a sample size — generation of a population data set

# Generate a population data set. Define the number of level 3 (herd) units in the
population. Here we generate a relatively small number of herds to reduce
simulation times:

tn3 <- 20

# Define the number of Llevel 2 (cow) units within each Level 3 (herd) unit by taking a
random draw from the Poisson distribution with mean equal to 150 and add 1 (to
ensure that there are no herds of zero size):

tn2 <- rpois(n = tn3, lambda = 150) + 1

# Set the number of level 1 (lactation) units within each level 2 unit (cow) using the
Poisson distribution. Each element of vector tnl represents the number of lactation
records available for each cow in each herd:

tnl <- rpois(n = sum(tn2), lambda = 3) + 1

# Assign Level 1 (lactation) 1identifiers:
11id <- seq(from = 1, to = sum(tnl), by = 1)

# Assign Level 2 (cow) identifiers to each Level 1 (lactation):
12id <- rep(l:length(tnl), times = tnl)

# Create a population data frame listing Level 1 (lactation) and Level 2 (cow) identifiers:
pop.df <- data.frame(llid, 12id)

# Create a lLookup table to assign a Level 3 (herd) identifier to each row of the population
data frame:

lookup <- data.frame(l3id = rep(l:tn3, times = tn2), 12id = 1:sum(tn2))
pop.df$13id <- lookup$l3id[match(pop.df$l2id, lookup$l2id)]

# Generate a random effect term for each member of lLevel 1 (lactation) and create a level 1
(Llactation) random effect Lookup table:

11.lookup <- data.frame(llid = 1:sum(tnl))
lilre.sd <- 0.511
11.lookup$lire <- rnorm(n = sum(tnl), mean = @, sd = llre.sd)

# Generate a random effect term for each member of lLevel 2 (cow) and create a level 2 (cow)
random effect Lookup table:

12.1ookup <- data.frame(l3id = rep(1l:tn3, times = tn2), 12id = 1:sum(tn2))
12re.sd <- 0.148

12.1ookup$l2re <- rnorm(n = sum(tn2), mean = @, sd = 1l2re.sd)

# Generate a random effect term for each member of Level 3 (herd) and create a Level 3
(herd) random effect Lookup table:

13.1lookup <- data.frame(1l3id = 1:tn3)
13re.sd <- 0.116
13.1lookup$13re <- rnorm(n = tn3, mean = 0, sd = 1l3re.sd)

# For each Level 1 (lactation), assign the appropriate random effect using the Lookup table
created earlier:

pop.df$lire <- 11.lookup$lire[match(pop.df$llid, 11.lookup$liid)]



# For each Level 2 (cow), assign the appropriate random effect using the Lookup table
created earlier:

pop.df$l2re <- 12.lookup$l2re[match(pop.df$l2id, 12.lookup$l2id)]

# For each Level 3 (herd), assign the appropriate random effect using the Lookup table
created earlier:

pop.df$l3re <- 13.lookup$l3re[match(pop.df$l3id, 13.lookup$l3id)]

# Assign a value for the outcome of interest to each observation:
ccmu <- mean(dat$lncc); ccmu

#> [1] 4.59008

ccsigma <- sd(dat$lncc); ccsigma

#> [1] 0.5444898

pop.df$x <- rnorm(n = sum(tnl), mean = ccmu, sd = ccsigma)

# Adjust the assigned outcome value to account fo Level 1 (lactation), Level 2 (cow) and
Level 3 (herd) effects:

pop.df$x <- pop.df$x + pop.df$lire + pop.df$l2re + pop.df$l3re

We now have a population data set where the value of the outcome variable depends on unmeasured
influences varying at the lactation, cow and herd level.

Simulation to estimate a sample size — simulation of the sampling process

A series of random draws are taken from the simulated population. On how many occasions is the
estimate of the population mean within the maximum tolerable error of the true population value? Here we
set the maximum tolerable (relative) error to 0.05 (as we did in Box 8):

# Relative error:
epsilon.r <- 0.05

# Set the candidate number of herds (level 3) to be sampled:
nsl3 <- seq(from = 1, to = 10, by = 1)

# Set the candidate number of cows (level 2) to be sampled:
nsl2 <- seq(from = 1, to = 50, by = 1)

# Set the candidate number of Llactations (level 1) to be sampled:
nsll <- 2

# Create a data frame Listing the number of simulations of each sample size combination to
run (n = 100) and the different combinations of candidate Level 3, Level 2 and
Level 1 (herd, cow and lactation) sample sizes:

rval.df <- expand.grid(nsl3, nsl2, nsll)
names(rval.df) <- c("nsl3", "nsl2", "nsl1")
rval.df$nsim <- 100; rval.df$nok <- NA

Take each Level 3, Level 2 and Level 1 sample size combination in turn. Draw the appropriate number of
samples from the population and determine if the mean of the outcome variable based on the sample is
within 0.05 of the true population value. Repeat 100 times. These simulations may take some time
depending on the processing speed of your computer.



for(i in 1:nrow(rval.df)){
# Number of Level 3 (herds), Level 2 (cows) and Level 1 (lactations) to be sampled:
tnsl3 <- rval.df$nsl3[i]
tnsl2 <- rval.df$nsl2[i]
tnsll <- rval.df$nsli[i]
ok <- rep(NA, times = rval.df$nsim[i])

for(j in 1:rval.df$nsim[i]){
# Sample Level 3 units (herds):
s13id <- sample(x = unique(pop.df$13id), size = tnsl3, replace = FALSE)
id <- pop.df$13id %in% sl13id
tpop.df <- pop.df[id,]

# Sample Level 2 units (cows) from the selected Level 3 units (herds):
s12id <- by(data = tpop.df, INDICES = tpop.df$l3id,

FUN = function(x) sample(x = unique(tpop.df$12id), size = tnsl2, replace
id <- tpop.df$l2id %in% as.numeric(unlist(sl2id))
tpop.df <- tpop.df[id,]

FALSE))

# Sample Level 1 units (lactations) from the selected Level 2 units (cows):
sliid <- by(data = tpop.df, INDICES = tpop.df$l2id,

FUN = function(x) sample(x = unique(tpop.df$llid), size = tnsll, replace
id <- tpop.df$liid %in% as.numeric(unlist(sllid))
tpop.df <- tpop.df[id,]

FALSE))

# Calculate the sample mean:
emean.est <- mean(tpop.df$x)

# Calculate the population mean:
tmean.est <- mean(pop.df$x)
tmean.low <- tmean.est - (tmean.est * epsilon.r)

tmean.upp <- tmean.est + (tmean.est * epsilon.r)

# Is the sample mean within epsilon.r of the population mean?
ok[j] «<- ifelse(emean.est >= tmean.low & emean.est <= tmean.upp, 1, 0)
ok[j] <- ifelse(is.na(ok[j]), @, ok[j])

}

rval.df$nok[i] <- sum(ok)

# Uncomment the following Lline to provide a counter:

# cat("Completed sample size combination: ", 1, " of ", nrow(rval.df), "\n", sep = "")

What are the combinations of herd, cow and lactation numbers that return a calving to conception interval
estimate within 5% of the true population value?

head(rval.df[rval.df$nok > 95,])
#> nsl3 nsl2 nsl1 nsim nok
#> 39 9 4 2 100 96
#> 40 10 4 2 100 99
#> 48 8 5 2 1eo 98



#> 49 9 5 2 100 96
#> 50 10 5 2 1leo 98
#> 56 6 6 2 1eo 97

Perspective plot showing the number of Level 3 (herd) and Level 2 (cow) samples on each axis and colour
to indicate if the estimate of the population mean was within epsilon.r of the true population value:

# Generate a matrix of Level 3 (herd) and Level 2 (cow) sample size combinations with each
cell of the matrix listing the proportion of samples where estimate of calving to
conception interval was within 5% of the true population value:

z <- matrix(rval.df$nok, nrow = length(nsl3), ncol = length(nsl2))

# The argument col 1in persp() gives the colour in each cell, i.e. one less in each
dimension:

cols <- z
cols <- ifelse(cols > 95, "red", "light blue")
cols <- cols[1:(dim(cols)[1] - 1),1:(dim(cols)[2] - 1)]

persp(x = nsl3, y = nsl2, z = z / 100,
xlab = "\nNumber of herds", ylab = "\nNumber of cows", zlab = "\nProportion accepted",

col = cols, theta = 30, phi = 30, expand = 0.8, ltheta = 100, shade = 0.6, axes = TRUE,
ticktype = "detailed")

Code to reproduce Figure 2:

rval.df$ok <- ifelse(rval.df$nok >= 95, 1, 9)

breaks <- seq(from = 9, to = 1, length = 2)



cols <- rev(brewer.pal(n = 1, name = "Greys"))

#> Warning in brewer.pal(n = 1, name = "Greys"): minimal value for n is 3, returning
requested palette with 3 different Llevels

ggplot(data = rval.df, aes(x = nsl3, y = nsl2, z = ok)) +
theme_bw() +
geom_raster(aes(fill = ok), hjust = @, vjust = @) +

scale_fill_gradientn(colours = cols, breaks = breaks, lim = c(9,1), labels =
C("NO","YeS")) +

scale_x_continuous(breaks = seq(from = 1, to = 10, by = 1), limits = c(1,10),
name = "Number of herds") +
scale_y_continuous(breaks = seq(from = 2, to = 20, by = 2), limits = c(1,20),

name = "Number of cows") +
theme(legend.position = c(0.80, 0.80)) +

guides(fill = guide_legend(title = "More than 95% iterations\nwithin 5% of the\ntrue
population value"))

#> Warning: Removed 329 rows containing missing values (geom_raster).

201
More than 95% iterations
18 1 within 5% of the
true population value
164 III No
Yes
14+
2
O 12+
o
“
©
jg 104
=
-]
Z ;-
6_
4+
2_
1 2 3 4 5 6 7 8 9 10
Number of herds
References

Dohoo, IR, E Tillard, H Stryhn, and B Faye. 2001. “The Use of Multilevel Models to Evaluate Sources of
Variation in Reproductive Performance in Dairy Cattle in Reunion Island.” Journal Article. Preventive
Veterinary Medicine 50: 127—44.

Otte, JM, and ID Gumm. 1997. “Intra-Cluster Correlation Coefficients of 20 Infections Calculated from the
Results of Cluster-Sample Surveys.” Journal Article. Preventive Veterinary Medicine 31: 147-50.



