# Meta-analysis of neural systems underlying placebo analgesia from individual participant fMRI data

# **Supplementary Information**

### Authors:

Matthias Zunhammer<sup>1</sup>, Tamás Spisák<sup>1</sup>, Tor D. Wager<sup>2\*</sup>, Ulrike Bingel<sup>1\*</sup>, The Placebo Imaging Consortium<sup>+</sup>

## **Affiliations:**

<sup>1</sup> Center for Translational Neuro- and Behavioral Sciences, Dept. of Neurology, University Hospital Essen, Essen, Germany. <sup>2</sup> Cognitive and Affective Neuroscience Laboratory, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.

\* Corresponding authors: tor.d.wager@dartmouth.edu, <u>ulrike.bingel@uk-essen.de</u>

## † Consortium authors: The Placebo Imaging Consortium

Lauren Atlas<sup>3,4,5</sup>, Fabrizio Benedetti<sup>6,7</sup>, Ulrike Bingel<sup>1</sup>, Christian Büchel<sup>8</sup>, Jae Chan Choi<sup>9,10</sup>, Luana Colloca<sup>11</sup>, Davide Duzzi<sup>12</sup>, Falk Eippert<sup>13</sup>, Dan-Mikael Ellingsen<sup>14,15</sup>, Sigrid Elsenbruch<sup>16</sup>, Stephan Geuter<sup>17</sup>, Ted J. Kaptchuk<sup>18</sup>, Simon S. Kessner<sup>19</sup>, Irving Kirsch<sup>18</sup>, Jian Kong<sup>20</sup>, Claus Lamm<sup>21</sup>, Siri Leknes<sup>22,23</sup>, Fausta Lui<sup>12</sup>, Alexa Müllner-Huber<sup>21</sup>, Carlo A. Porro<sup>12</sup>, Markus Rütgen<sup>21</sup>, Lieven A. Schenk<sup>8</sup>, Julia Schmid<sup>24</sup>, Tamás Spisák<sup>1</sup>, Nina Theysohn<sup>25</sup>, Irene Tracey<sup>26</sup>, Tor D. Wager<sup>2</sup>, Nathalie Wrobel<sup>27</sup>, Fadel Zeidan<sup>28</sup>, Matthias Zunhammer<sup>1</sup>

<sup>3</sup>National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland, USA. <sup>4</sup>National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA. <sup>5</sup>National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA. <sup>6</sup>University of Turin, Turin, Italy. <sup>7</sup>Plateau Rosà Labs, Plateau Rosà, Switzerland. <sup>8</sup>Dept. of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 9Yonsei University, Wonju College of Medicine, Wonju, South Korea. 10Cham Brain Health Institute, Seoul, South Korea. <sup>11</sup>University of Maryland, Baltimore, Maryland, USA. <sup>12</sup>Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy. <sup>13</sup>Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. <sup>14</sup>Norwegian Center for Mental Disorders Research (NORMENT), Oslo University Hospital, Norway. <sup>15</sup>Dept. of Psychology, University of Oslo, Norway. <sup>16</sup>Dept. of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany. <sup>17</sup>Johns Hopkins University, Baltimore, Maryland, USA. <sup>18</sup>Beth Israel Deaconess Medical, Harvard Medical School, Boston, Massachusetts, USA. <sup>19</sup>Dept. of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. <sup>20</sup>Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, USA. <sup>21</sup>Social, Cognitive and Affective Neuroscience Unit, Dept. of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria.<sup>22</sup>Dept. of Psychology, University of Oslo, Oslo, Norway. <sup>23</sup>Dept. Diagnostic Physics, Oslo University Hospital, Oslo, Norway. <sup>24</sup>Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany. 25 Insitute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany. <sup>26</sup>University of Oxford, Oxford, United Kingdom. <sup>27</sup>Karolinska Institute, Solna, Sweden. <sup>28</sup>Wake Forest School of Medicine, Winston-Salem, North Carolina.

# Table of contents

| Supplementary Methods and Results                                                                                  | 4         |
|--------------------------------------------------------------------------------------------------------------------|-----------|
| Study identification                                                                                               | 4         |
| Original study identification                                                                                      | 4         |
| Post-hoc study identification                                                                                      | 4         |
| Risk-of-bias-assessment                                                                                            | 6         |
| Selection bias                                                                                                     | 6         |
| Performance bias                                                                                                   | 6         |
| Detection bias                                                                                                     | 6         |
| Study reporting bias                                                                                               | 7         |
| Other biases: unbalanced testing sequence in within-subject designs                                                | 7         |
| Risk-of-bias summary                                                                                               | 7         |
| A note on external validity                                                                                        | 7         |
| Analysis details                                                                                                   | 8         |
| General                                                                                                            | 8         |
| Brain coverage                                                                                                     | 8<br>0    |
| Quality control of image signal                                                                                    | 8         |
| Smoothing                                                                                                          | 8         |
| Presentation of pain vs baseline contrast                                                                          | 9         |
| Meta-analysis                                                                                                      | 9         |
| Labelling of outcome clusters                                                                                      | 9         |
| Responder analysis                                                                                                 | 9         |
| Supplementary Figures                                                                                              | 10        |
| Supplementary Figure 1: CONSORT flowchart of data-acquisition                                                      | 10        |
| Supplementary Figure 2: brain-coverage by number of subjects                                                       | 11        |
| Supplementary Figure 3: brain-coverage by study-level degrees of freedom                                           | 12        |
| Supplementary Figure 5: correlations of behavioral placeho analgesia and changes in pain-related                   | 13        |
| brain activity (conservative sample)                                                                               | 14        |
| Supplementary Figure 6: pain-related activity in experimental placebo imaging studies (non-place                   | bo        |
| control condition only)                                                                                            | 15        |
| Supplementary Figure 7: between-study heterogeneity in pain-related activity                                       | 16        |
| Supplementary Figure 9: between-study beterogeneity versus placebo-treatment related effects                       | 20        |
| Supplementary Figure 10: exploratory comparison of placebo > control of studies using conditioni                   | ng        |
| & suggestions with studies using suggestions only for placebo induction                                            | 21        |
| Supplementary Figure 11: cerebral activity correlating with behavioral placebo analgesia at peak                   |           |
| voxels<br>Supplementary Figure 12, between study between someity years a sevelation of sevel rel and               | 22        |
| Supplementary Figure 12: between-study neterogeneity versus correlation of cerebral and behavioral placebo effects | 28        |
| Supplementary Figure 13: a comparison of placebo-related brain activation changes with regions                     | 20        |
| contributing to the NPS.                                                                                           | 29        |
| Supplementary Figure 14: atlases used for similarity-based analysis of brain activity                              | 30        |
| Supplementary Tables                                                                                               | 33        |
| Supplementary Table 1: study screening, eligibility checking, and retrieval                                        | 33        |
| Supplementary Table 2: included studies: design, demographics, & heat stimulation                                  | 35        |
| Supplementary Table 3: included studies: placebo conditions                                                        | 39        |
| Supplementary Table 4: included studies: functional neuro imaging acquisition characteristics                      | 40        |
| Supplementary Table 5: Included studies: pre-processing and first-level analysis of neuroimages                    | 41<br>4.7 |
| Supplementary Table 7: risk of bias assessment according to the Cochrane risk-of-bias assessment                   | -74<br>:  |
| tool:                                                                                                              | 43        |

| Supplementary Table 9A: clusters of significant increase in pain-related activity — full sample, random effects analysis                                                                         | 45  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Supplementary Table 98: clusters of significant decrease in pain-related activity — full sample                                                                                                  | 75  |
| random effects analysis                                                                                                                                                                          | 46  |
| Supplementary Table 10: clusters of placebo-treatment induced reduction in pain-related activity                                                                                                 | r   |
| full sample, random effects analysis                                                                                                                                                             | 47  |
| Supplementary Table 11A: clusters of placebo-treatment induced increase in pain-related activity                                                                                                 | /   |
| full sample, fixed effects analysis                                                                                                                                                              | 48  |
| Supplementary Table 11B: clusters of placebo-treatment induced reductions in pain-related activ                                                                                                  | ity |
| — full sample, fixed effects analysis                                                                                                                                                            | 49  |
| Supplementary Table 12: clusters showing a significant negative correlation between brain activity and behavioral placebo analgesia — full sample (sans between-subject studies), random effects | ty  |
| analysis                                                                                                                                                                                         | 50  |
|                                                                                                                                                                                                  | = 4 |

# **Supplementary References**

# **Supplementary Methods and Results**

## Study identification

Study identification procedures have previously described in the Supplement of Zunhammer et al.  $(2018)^1$  and are repeated below for convenience:

## Criteria for study eligibility

Studies were defined eligible if...

- a) ... published in a peer-reviewed journal in English language
- b) ... based on an original investigation
- c) ...including human participants
- d) ... obtaining functional neuroimaging data of the brain during evoked pain
- e) ... involving pain delivered under stimulus intensity-matched placebo and control conditions, where "Placebo treatment" was defined as any condition where the experimental context suggested that an effective analgesic treatment was applied, including verbal suggestions and conditioning procedures that reinforced participants' expectations of reduced pain, following the categorization of placebo paradigms introduced in Ref.<sup>2</sup>. Accordingly, non-placebo control conditions that involved no treatment, ineffective treatment, hidden (in contrast to open) treatment, and unconditioned (in contrast to conditioned) treatment were considered eligible.

## Original study identification

Studies were identified through the following sources:

- an initial online-search of the electronic bibliographic database MEDLINE via PubMed on May 21<sup>st</sup> 2015 using the search term:
  - ((placebo effect[Title/Abstract]) OR placebo analgesia[Title/Abstract]) AND fMRI OR PET.
- b) by enriching initial search results with studies identified in an earlier meta-analysis of author TW<sup>2,3</sup>.
  Search results in these preceding peak-voxel-based meta-analyses were obtained by "identified using literature searches in PubMed and Google Scholar, the authors' personal libraries, and examining references of relevant papers."
- c) through recommendations by collaborating investigators.

Studies identified are listed in Supplementary Table 1, the data-acquisition process is illustrated in Supplementary Figure 1. Authors MZ, UB, and TW screened the titles and abstracts of all records retrieved; studies that provisionally met eligibility criteria were assessed for eligibility by examining the full text. Study eligibility was determined in a joint discussion of authors MZ, UB, and TW. Agreement between reviewers was accomplished in a joint discussion. There were no studies where the decision for inclusion/exclusion was a matter of ambiguity (see Supplementary Table 1).

## Post-hoc study identification

An exploratory post-hoc literature search was performed on March 10<sup>th</sup> 2018 to account for the fact that considerable time had passed between the initial study search and the completion of the meta-analysis. We searched pubmed and Thomson Reuters Web of Science from the beginning of 2015 to the present day using the following (extended) search terms:

• Pubmed:

(placebo effect OR "placebo analgesia" OR "placebo effect"[MeSH]) AND ("functional magnetic resonance imaging" OR fMRI OR PET OR "functional neuroimaging" OR ASL OR fMRI[MeSH] OR "functional neuroimaging"[MeSH]) AND (pain OR pain[MeSH] OR analgesia OR noci\*) NOT (Review[Filter] OR Editorial[Filter] OR Comment[Filter])

Web of Science (WoS, searching: all databases):
 TS=("placebo effect" OR "placebo analgesia") AND TS=(pain OR analgesia OR noci\*) AND
 TS=("functional magnetic resonance imaging" OR fMRI OR POET OR "functional neuroimaging" OR
 ASL) Refined by: [excluding] DOCUMENT TYPES: (REVIEW OR EDITORIAL OR CASE REPORT)

After removing duplicates, author MZ screened titles abstracts and assessed full-texts for eligibility. The posthoc analysis indicated that at least six eligible studies<sup>4–9</sup> (with a total N of 196) were published after the initial study search in 2015 and therefore missed by the present meta-analysis (Supplementary Table 1).

## **Data collection**

Investigators of all eligible studies were contacted and invited to share data. Specifically, we requested participant-level summary images (statistical parameter estimates, or beta-images) representing any relevant experimental condition. The decision to collect pre-processed, summarized participant-level images (aka 1<sup>st</sup>-level images) was based on the following considerations:

- Raw images may contain personal information (meta-data, anatomical features captured in images) that could make individual research-participants identifiable. Sharing of such images across workgroups may only be possible after consultation of local ethics committees. Additional measures (removal of meta-data and face-masking) would have to be taken to ensure participant anonymity. Meta-data of statistical summary images from SPM and fsl do not contain individual information by default and therefore safeguard anonymity.
- 2. The analysis of neuroimaging data is an elaborate multi-step process that involves numerous analysis decisions. A multitude of opinions exist regarding the optimal analysis pipeline, especially when it comes to expressing an experimental (stimulus) protocol as a statistical model (most often a GLM). The "optimal" analysis depends on many considerations, some of which cannot be based on data alone. We relied on the expertise of the original researchers to choose the best approach for the data at hand.
- 3. When collecting raw imaging data, the associated experimental stimulus protocols have to be collected for analysis. These often do not come in a standardized format. Re-modelling the statistical analysis in terms of pain and placebo-conditions is therefore laborious and error prone. Further, re-modelling the data requires many decisions on the side of the meta-analyst that cannot be pre-registered. This poses a potential source of "researcher degrees of freedom" and therefore bias that we wanted to avoid.

#### **Risk-of-bias-assessment**

Risk-of-bias identification procedures were re-applied analogue to Ref.<sup>1</sup> (Supplement), with the difference that we assessed the risk of bias regarding voxel-wise whole-brain activity. Note that most risks of bias apply to both meta-analyses, regardless of the target outcome, therefore the assessment below largely is a replication of our earlier assessment; conclusions in risk of bias were largely identical in respect to performance bias, detection bias, and study reporting bias.

Author MZ evaluated each study with respect to selection bias, performance bias, attrition bias, detection bias, report bias, and biases introduced by the use of within-subject designs (sequence effects) using to the Cochrane risk of bias tool<sup>10</sup>. All judgments were based on single-subject data, information taken from the published manuscripts, or personal communication with the study authors, following this order of priority.

#### Selection bias

Non-random sampling and group allocation of research participants can be a considerable source of bias. While, the issue is of major importance in between group designs, requirements are relaxed in within subject designs, as all participants undergo both treatments<sup>11</sup>. Most studies in our sample followed a within subject design and were therefore judged "low risk of selection bias" (Supplementary Table 3). In summary, selection bias due to non-random allocation of participants to placebo/control conditions was judged as low in most studies (Supplementary Table 3).

#### Performance bias

Awareness of the allocated experimental condition by participants and study personnel is considered the major source of performance bias in clinical trials<sup>10</sup>. However, the issue of blinding in experimental placebo research is controversial: The knowledge of being treated is considered constitutional for the placebo phenomenon<sup>12</sup>. Further, the treatment provider and her behaviour are seen as major factors driving the placebo effect <sup>13</sup>. Placebo studies with blinded study participants or treatment providers<sup>12</sup> may underestimate the placebo effects typical for clinical settings. On the other hand, the fact that full blinding is conceptually difficult in experimental placebo studies makes it difficult to discern "true" placebo effects, i.e. perceived and actual symptom improvements, from "false" placebo effects, i.e. apparent improvements due to demand characteristics / altered reporting behaviour<sup>12</sup>. Thus, so-called "demand characteristics" (participant's tendency to report what they believe they *should* report, independent of experience) and other biases in judgement and decision making can influence behavioural placebo effects, which is a major reason to also examine physiological outcomes.

No studies in our sample blinded participants or experimenters, with the exception of one between-group study that blinded subjects in respect to group allocation<sup>14</sup>. Therefore, we concluded high risk of performance bias for the present meta-analysis, as voxel-wise brain activity related to demand characteristics cannot be discerned from brain activity related to placebo analgesia with certainty.

#### Detection bias

It is a common problem in neuroimaging research that image pre-processing pipelines and statistical analysis involve numerous analysis choices. These do not only tempt analysts to cherry-pick favourable results, but also state a multiple comparison problem<sup>15</sup>. Blinding of analysts to the nature of experimental conditions and pre-specification of analysis parameters could exclude this type of bias.

No included study reported analyst blinding (Supplementary Table 3). Moreover, the pre-processing pipelines and 1<sup>st</sup>-level models of imaging analyses varied considerably (Supplementary Table 5). Since our meta-analysis relies on the original first-level analyses, choices by the original analysts may affect results of the present meta-analysis. Analysis pipelines may have been chosen so as to favour some brain regions over others. We therefore judged the risk for detection bias as high.

#### Attrition bias

Study drop-out and exclusion of participants may systematically affect study outcomes, especially when one experimental condition is affected more than another, or when participants are selected based on outcomes. Supplementary Table 7 provides a general overview on the amount of missing imaging data in respect to different experimental stages of the original studies. For one study<sup>16</sup> insufficient information was available to determine these figures. For the remaining studies, we found that our meta-analysis included 84% of participants included in the original studies, 95% of participants successfully completing fMRI testing, and 99% of subjects included in the original analysis. Main reasons for the discrepancy between participants tested and participants completing measurements were problems with neuroimaging and pain stimulation equipment, which are unlikely to affect our outcome systematically. Main reasons for the discrepancy between participants completing measurements and participants analysed in the original studies were exclusions due to imaging artefacts and due to excessive head movements, which are also unlikely to affect placebo effects systematically. Data from 6 out of 16 subjects for one<sup>17</sup> and 2 out of 19 subjects for another study<sup>18</sup> were unavailable doe to failure of data-storage. Given the relatively low attrition rate and the fact that most studies are within-subject studies, where

missing participants affect all experimental conditions alike, we conclude that attrition bias is unlikely to affect the outcomes of our meta-analysis.

## Study reporting bias

The underreporting of studies with non-significant ("negative") results is a prevailing problem in biomedical research<sup>19</sup> that has been suggested to affect experimental placebo research<sup>12</sup>. Underreporting of studies with non-significant behavioural placebo effects may inflate the effect sizes of our current meta analysis, by biasing the study sample towards placebo responders. Further, imaging studies yielding no activation clusters or clusters in unorthodox regions may have been underreported, although we are not aware of such a case. Based on these results we conclude that there the risk of report bias was unknown for the present analysis. Of note, the present study is based on single-subject whole-brain summary images, as obtained in the original analyses. The non-reporting of peak activations is therefore not a problem and consequently the risk of reporting bias of the present analysis is lower than in previous peak-based meta-analysis approaches (e.g. Ref.<sup>2</sup>).

### Other biases: unbalanced testing sequence in within-subject designs

Sequence effects (e.g. habituation or sensitization) may confound treatment-effects in within-subject designs when the order of experimental conditions is not balanced or randomized. An overview on the sequence of treatment conditions in within-subject studies is provided in Supplementary Table 3. Single-subject data on the sequence of conditions was available for all but three studies, two studies reported balanced testing<sup>20</sup>, only for one study no information about testing sequence was available<sup>21</sup>. Several studies tested placebo and control conditions in a fixed pre-placebo (control) vs. post-placebo sequence<sup>18,25</sup>. These studies were excluded from conservative analysis. All remaining studies had balanced designs in respect to the sequence of placebo and control. Overall, sample imbalance for studies was low: placebo conditions were tested after control conditions in 54% of participants. Based on these figures we judged the overall risk of bias due to unbalanced sequence of testing as low.

### Risk-of-bias summary

In summary, we concluded high risk of bias for voxel-wise brain activity. Main reason for this decision was the unresolved issues of distinguishing real placebo analgesia from report bias and the risk that detection bias due to non-blinding of analysts affected results.

## A note on external validity

The Cochrane risk-of bias tool focusses on the assessment of internal study validity. Beyond this tool, we identified an issue of external validity, that may affect the conclusions of the present meta-analysis. Two studies<sup>20,26</sup> (accounting for 20.7% of the total sample, see Supplementary Table 3) pre-selected placeboresponders. This practice constitutes no bias in terms of internal validity and merely limits the generalizability of results. Mixing studies with and without responder-selection in a meta-analysis may entail an over-representation of placebo responders and therefore inflate our effect size estimates.

## Analysis details

## General

The present analysis was not pre-registered, yet performed corresponding to the analysis plan for Zunhammer et al.  $(2018)^5$  (see <u>https://osf.io/n9mb3/</u>), with the difference that single-voxel brain responses were the main outcome, not NPS-responses. Of note, statistical thresholds, were not pre-defined in the original analysis plan. Therefore we provide maps for several established thresholding methods, i.e. uncorrected at p < .001 (parametric *p*-values), family-wise error (FWER) corrected at p < .05 (non-parametric permutation-based *p*-values), with and without probabilistic threshold-free cluster enhancement<sup>6</sup>).

All analyses were performed with MATLAB (v 2016b). All images were re-sliced to a voxel size of 2\*2\*2 mm using *SPM 12*'s imgcalc function before further analysis. The meta-analysis was based on the algorithms used in Cochrane's *RevMan 5*<sup>28</sup>, implement as custom MATLAB functions. The functions and the complete analysis are available at: www.github.com/mzunhammer/PlaceboMetaAnalysis.

### Brain coverage

Binary signal/no-signal masks were created for each subject. The resulting voxel-coverage maps were summarized within and across studies to determine the available sample size/missing data at each brain voxel). Brain-voxels which represented less than four participants were excluded at study-level. Subsequently brain-voxels missing in > 10% of participants (total sample) were excluded from further analysis to keep the sample-size comparable across the brain. The decision to exclude such voxels was not pre-established before analysis. The coverage map for the full sample are shown in Supplementary Figure 2. The study-level coverage after excluding missing voxels is shown in Supplementary Figure 3

### Image alignment

We checked alignment to Montreal Neurological Institute (MNI)-space and image coverage by visually comparing binary signal/no-signal masks and study summaries for pain > baseline against the standard MNI template supplied with SPM (avg152T1.nii). All studies showed satisfactory alignment with the template upon visual inspection, with no single-participant outliers.

### Quality control of image signal

Correct data labelling was ascertained in correspondence with the original authors. Outlier screening for excessive random error in imaging signal was guided by the assumption that imaging and statistical artefacts should mainly affect the absolute and relative signal intensities of grey matter, white matter, csf, and extracerebral signal. Raw and absolute parameter estimates for each tissue were obtained by calculating the dot-product of each individual image with SPM8's tissue probability maps grey.nii, white.nii, csf.nii and (inverted) brainmask.nii. Mahalanobis distance and scatterplots were then used to identify suspect cases on a within-study basis. Further, the design matrices (SPM.mat, design.mat) used for first level analysis in the original analyses were evaluated for irregularities, if available.

Outlier screening identified 63 cases showing unusual absolute and/or relative activity in white matter, grey matter, CSF, or extra-cerebral space. These suspect images underwent further evaluation using histograms and visual examination. In total, 12 subjects were confirmed as outliers, showing radio-frequency-, magneticsusceptibility-, or spike-like-artifacts (6), extreme values (4), or evidence for errors in the original design matrices (SPM files) (2). Outliers were retained in full, but excluded from the conservative analysis.

## Smoothing

The statistical summary images collected differed in terms of image smoothness (see Supplementary Table 5). Between-study Differences in smoothing kernel may impact negatively on the comparability of single studies and the statistical weight of individual studies to the meta-analysis. However, no measures were taken to equalize image smoothness before meta-analysis based on the following considerations:

- The main purpose of equalizing image smoothness is to achieve a better comparability of studies.<sup>8</sup> However, the present study primarily aimed at was to summarize brain activity across studies, not to make comparisons between individual studies.
- "One disadvantage of post hoc smoothness equalization is that it requires that all scanners be smoothed to that of the most smooth scanner in the set"<sup>8</sup>. Equalizing smoothing would entail a loss in statistical power and mapping-accuracy.

### Presentation of pain vs baseline contrast

For the pain vs baseline comparison we pooled placebo and control conditions based on four considerations:

- 1. For some studies<sup>29</sup> only pooled estimates of the main effect of pain were available, the map based on "control images only" would not show the complete sample.
- 2. The pooled map that is optimal for comparing the pain and the placebo contrasts, as the two contrasts are orthogonal<sup>30</sup>. Comparisons based on the baseline-contrast, only would be bias comparisons, as it would reflect peculiarities of the control condition.
- 3. Pooling reduces within-subject variance and therefore robustness of results
- 4. The range of effect sizes observed for the pain vs baseline comparison was about 7 times greater than that observed for the placebo vs control comparison, so placebo-related effects do not affect the visualization of the pain vs baseline comparison at large.

### Meta-analysis

For outcome comparisons within studies we used Hedges' g, which is the (mean difference / standard deviation (SD))\*J, where J is a correction factor for small sample bias  $(J = 1 - 3/(4*df - 1))^{10}$ . For within-subject studies Hedges'  $g_{rm}$  was used, which is defined as: mean within-subject difference / SD<sub>diff</sub> \* sqrt(2.\*(1-r))\*J, where  $SD_{diff}$  is the SD of within-subject differences and r is the correlation between repeated measures <sup>31,32</sup>. For three studies (Supplementary Figure 6), imaging data were only available as separate contrasts for pain activation and placebo conditions. For these studies no within-subject correlation r of pain-related activity under placebo- and control- conditions could be computed. For these studies Hedges'  $g_{\rm rm}$  was obtained by imputing the mean within-subject correlation observed across all other within-subject studies. Treatment effects and correlations between cerebral treatment effects and ratings were summarized across studies using the generic inversevariance (GIV) weighting method with DerSimonian and Laird random effects <sup>28,32</sup> Fisher's Z-transformation was applied before and after summarizing correlations <sup>32</sup>. Significance thresholds ( $\alpha < .05$ ) and *p*-values correct for multiple comparison at family wise error level ( $p_{\rm FWER}$ ), were obtained by performing a non-parametric, Monte-Carlo (2000 re-samples) permutation-test based on the maximum z-score, corresponding to the maximum-t approach described by Nichols and Holmes  $(2002)^{33}$ . To determine significance thresholds ( $\alpha < .05$ ) and *p*-values corrected multiple comparison for the between-study heterogeneity estimates, the same permutation approach was applied to the maximum- $Q(\chi^2)$  statistic <sup>10</sup>.

### Labelling of outcome clusters

The fsl (version 5.0.10) function "cluster", as implemented in the atlasquery automation script (autoaq), was used to label thresholded summary images, automatically. The Harvard Cortical and Subcorical Atlases<sup>34</sup>, the Oxford Thalamic Connectivity Atlas<sup>35</sup>, the Probabilistic Cerebellar Atlas<sup>36</sup>, and the Talairach Daemon (TD) Atlas<sup>37</sup> were used in this order of preference (as provided in fsl 5.0.10). Labels with a probability < .1 were omitted. White matter labels were omitted for brevity, except when no non-white matter label with a probability > .1 was available (low tissue probability implies white-matter).

#### Responder analysis

We initially planned another analysis including only participants showing an above-median behavioural placebo response for each study ("responder analysis", see <u>https://osf.io/n9mb3/</u>). However, we've replaced this analysis with the correlation analysis of behavioural and cerebral placebo responses, as the dichotomization of continuous outcomes is suboptimal in terms of statistical power and can yield misleading results<sup>38</sup>.

# **Supplementary Figures**

# Supplementary Figure 1: CONSORT flowchart of data-acquisition



\* IPD for all eligible studies were sought. \*\* All available studies were analyzed.

# Supplementary Figure 2: brain-coverage by number of subjects



Number of participants with non-missing data (full sample), voxel-wise, projected onto the MNI152 brain template. Areas with more than 10% missing subjects were excluded from further analysis. The full sample analysis was based on 191118 brain-voxels (2\*2\*2 mm). n = 543 to 603 individuals from 17 to 20 independent studies per voxel. Source data (results as 3d-volumes) are provided at <u>https://osf.io/n9mb3/</u>.

## Supplementary Figure 3: brain-coverage by study-level degrees of freedom



Study-level degrees of freedom, voxel-wise, projected onto the MNI152 brain template after excluding voxels with more than 10% missing subjects (see Supplementary Figure 1). The majority of included voxels (78%) represented results for all 20 studies (df = 19, red). The remaining voxels represent 19 studies (22%, df = 18, yellow) and a small minority of voxels 18 or 17 studies (0.1%, df = 17 or 16, red). Scale: df: [16; 19]; n = 543 to 603 individuals from 17 to 20 independent studies per voxel. Source data (results as 3d-volumes) are provided at <a href="https://osf.io/n9mb3/">https://osf.io/n9mb3/</a>.

Supplementary Figure 4: placebo induced changes in pain-related activity (conservative sample)



Standardized effect size *g* for the contrast pain<sub>placebo</sub> pain<sub>control</sub>. Sagittal sections cut the hemisphere proximal to the viewer. Range *g*: [-0.23, 0.18]; n = 373 to 414 individuals from 13 to 16 independent studies per voxel. Un-thresholded effect sizes (Hedges' *g*). Red denotes increased, blue denotes decreased pain-related activity under placebo, compared to control conditions. Only a single voxel in the cerebellum (x = 50, y = -54, z = -30, Crus I 80%), showed a statistically significant ( $g = -0.19 \pm 0.05$  (SEM),  $\tau^2 = 0$ , n = 381, *z*-score = -3.84,  $p_{FWER} = .041$ ) de-activation. Activity increases did not reach statistical significance. Source data (results as 3d-volumes) are provided at <u>https://osf.io/n9mb3/</u>.

Supplementary Figure 5: correlations of behavioral placebo analgesia and changes in painrelated brain activity (conservative sample)



By-subject correlation between behavioral placebo analgesia (pain<sub>control</sub> pain<sub>placebo</sub>) and placebo-related activity changes (pain<sub>placebo</sub> pain<sub>control</sub>). Conservative sample excluding between-group studies (individual estimates of behavioral placebo analgesia not possible), high risk-of-bias studies and outlier subjects. Sagittal sections cut the brain hemispheres proximal to the viewer.

**Panel A:** un-thresholded Pearson's *r*. Red denotes positive (i.e. increased activity associated with larger placebo analgesia), blue denotes negative correlations (i.e. decreased activity associated with larger placebo analgesia). Range: r = [-0.27; 0.14]. Scale: r = [-0.28, 0.28], n = 373 to 414 individuals from 13 to 16 independent studies per voxel. Source data (results as 3d-volumes) are provided at <u>https://osf.io/n9mb3/</u>.

**Panel B**: statistically significant (two-sided p < .05, FWER corrected permutation test) negative correlations at voxel (green) and cluster level (blue, pTFCE-enhanced) according to a random (study-)effects analysis. Positive correlations did not reach statistical significance. Source data (results as 3d-volumes) are provided at <u>https://osf.io/n9mb3/</u>.

# **A** Significant pain-response (FWER p<0.05)



# Supplementary Figure 6: pain-related activity in experimental placebo imaging studies (non-placebo control condition only)

A Statistically significant pain-responses (permutation test, controlled for FWER, two-sided p < 0.05); **B** whole-brain unthresholded standardized effect size *g* of acute pain stimulation > baseline, non-placebo control conditions only (FWER-corrected permutation test results are delineated as a back contour); range *g*: [-0.82, 1.68]; n = 434 to 494 individuals from 15 to 18 independent studies per voxel (for two studies, pain > baseline conditions were only available as pooled contrast). Three dimensional coronal slices are equidistantly distributed from *y* = 60 to -68 mm. Axial slices range equidistantly from *z* = -22 to 42 mm. Custom coordinates for sagittal slices are displayed in mm. Source data (results as 3d-volumes) are provided at https://osf.io/n9mb3/.



## Supplementary Figure 7: between-study heterogeneity in pain-related activity

**A** unthresholded  $\tau$ -values (estimated SD of effect size g due to between-study heterogeneity, scale  $\tau$ . [0; 0.8]. range  $\tau$ . [0, 1.07]) for the contrast pain stimulation > baseline (pooled across placebo and control conditions). **B** regions of statistically significant between study-heterogeneity (permutation test, controlled for FWER, one-sided p < .05). Scale: n = 543 to 603 individuals from 17 to 20 independent studies per voxel. Source data (results as 3d-volumes) are provided at <u>https://osf.io/n9mb3/</u>.

# Supplementary Figure 8: effects of placebo-treatment on pain-related activity at peak voxels

| A Insula                                     |                                        |                      |     |        |
|----------------------------------------------|----------------------------------------|----------------------|-----|--------|
| Study                                        | reduction < > increase                 | Effect, 95% CI       | n   | Weight |
| Atlas et al. 2012:                           | <b>-</b>                               | -0.42 [-0.91; 0.08]  | 21  | 2.7%   |
| Bingel et al. 2006:                          | <b>-</b>                               | -0.40 [-0.89; 0.08]  | 19  | 2.8%   |
| Bingel et al. 2011:                          | <b>-</b>                               | -0.50 [-0.87; -0.14] | 22  | 5.0%   |
| Choi et al. 2011:                            |                                        | -0.68 [-1.42; 0.06]  | 15  | 1.2%   |
| Eippert et al. 2009:                         |                                        | -0.12 [-0.34; 0.10]  | 40  | 13.3%  |
| Ellingsen et al. 2013:                       | _ <b>_</b>                             | -0.27 [-0.59; 0.05]  | 28  | 6.4%   |
| Elsenbruch et al. 2012:                      | <b>_</b> _                             | -0.06 [-0.39; 0.27]  | 36  | 6.0%   |
| Freeman et al. 2015:                         | <b>_</b> _                             | -0.21 [-0.57; 0.16]  | 24  | 5.0%   |
| Geuter et al. 2013:                          | <b>_</b>                               | -0.14 [-0.49; 0.21]  | 40  | 5.4%   |
| Kessner et al. 2014:                         |                                        | -0.17 [-0.79; 0.44]  | 39  | 1.8%   |
| Kong et al. 2006:                            |                                        | 0.27 [-0.37; 0.92]   | 10  | 1.6%   |
| Kong et al. 2009:                            |                                        | 0.07 [-0.44; 0.57]   | 12  | 2.6%   |
| Lui et al. 2010                              | <b>-</b> _                             | -0.20 [-0.58; 0.19]  | 31  | 4.4%   |
| Ruetgen et al. 2015:                         | <b>_</b>                               | -0.42 [-0.81; -0.03] | 102 | 4.3%   |
| Schenk et al. 2015:                          |                                        | -0.24 [-0.44; -0.04] | 32  | 15.5%  |
| Theysohn et al. 2009:                        | _ <b>_</b> _                           | 0.07 [-0.23; 0.37]   | 30  | 7.3%   |
| Wager et al. 2004, Study 1:                  |                                        | 0.23 [-0.19; 0.64]   | 24  | 3.8%   |
| Wager et al. 2004, Study 2:                  |                                        | 0.07 [-0.52; 0.66]   | 23  | 1.9%   |
| Wrobel et al. 2014:                          | _ <b>_</b>                             | -0.15 [-0.48; 0.18]  | 38  | 6.0%   |
| Zeidan et al. 2015:                          |                                        | -0.21 [-0.70; 0.28]  | 17  | 2.8%   |
| Total effect (95% Cl): z=-4.13, p<.001       | $\diamond$                             | -0.17 [-0.26; -0.09] | 603 | 100.0% |
| Heterogeneity: $Chi^{2}(19)=19.48$ , p=0.427 | -1 0 1                                 | 2                    |     |        |
| Hedges                                       | s' g at MNI [38, 8, 0] with 95% CI; I\ | √, random            |     |        |

Source data (results as 3d-volumes) are provided at <u>https://osf.io/n9mb3/</u>.

# B habenula / corpus callosum near splenium

| Study                                               | reduction < > increase                            | Effect, 95% CI                          | n   | Weight |
|-----------------------------------------------------|---------------------------------------------------|-----------------------------------------|-----|--------|
| Atlas at al. 2012:                                  |                                                   | 0 51 [ 1 10: 0 08]                      | 21  | 2 6%   |
| Allas et al. 2012:                                  |                                                   | -0.51 [-1.10, 0.08]                     | 21  | 2.0%   |
| Bingel et al. 2006:                                 |                                                   | -0.38 [-0.90; 0.14]                     | 19  | 3.4%   |
| Bingel et al. 2011:                                 |                                                   | -0.37 [-0.86; 0.11]                     | 22  | 3.8%   |
| Choi et al. 2011:                                   |                                                   | -0.35 [-1.19; 0.48]                     | 15  | 1.3%   |
| Eippert et al. 2009:                                | _ <b>_</b>                                        | 0.05 [-0.23; 0.33]                      | 40  | 11.4%  |
| Ellingsen et al. 2013:                              |                                                   | -0.45 [-0.95; 0.06]                     | 28  | 3.5%   |
| Elsenbruch et al. 2012:                             |                                                   | -0.24 [-0.65; 0.18]                     | 36  | 5.2%   |
| Freeman et al. 2015:                                |                                                   | -0.30 [-0.70; 0.10]                     | 24  | 5.7%   |
| Geuter et al. 2013:                                 | <b>e</b>                                          | -0.34 [-0.72; 0.04]                     | 40  | 6.2%   |
| Kessner et al. 2014:                                |                                                   | -0.03 [-0.65; 0.58]                     | 39  | 2.4%   |
| Kong et al. 2006:                                   |                                                   | -0.25 [-0.63; 0.13]                     | 10  | 6.2%   |
| Kong et al. 2009:                                   | <b>e</b>                                          | -0.07 [-0.57; 0.44]                     | 12  | 3.5%   |
| Lui et al. 2010                                     |                                                   | -0.13 [-0.55; 0.29]                     | 31  | 5.1%   |
| Ruetgen et al. 2015:                                | <b>=</b>                                          | -0.10 [-0.49; 0.28]                     | 102 | 6.1%   |
| Schenk et al. 2015:                                 |                                                   | -0.11 [-0.51; 0.30]                     | 32  | 5.5%   |
| Theysohn et al. 2009:                               |                                                   | -0.06 [-0.42; 0.31]                     | 30  | 6.8%   |
| Wager et al. 2004, Study 1:                         | <b>•</b>                                          | 0.20 [-0.22; 0.62]                      | 24  | 5.2%   |
| Wager et al. 2004, Study 2:                         | <b>-</b>                                          | -0.39 [-1.01; 0.22]                     | 23  | 2.4%   |
| Wrobel et al. 2014:                                 | — <b>—</b>                                        | -0.09 [-0.38; 0.21]                     | 38  | 10.3%  |
| Zeidan et al. 2015:                                 | <b>_</b>                                          | -0.44 [-0.95; 0.06]                     | 17  | 3.5%   |
| Total effect (95% Cl): z=-3.51, p<.001              | $\diamond$                                        | -0.17 [-0.26; -0.08]                    | 603 | 100.0% |
| Heterogeneity: Chi <sup>2</sup> (19)=13.66, p=0.803 |                                                   | 2                                       |     |        |
| Tau <sup>2</sup> =0.00, I <sup>2</sup> =0.00%       | ≤ -1 0 1<br>s' a at MNI [-6 -32 12] with 95% CI:I | ∠<br>V random                           |     |        |
| Tieuges                                             | , g at initi [0, 02, 12] miti 00/0 01, 1          | , , , , , , , , , , , , , , , , , , , , |     |        |

Source data (results as 3d-volumes) are provided at <u>https://osf.io/n9mb3/</u>.

# C cerebellum (crus I)

| Study                                                                                        | reduction < > increas                                    | Se Effect, 95% CI         | n   | Weight |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------|-----|--------|
| Atlas et al. 2012:                                                                           |                                                          | 0.07 [-0.41: 0.55]        | 21  | 3.1%   |
| Bingel et al. 2006                                                                           | <b>_</b> _                                               | -0 47 [-0 81: -0 13]      | 19  | 6.2%   |
| Bingel et al. 2011:                                                                          |                                                          | 0.03 [-0.41: 0.47]        | 21  | 3.7%   |
| Choi et al 2011:                                                                             |                                                          | - 0.16 [-0.60: 0.92]      | 15  | 1.2%   |
| Fippert et al. 2009                                                                          |                                                          | -0.31 [-0.57: -0.05]      | 40  | 10.6%  |
| Ellingsen et al. 2013:                                                                       |                                                          | -0.14 [-0.57: 0.29]       | 26  | 3.9%   |
| Elsenbruch et al. 2012:                                                                      |                                                          | -0.24 [-0.57; 0.10]       | 36  | 6.5%   |
| Freeman et al. 2015:                                                                         | _ <b>_</b>                                               | -0.18 [-0.53: 0.17]       | 24  | 5.8%   |
| Geuter et al. 2013:                                                                          |                                                          | -0.09 [-0.40; 0.23]       | 40  | 7.1%   |
| Kessner et al. 2014:                                                                         | <b>-</b>                                                 | -0.46 [-1.08; 0.16]       | 39  | 1.8%   |
| Kong et al. 2006:                                                                            | _ <b>-</b>                                               | 0.17 [-0.18; 0.53]        | 10  | 5.6%   |
| Kong et al. 2009:                                                                            |                                                          | -0.13 [-0.69; 0.44]       | 12  | 2.2%   |
| Lui et al. 2010                                                                              |                                                          | -0.16 [-0.50; 0.18]       | 27  | 6.3%   |
| Ruetgen et al. 2015:                                                                         | <b>_</b>                                                 | -0.30 [-0.69; 0.09]       | 102 | 4.8%   |
| Schenk et al. 2015:                                                                          | <b>_</b>                                                 | -0.33 [-0.69; 0.04]       | 32  | 5.5%   |
| Theysohn et al. 2009:                                                                        |                                                          | 0.04 [-0.29; 0.37]        | 29  | 6.5%   |
| Wager et al. 2004, Study 1:                                                                  |                                                          | -0.07 [-0.49; 0.34]       | 24  | 4.2%   |
| Wager et al. 2004, Study 2:                                                                  |                                                          | -0.29 [-0.82; 0.24]       | 23  | 2.5%   |
| Wrobel et al. 2014:                                                                          |                                                          | -0.16 [-0.43; 0.12]       | 38  | 9.4%   |
| Zeidan et al. 2015:                                                                          |                                                          | 0.02 [-0.46; 0.50]        | 17  | 3.1%   |
| Total effect (95% CI): z=-3.69,                                                              | o<.001                                                   | -0.16 [-0.24; -0.07]      | 595 | 100.0% |
| Heterogeneity: Chi <sup>2</sup> (19)=14.93,<br>Tau <sup>2</sup> =0.00, I <sup>2</sup> =0.00% | 0=0.727 -2 -1 0<br>Hedges' g at MNI [-40, -64, -24] with | 1 2<br>95% CI; IV, random |     |        |

Source data (results as 3d-volumes) are provided at https://osf.io/n9mb3/.





Across all brain-voxels (n = 191118 voxels, full sample), there was a small, positive, statistically significant correlation (r = .191, 95% CI [.187, .196], p < .001) between effects of placebo treatment and between-study heterogeneity estimate  $\tau$ . Voxels where  $\tau = 0$  (25% of voxels) and  $\tau > .3$  (10 voxels) were excluded from the plot (but not the correlation analysis) for illustration purposes. Source data (results as 3d-volumes) are provided at <u>https://osf.io/n9mb3/</u>.

Supplementary Figure 10: exploratory comparison of placebo > control of studies using conditioning & suggestions with studies using suggestions only for placebo induction



Red denotes regions where placebo-related increases in pain-related processing (in Hedge's *g*) were larger in the "Conditioning + Suggestions" studies (14 independent studies), or equivalently regions where placebo-related decreases in pain related processing were smaller, than in the "Suggestion Only" studies (6 independent studies). Voxels surpassing the statistical threshold of p < .001 in two-sided z-tests, uncorrected for multiple comparisons, are highlighted in light blue (range *g*: [-0.45; +0.45]. Only voxels in the negative effect range surpassed the threshold. No voxels reached statistical significance when correcting for FWER.

Please note that the present study was not intended, nor powered for between-study comparisons as the one shown above. Moreover, the 20 studies involved in this analysis cluster in terms of placebo-, pain- and imaging- related features, e.g. the type of placebo induction is not balanced with respect to the stimulus modality (heat, mechanical, visceral, laser, electrical). A simple between-study group comparison as this one may thus be confounded by correlated properties across studies. The question of study-level moderators may better be addressed by a hierarchical meta-regression in subsequent studies.

# Supplementary Figure 11: cerebral activity correlating with behavioral placebo analgesia at peak voxels

| Study                                            | reduction < > increase                         | Effect, 95% CI       | n   | Weight |
|--------------------------------------------------|------------------------------------------------|----------------------|-----|--------|
| Atlas et al. 2012                                |                                                | 0 10 [-0 35: 0 51]   | 21  | 4 2%   |
| Bingel et al. 2006:                              |                                                | -0.15 [-0.55; 0.32]  | 10  | 4.2%   |
| Bingel et al. 2000.                              |                                                | -0.15 [-0.57, 0.52]  | 22  | 4.270  |
|                                                  |                                                | -0.44 [-0.73, -0.02] | 15  | 4.9%   |
|                                                  |                                                | -0.24 [-0.67; 0.31]  | 15  | 3.2%   |
| Eippert et al. 2009:                             | <b>_</b>                                       | -0.14 [-0.43; 0.18]  | 40  | 8.5%   |
| Ellingsen et al. 2013:                           |                                                | 0.21 [-0.17; 0.54]   | 28  | 6.2%   |
| Elsenbruch et al. 2012:                          |                                                | -0.33 [-0.60; -0.00] | 36  | 7.8%   |
| Freeman et al. 2015:                             |                                                | -0.41 [-0.70; -0.00] | 24  | 5.3%   |
| Geuter et al. 2013:                              |                                                | -0.27 [-0.54; 0.05]  | 40  | 8.5%   |
| Kessner et al. 2014:                             |                                                |                      |     |        |
| Kong et al. 2006:                                | <b>-</b>                                       | -0.73 [-0.93; -0.19] | 10  | 2.0%   |
| Kong et al. 2009:                                | <b>•</b>                                       | -0.23 [-0.71; 0.40]  | 12  | 2.5%   |
| Lui et al. 2010                                  | <b>_</b>                                       | -0.47 [-0.71; -0.14] | 31  | 6.8%   |
| Ruetgen et al. 2015:                             |                                                |                      |     |        |
| Schenk et al. 2015:                              |                                                | -0.34 [-0.62; 0.01]  | 32  | 7.0%   |
| Theysohn et al. 2009:                            |                                                | 0.07 [-0.30; 0.42]   | 30  | 6.6%   |
| Wager et al. 2004, Study 1:                      | <b>e</b>                                       | -0.33 [-0.65; 0.08]  | 24  | 5.3%   |
| Wager et al. 2004, Study 2:                      |                                                | -0.12 [-0.51; 0.31]  | 23  | 5.1%   |
| Wrobel et al. 2014:                              | <b>e</b>                                       | -0.38 [-0.62; -0.06] | 38  | 8.1%   |
| Zeidan et al. 2015:                              |                                                | -0.05 [-0.52; 0.44]  | 17  | 3.7%   |
| Total effect (95% CI): z=-4.48, p<.0             | 01                                             | -0.24 [-0.34; -0.14] | 603 | 100.0% |
| Heterogeneity: Chi <sup>2</sup> (17)=19.85, p=0. | 282 4 0.5 0.0 0.5                              |                      |     |        |
| Tau <sup>2</sup> =0.01, I <sup>2</sup> =14.35%   | -1 -0.5 0 0.5                                  | · IV random          |     |        |
| Fea                                              | ai son s i acacivitvi [10, -10, 0] with 95% CI | , iv, ianuoni        |     |        |

# A right thalamus (R) (prefrontal /premotor subportion)

Source data (results as 3d-volumes) are provided at https://osf.io/n9mb3/.

# B left thalamus (prefrontal / temporal sub-portion)

| Study                                          | reduction < > increase                                                | Effect, 95% CI       | n   | Weight |
|------------------------------------------------|-----------------------------------------------------------------------|----------------------|-----|--------|
|                                                | _                                                                     | 0.001.0.40.0.001     | 04  | 4.00/  |
| Atlas et al. 2012:                             |                                                                       | -0.06 [-0.48; 0.38]  | 21  | 4.0%   |
| Bingel et al. 2006:                            |                                                                       | -0.09 [-0.52; 0.38]  | 19  | 4.0%   |
| Bingel et al. 2011:                            |                                                                       | -0.09 [-0.49; 0.35]  | 22  | 4.7%   |
| Choi et al. 2011:                              |                                                                       | -0.32 [-0.71; 0.23]  | 15  | 3.0%   |
| Eippert et al. 2009:                           |                                                                       | -0.24 [-0.51; 0.08]  | 40  | 8.9%   |
| Ellingsen et al. 2013:                         |                                                                       | -0.32 [-0.62; 0.06]  | 28  | 6.2%   |
| Elsenbruch et al. 2012:                        | <b>e</b>                                                              | -0.39 [-0.64; -0.07] | 36  | 8.0%   |
| Freeman et al. 2015:                           |                                                                       | -0.33 [-0.65; 0.08]  | 24  | 5.2%   |
| Geuter et al. 2013:                            |                                                                       | -0.09 [-0.39; 0.23]  | 40  | 8.9%   |
| Kessner et al. 2014:                           |                                                                       |                      |     |        |
| Kong et al. 2006:                              |                                                                       | -0.45 [-0.84; 0.25]  | 10  | 1.8%   |
| Kong et al. 2009:                              | <b>_</b>                                                              | -0.16 [-0.67; 0.45]  | 12  | 2.3%   |
| Lui et al. 2010                                |                                                                       | -0.22 [-0.53; 0.15]  | 31  | 6.9%   |
| Ruetgen et al. 2015:                           |                                                                       |                      |     |        |
| Schenk et al. 2015:                            | <b>_</b>                                                              | -0.58 [-0.77; -0.29] | 32  | 7.1%   |
| Theysohn et al. 2009:                          |                                                                       | 0.20 [-0.17; 0.52]   | 30  | 6.6%   |
| Wager et al. 2004, Study 1:                    | <b>_</b>                                                              | -0.39 [-0.69; 0.01]  | 24  | 5.2%   |
| Wager et al. 2004, Study 2:                    | <b>_</b>                                                              | -0.19 [-0.56; 0.24]  | 23  | 5.0%   |
| Wrobel et al. 2014:                            | <b>_</b>                                                              | -0.22 [-0.50; 0.11]  | 38  | 8.5%   |
| Zeidan et al. 2015:                            | <b></b>                                                               | 0.20 [-0.31; 0.62]   | 17  | 3.5%   |
| Total effect (95% Cl): z=-4.41, p<             | .001                                                                  | -0.22 [-0.31; -0.12] | 603 | 100.0% |
| Heterogeneity: Chi <sup>2</sup> (17)=17.84, p= | 0.399                                                                 |                      |     |        |
| Tau <sup>2</sup> =0.00, I <sup>2</sup> =4.68%  | - ۱ - ۲.۵ ۵ ۵ ۵.5<br>Parson's r at at MNI [-10 -8 12] with 95% CI: IV | random               |     |        |
| 10                                             |                                                                       | , 101100111          |     |        |

Source data (results as 3d-volumes) are provided at https://osf.io/n9mb3/.

# C anterior cingulate gyrus / paracingulate gyrus

| Study                                                                                                         | reduction < > increase                                  | Effect, 95% CI       | n   | Weight |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------|-----|--------|
| Atlas et al. 2012:                                                                                            |                                                         | -0.07 [-0.48: 0.38]  | 21  | 4.3%   |
| Bingel et al. 2006:                                                                                           | <b>_</b>                                                | -0.51 [-0.78: -0.08] | 19  | 4.3%   |
| Bingel et al. 2011:                                                                                           | <b>_</b>                                                | 0.15 [-0.29: 0.54]   | 22  | 5.0%   |
| Choi et al. 2011:                                                                                             | <b>_</b>                                                | -0.19 [-0.64: 0.36]  | 15  | 3.3%   |
| Eippert et al. 2009:                                                                                          |                                                         | -0.10 [-0.40: 0.22]  | 40  | 8.4%   |
| Ellingsen et al. 2013:                                                                                        |                                                         | 0.00 [-0.37: 0.37]   | 28  | 6.2%   |
| Elsenbruch et al. 2012:                                                                                       | <b>_</b>                                                | -0.47 [-0.69; -0.17] | 36  | 7.7%   |
| Freeman et al. 2015:                                                                                          | <b>e</b>                                                | -0.35 [-0.66; 0.07]  | 24  | 5.4%   |
| Geuter et al. 2013:                                                                                           | <b>_</b>                                                | -0.13 [-0.42; 0.20]  | 39  | 8.2%   |
| Kessner et al. 2014:                                                                                          |                                                         |                      |     |        |
| Kong et al. 2006:                                                                                             |                                                         | -0.59 [-0.89; 0.06]  | 10  | 2.0%   |
| Kong et al. 2009:                                                                                             |                                                         | -0.02 [-0.58; 0.56]  | 12  | 2.6%   |
| Lui et al. 2010                                                                                               |                                                         | -0.34 [-0.62; 0.02]  | 31  | 6.8%   |
| Ruetgen et al. 2015:                                                                                          |                                                         |                      |     |        |
| Schenk et al. 2015:                                                                                           | <b>_</b>                                                | -0.45 [-0.69; -0.11] | 32  | 7.0%   |
| Theysohn et al. 2009:                                                                                         |                                                         | 0.08 [-0.29; 0.43]   | 30  | 6.6%   |
| Wager et al. 2004, Study 1:                                                                                   |                                                         | -0.35 [-0.66; 0.06]  | 24  | 5.4%   |
| Wager et al. 2004, Study 2:                                                                                   | <b>_</b>                                                | 0.01 [-0.40; 0.42]   | 23  | 5.2%   |
| Wrobel et al. 2014:                                                                                           | <b>_</b>                                                | -0.43 [-0.66; -0.13] | 38  | 8.0%   |
| Zeidan et al. 2015:                                                                                           |                                                         | -0.42 [-0.75; 0.08]  | 17  | 3.8%   |
| Total effect (95% Cl): z=-4.34, p<.001                                                                        | $\diamond$                                              | -0.24 [-0.34; -0.13] | 602 | 100.0% |
| Heterogeneity: Chi <sup>2</sup> (17)=20.91, p=0.230<br>Tau <sup>2</sup> =0.01, l <sup>2</sup> =18.71% Pearson | 1 -0.5 0 0.5<br>'s r at at MNI [-4, 8, 40] with 95% CI; | 1<br>IV, random      |     |        |

Source data (results as 3d-volumes) are provided at <u>https://osf.io/n9mb3/</u>.

# D inferior frontal gyrus, pars triangularis

| Study                                                                                                             | reduction < > increase                             | Effect, 95% CI       | n   | Weight |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------|-----|--------|
| Atlas et al. 2012:                                                                                                |                                                    | -0.10 [-0.51; 0.35]  | 21  | 4.1%   |
| Bingel et al. 2006:                                                                                               | <b>B</b>                                           | 0.05 [-0.41; 0.50]   | 19  | 4.1%   |
| Bingel et al. 2011:                                                                                               | <b>_</b>                                           | -0.24 [-0.60; 0.20]  | 22  | 4.8%   |
| Choi et al. 2011:                                                                                                 |                                                    | 0.05 [-0.47; 0.55]   | 15  | 3.1%   |
| Eippert et al. 2009:                                                                                              | <b>_</b>                                           | -0.38 [-0.62; -0.08] | 40  | 9.4%   |
| Ellingsen et al. 2013:                                                                                            |                                                    | -0.25 [-0.57; 0.14]  | 28  | 6.4%   |
| Elsenbruch et al. 2012:                                                                                           | <b>_</b>                                           | -0.38 [-0.63; -0.06] | 36  | 8.4%   |
| Freeman et al. 2015:                                                                                              | <b>_</b>                                           | -0.14 [-0.52; 0.28]  | 24  | 5.3%   |
| Geuter et al. 2013:                                                                                               |                                                    | -0.08 [-0.38; 0.24]  | 40  | 9.4%   |
| Kessner et al. 2014:                                                                                              |                                                    |                      |     |        |
| Kong et al. 2006:                                                                                                 |                                                    | -0.11 [-0.69; 0.56]  | 10  | 1.8%   |
| Kong et al. 2009:                                                                                                 |                                                    | -0.05 [-0.61; 0.54]  | 12  | 2.3%   |
| Lui et al. 2010                                                                                                   | <b>_</b>                                           | -0.20 [-0.52; 0.17]  | 31  | 7.1%   |
| Ruetgen et al. 2015:                                                                                              |                                                    |                      |     |        |
| Schenk et al. 2015:                                                                                               | <b>e</b>                                           | -0.37 [-0.63; -0.02] | 32  | 7.4%   |
| Theysohn et al. 2009:                                                                                             |                                                    | 0.03 [-0.46; 0.50]   | 17  | 3.6%   |
| Wager et al. 2004, Study 1:                                                                                       | <b>_</b>                                           | -0.46 [-0.73; -0.07] | 24  | 5.3%   |
| Wager et al. 2004, Study 2:                                                                                       | <b>_</b>                                           | 0.24 [-0.19; 0.59]   | 23  | 5.1%   |
| Wrobel et al. 2014:                                                                                               |                                                    | -0.30 [-0.56; 0.03]  | 38  | 8.9%   |
| Zeidan et al. 2015:                                                                                               |                                                    | -0.26 [-0.66; 0.25]  | 17  | 3.6%   |
| Total effect (95% Cl): z=-4.16, p<.001                                                                            | $\diamond$                                         | -0.21 [-0.30; -0.11] | 590 | 100.0% |
| Heterogeneity: Chi <sup>2</sup> (17)=13.73, p=0.686 -1<br>Tau <sup>2</sup> =0.00, I <sup>2</sup> =0.00% Pearson's | -0.5 0 0.5<br>r at at MNI [54, 20, -6] with 95% CI | 1<br>; IV, random    |     |        |

Source data (results as 3d-volumes) are provided at <u>https://osf.io/n9mb3/</u>.

# E precentral gyrus / posterior cingulate gyrus

| Study                                                                                                     | reduction < > increase                                              | Effect, 95% CI       | n   | Weight |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------|-----|--------|
| Atlas et al. 2012:                                                                                        | <b>_</b>                                                            | -0.24 [-0.61; 0.21]  | 21  | 4.6%   |
| Bingel et al. 2006:                                                                                       | <b>e</b>                                                            | -0.32 [-0.68; 0.16]  | 19  | 4.6%   |
| Bingel et al. 2011:                                                                                       | <b>_</b>                                                            | -0.18 [-0.56; 0.26]  | 22  | 5.1%   |
| Choi et al. 2011:                                                                                         |                                                                     | -0.10 [-0.58; 0.44]  | 15  | 3.7%   |
| Eippert et al. 2009:                                                                                      |                                                                     | 0.06 [-0.26; 0.36]   | 40  | 7.8%   |
| Ellingsen et al. 2013:                                                                                    |                                                                     | 0.01 [-0.36; 0.38]   | 28  | 6.2%   |
| Elsenbruch et al. 2012:                                                                                   | <b>_</b>                                                            | -0.55 [-0.74; -0.27] | 36  | 7.3%   |
| Freeman et al. 2015:                                                                                      | <b>_</b>                                                            | -0.23 [-0.58; 0.19]  | 24  | 5.5%   |
| Geuter et al. 2013:                                                                                       |                                                                     | -0.11 [-0.41; 0.21]  | 40  | 7.8%   |
| Kessner et al. 2014:                                                                                      |                                                                     |                      |     |        |
| Kong et al. 2006:                                                                                         | _ <b>-</b> _                                                        | -0.84 [-0.96; -0.44] | 10  | 2.4%   |
| Kong et al. 2009:                                                                                         | <b>_</b>                                                            | 0.14 [-0.47; 0.66]   | 12  | 2.9%   |
| Lui et al. 2010                                                                                           | <b>e</b>                                                            | -0.40 [-0.66; -0.05] | 31  | 6.6%   |
| Ruetgen et al. 2015:                                                                                      |                                                                     |                      |     |        |
| Schenk et al. 2015:                                                                                       |                                                                     | -0.23 [-0.54; 0.12]  | 32  | 6.8%   |
| Theysohn et al. 2009:                                                                                     | <b>e</b>                                                            | -0.01 [-0.37; 0.35]  | 30  | 6.5%   |
| Wager et al. 2004, Study 1:                                                                               |                                                                     | -0.38 [-0.68; 0.03]  | 24  | 5.5%   |
| Wager et al. 2004, Study 2:                                                                               |                                                                     | 0.18 [-0.25; 0.55]   | 23  | 5.3%   |
| Wrobel et al. 2014:                                                                                       | <b>_</b>                                                            | -0.36 [-0.61; -0.05] | 38  | 7.5%   |
| Zeidan et al. 2015:                                                                                       | <b>e</b>                                                            | -0.40 [-0.74; 0.10]  | 17  | 4.1%   |
| Total effect (95% CI): z=-3.64, p<.00                                                                     | 1 🔷                                                                 | -0.22 [-0.34; -0.10] | 603 | 100.0% |
| Heterogeneity: Chi <sup>2</sup> (17)=25.91, p=0.0<br>Tau <sup>2</sup> =0.02, I <sup>2</sup> =34.40% Pears | 076 -1 -0.5 0 0.5<br>son's r at at MNI [16, -20, 40] with 95% CI; I | _<br>1<br>Ⅳ, random  |     |        |

Source data (results as 3d-volumes) are provided at https://osf.io/n9mb3/.

# F supplementary motor area / superior frontal gyrus

| Study                                                                                                   | reduction < > increase | Effect, 95% CI       | n   | Weight |
|---------------------------------------------------------------------------------------------------------|------------------------|----------------------|-----|--------|
| Atlas et al. 2012                                                                                       |                        | -0.31 [-0.66: 0.14]  | 21  | 3.9%   |
| Bingel et al. 2006:                                                                                     |                        | -0.53 [-0.79 -0.10]  | 19  | 3.9%   |
| Bingel et al. 2000.                                                                                     |                        | -0.12 [-0.52: 0.32]  | 22  | 4 7%   |
|                                                                                                         | -                      | -0.12 [-0.52, 0.52]  | 15  | 4.7 /0 |
|                                                                                                         |                        | -0.04 [-0.54, 0.46]  | 10  | 3.0%   |
| Elppert et al. 2009:                                                                                    |                        | -0.19 [-0.48; 0.13]  | 40  | 9.1%   |
| Ellingsen et al. 2013:                                                                                  |                        | -0.00 [-0.38; 0.37]  | 28  | 6.2%   |
| Elsenbruch et al. 2012:                                                                                 |                        | -0.33 [-0.59; -0.00] | 36  | 8.1%   |
| Freeman et al. 2015:                                                                                    |                        | 0.06 [-0.35; 0.45]   | 24  | 5.2%   |
| Geuter et al. 2013:                                                                                     |                        | -0.28 [-0.54; 0.04]  | 40  | 9.1%   |
| Kessner et al. 2014:                                                                                    |                        |                      |     |        |
| Kong et al. 2006:                                                                                       | <b>-</b>               | -0.54 [-0.87; 0.14]  | 10  | 1.7%   |
| Kong et al. 2009:                                                                                       |                        | -0.05 [-0.61; 0.54]  | 12  | 2.2%   |
| Lui et al. 2010                                                                                         | <b>_</b>               | -0.31 [-0.60; 0.05]  | 31  | 6.9%   |
| Ruetgen et al. 2015:                                                                                    |                        |                      |     |        |
| Schenk et al. 2015:                                                                                     |                        | -0.21 [-0.52; 0.15]  | 32  | 7.1%   |
| Theysohn et al. 2009:                                                                                   |                        | 0.01 [-0.35; 0.37]   | 30  | 6.7%   |
| Wager et al. 2004, Study 1:                                                                             | <b>e</b>               | -0.03 [-0.43; 0.38]  | 24  | 5.2%   |
| Wager et al. 2004, Study 2:                                                                             |                        | 0.12 [-0.31; 0.51]   | 23  | 4.9%   |
| Wrobel et al. 2014:                                                                                     | <b>_</b>               | -0.40 [-0.64; -0.09] | 38  | 8.6%   |
| Zeidan et al. 2015:                                                                                     |                        | -0.44 [-0.76; 0.05]  | 17  | 3.4%   |
| Total effect (95% Cl): z=-4.20, p<.001                                                                  | $\diamond$             | -0.21 [-0.30; -0.11] | 603 | 100.0% |
| Heterogeneity: Chi <sup>2</sup> (17)=14.81, p=0.609 -1<br>Tau <sup>2</sup> =0.00, I <sup>2</sup> =0.00% | -0.5 0 0.5             | 1<br>IV random       |     |        |

Pearson's r at at MNI [4, 6, 64] with 95% CI; IV, random

Note that *r*-values were transformed to and from Fisher's Z for analysis, resulting in asymmetric confidence intervals. Source data (results as 3d-volumes) are provided at <u>https://osf.io/n9mb3/</u>.





Across all brain-voxels (n = 191119 voxels, full sample sans between-group studies), there was a negligible, negative, statistically significant correlation (r = -.057, 95% CI [-.061, -.053], p < .001) between effects of placebo treatment and between-study heterogeneity estimate  $\tau$ . Voxels where  $\tau = 0$  (49% of voxels) were excluded from the plot, but not the correlation analysis, for illustration purposes. Source data (results as 3d-volumes) are provided at <u>https://osf.io/n9mb3/</u>.

# Supplementary Figure 13: a comparison of placebo-related brain activation changes with regions contributing to the NPS.



The outline of areas comprising the NPS versus (A) Placebo induced changes in pain-related activity (n = 543 to 603 individuals from 17 to 20 independent studies per voxel) and (B) correlations of behavioral placebo analgesia and changes in pain-related brain activity (n = 384 to 460 individuals from 15 to 18 independent studies per voxel). Note that the outlines above do not differentiate between NPS regions with a positive (more activity indicates more pain) and a negative (more activity indicates less pain) weighting.

Three dimensional coronal slices are equidistantly distributed from y = 60 to -68 mm. Axial slices range equidistantly from z = -22 to 42 mm. Custom coordinates for sagittal slices is displayed in mm and were chosen to highlight important areas of activation. Source data (results as 3d-volumes) are provided at https://osf.io/n9mb3/.



Supplementary Figure 14: atlases used for similarity-based analysis of brain activity A whole-brain cortical networks of functional connectivity (Yeo et al. 2011)



# B insular sub-regions (Faillenot et al. 2017)

## C thalamic nuclei (Krauth et al. 2010)



Abbreviations: Hythal: Hypothalamus, Hb: Habenular, AV anterior ventral:, AM anterior medial:, MD: mediodorsal, VM: ventral medial, VA ventral anterior:, LP: lateral posterior, VL: ventral lateral, LD: lateral dorsal, Intralam: intralaminary, VPM: ventral posterior medial, VPL: ventral posterior lateral, MGN: Medial Geniculate Nucleus, LGN: Lateral Geniculate Nucleus, Pulv: Pulvinar.

# **Supplementary Tables**

| #            | First author        | Year    | PMID     | Sour        | Comment                       | n   |
|--------------|---------------------|---------|----------|-------------|-------------------------------|-----|
|              |                     |         |          | се          |                               |     |
| Eligib       | le, included        |         |          | _           | -                             | -   |
| 1            | Atlas               | 2012    | 22674280 | MA          | Included                      | 21  |
| 2            | Bingel              | 2006    | 16364549 | MS          | Included                      | 19  |
| 3            | Bingel              | 2011    | 21325618 | MA          | Included                      | 22  |
| 4            | Choi                | 2011    | 21546858 | MS          | Included                      | 15  |
| 5            | Eippert             | 2009    | 19709634 | MS          | Included                      | 40  |
| 6            | Ellingsen           | 2013    | 24127578 | MS          | Included                      | 28  |
| 7            | Elsenbruch          | 2012    | 22136749 | MS          | Included                      | 36  |
| 8            | Freeman             | 2015    | 25776211 | Rec         | Included                      | 24  |
| 9            | Geuter              | 2013    | 23201367 | MS          | Included                      | 48  |
| 10           | Lui                 | 2010    | 20943318 | MS          | Included                      | 33  |
| 11           | Kessner             | 2014    | 25275613 | MS          | Included                      | 39  |
| 12           | Kong                | 2006    | 16407533 | MS          |                               | 16  |
| 13           | Kong                | 2009    | 19159691 | MS          | Included                      | 12  |
| 14           | Rutgen              | 2015    | 26417092 | Rec         |                               | 102 |
| 15           | Schenk              | 2014    | 24076046 | Rec         |                               | 32  |
| 16           |                     | 2014    | 25346054 | IVIS        |                               | 33  |
| 17           | Wager (Study I)     | 2004    | 14976306 | MS          |                               | 25  |
| 18           | wager (Study        | 2004    | 14976306 | MS          | Included                      | 24  |
| 10           | ll)<br>M/rohol      | 2014    | 04700040 | MC          |                               | 4.4 |
| 19           | VVIODEI             | 2014    | 24796219 | IVIS<br>Dec |                               | 44  |
| 20<br>Eliaib | Zeidan              | 2015    | 20280819 | Rec         | Included                      | 20  |
|              |                     | 2014    | 24412700 | MC          | Personded data unavailable    | 15  |
| 21           |                     | 2014    | 24412799 | MC          | No rosponso                   | 10  |
| 22           |                     | 2012    | 10062240 | MC          | No response                   | 14  |
| 23           | Lu<br>Nomoto        | 2010    | 17297004 |             | No response                   | 14  |
| 24           | Petrovic            | 2007    | 11207994 |             | Responded data unavailable    | 0   |
| 20           | Price               | 2002    | 1606318/ | MS          | Responded, data unavailable   | a   |
| 20           | Sevel               | 2007    | 25659463 | MS          | Responded, data unavailable   | 24  |
| 28           | Watson              | 2010    | 19523766 | MS          | Responded, data unavailable   | 11  |
| Eligib       | le, published afte  | r studv | search   | 1010        |                               |     |
| 29           | Fehse               | 2015    | 25933389 | PS          | Not sought                    | 30  |
| 30           | Schenk              | 2017    | 28883019 | PS          | Not sought                    | 48  |
| 31           | van der Meulen      | 2017    | 28338955 | PS          | Not sought                    | 30  |
| 32           | Gollub              | 2018    | 29325883 | PS          | Not sought                    | 45  |
| 33           | Linnman             | 2018    | 29255671 | PS          | Not sought                    | 18  |
| 34           | Yue                 | 2018    | 29025005 | PS          | Not sought                    | 25  |
| Asses        | sed for eligibility | not eli | aible    |             | The bought                    |     |
| 35           | Chae                | 2009    | 19533753 | MS          | Placebo & pain conditions not | na  |
| 00           | Chido               | 2000    | 10000100 |             | separable                     | na  |
| 36           | Cragos              | 2007    | 17904390 | MS          | Re-analysis of 16963184       | na  |
| 37           | Craggs              | 2008    | 18804916 | MS          | Re-analysis of 16963184       | na  |
| 38           | Eippert             | 2009    | 19833962 | MS          | Spinal                        | na  |
| 39           | Jensen              | 2014    | 25452576 | MS          | No treatment context (cued    | na  |
|              |                     |         |          |             | expectancy)                   |     |
| 40           | Kotsis              | 2012    | 22747652 | MS          | Re-analysis of 22136749       | na  |
| 4            | Leech               | 2013    | 24093551 | MS          | No experimental pain (cough)  | na  |
| 42           | Huber               | 2013    | 23664683 | MS          | Re-analysis of 20943318       | na  |
| 43           | Petrovic            | 2010    | 20399560 | MS          | Re-analysis of 11834781       | na  |
| 44           | Schmid              | 2015    | 24833636 | MS          | Re-analysis of 25346054       | na  |
| 45           | Wager               | 2011    | 21228154 | MS          | Re-analysis of 14976306       | na  |
| 46           | Zhang               | 2013    | 23123362 | MS          | No experimental pain in fMRI  | na  |
| Scree        | ned, not eligible   |         |          |             | · ·                           |     |
| 47           | Amanzio             | 2013    | 22125184 | MS          | Review/comment                | na  |

# Supplementary Table 1: study screening, eligibility checking, and retrieval

| 48  | Beauregard     | 2009 | 19023697 | MS | Review/comment                   | na |
|-----|----------------|------|----------|----|----------------------------------|----|
| 49  | Benedetti      | 2007 | 17379417 | MS | Review/comment                   | na |
| 50  | Berna          | 2011 | 21815494 | MS | Review/comment                   | na |
| 51  | Bingel         | 2010 | 20376600 | MS | Review/comment                   | na |
| 52  | Blom           | 2011 | 21734437 | MS | No experimental placebo, no fMRI | na |
| 53  | Büchel         | 2014 | 24656247 | MS | Review/comment                   | na |
| 54  | Colloca        | 2008 | 17960416 | MS | Review/comment                   | na |
| 55  | Columbo        | 2015 | 25758451 | MS | No experimental placebo, no fMRI | na |
| 56  | Dalakas        | 1995 | 7611640  | MS | No experimental placebo, no fMRI | na |
| 57  | Dobrila-       | 2011 | 22220463 | MS | Review/comment                   | na |
|     | Dintiniana     |      |          |    |                                  |    |
| 58  | Dukart         | 2014 | 24379394 | MS | No experimental placebo          | na |
| 59  | Gamus          | 2015 | 25796668 | MS | Review/comment                   | na |
| 60  | Ghahreman      | 2011 | 21539702 | MS | No experimental placebo, no fMRI | na |
| 61  | Grabowski      | 2010 | 20677441 | MS | Review/comment                   | na |
| 62  | Gunta          | 2011 | 21250799 | MS | No experimental placebo, no fMRI | na |
| 63  | Hashmi         | 2012 | 22531485 | MS | No experimental pain             | na |
| 64  | Hashmi         | 2012 | 22985900 | MS | No experimental pain             | na |
| 65  | Höller         | 2009 | 19573501 | MS | Review/comment                   | na |
| 66  | Howell         | 2000 | 20839687 | MS | No experimental placebo, no fMRI | na |
| 67  | Hróbiartsson   | 2010 | 21524568 | MS | Review/comment                   | na |
| 68  | Johnson        | 2004 | 15134003 | MS | Review/comment                   | na |
| 69  | Khalili-Mahani | 2015 | 25554429 | MS | No experimental pain in fMRI     | na |
| 70  | Kong           | 2010 | 18010605 | MS | Review/comment                   | na |
| 70  | Li             | 2007 | 21280461 | MS | Review/comment                   | na |
| 72  |                | 2010 | 24817188 | MS |                                  | na |
| 73  | Lidstone       | 2014 | 17334853 | MS | Review/comment                   | na |
| 74  |                | 2007 | 21751/3/ | MS | Review/comment                   | na |
| 75  | Martini        | 2011 | 25523008 | MS | No fMRI                          | na |
| 76  | Miura          | 2013 | 23711332 | MS | No experimental pain             | na |
| 77  | Murray         | 2013 | 23880289 | MS | Review/comment                   | na |
| 78  | Nandhagonal    | 2018 | 18413571 | MS | Review/comment                   | na |
| 79  | Petersen       | 2000 | 25281020 | MS | No fMRI                          | na |
| 80  | Petrovic       | 2014 | 15953423 | MS | No experimental pain             | na |
| 81  | Oiu            | 2003 | 19784082 | MS | Review/comment                   | na |
| 82  | Rainville      | 2000 | 16513275 | MS | Review/comment                   | na |
| 83  | Rigatelli      | 2000 | 187505/5 | MS | Review/comment                   | na |
| 84  | Ritter         | 2000 | 24672009 | MS |                                  | na |
| 85  | Sant'Anna      | 2014 | 25372920 | MS | No experimental placebo          | na |
| 86  | Sarinonoulos   | 2014 | 16472720 | MS | No experimental pain             | na |
| 87  | Scott          | 2000 | 17640532 | MS | No experimental pain in fMRI     | na |
| 88  | Scott          | 2007 | 18250260 | MΔ | Pharmacological PET              | na |
| 89  | Stein          | 2000 | 22050500 | MS | No experimental placebo          | na |
| 90  | Su             | 2012 | 21290837 | MS | Review/comment                   | na |
| Q1  | Theis          | 2010 | 1535/2/5 | MS | Review/comment                   | na |
| 02  | Wager          | 2004 | 17578017 | MA |                                  | na |
| 92  | Wager          | 2007 | 24761154 | MS | Review/comment                   | na |
| 93  | Wayer          | 2015 | 24701134 | MS | No experimental placebo          | na |
| 95  | Wiech          | 2013 | 25003555 | MS | No fMRI                          | na |
| 90  |                | 2014 | 24268723 | MS | No experimental placebo          | na |
| 97  | Xu             | 2014 | 25060206 | MS | Review/comment                   | na |
| 08  | Velle          | 2014 | 10602600 | MQ | No experimental placebo          | na |
| 90  | Vilmaz         | 2009 | 20817254 | MS | No experimental placebo          | na |
| 100 | Yu             | 2010 | 20017304 | MS | No experimental placebu          | na |
| 101 | Zhang          | 2014 | 21332/87 | MS | No experimental pain             | na |
| 107 | Zubieta        | 2011 | 10332500 | MQ | Review/comment                   | na |
| 102 |                | 2003 | 19000009 |    |                                  | na |

The *n* shown for eligible studies refer to participants that completed testing according to the original manuscripts. Abbreviations: fMRI, functional Magnetic Resonance Imaging; MS, study identified in an initial medline search; na, not assessed; MA, study identified in previous meta-analyses; PS, study identified i post-hoc search; Rec, study added late after recommendaton by collaborators during data acquisition, Sample identical with <sup>1</sup>.

| # | First<br>Author | year | n  | Pain<br>type    | Pain<br>location     | Stim<br>ulus<br>durat<br>ion<br>(s) | Stimulus intensity                                                                                                                                                                                                                                                                                             | Pain rating                                                                                                                                                                                                                                                           |
|---|-----------------|------|----|-----------------|----------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Atlas           | 2012 | 21 | heat            | L forearm<br>(v)     | 10                                  | "[]applied temperatures were calibrated to<br>elicit levels of low pain (VAS<br>rating = 2;M = 41.16°C, SD = 2.64) and high<br>pain(VASrating = 8; M = 47.05°C,<br>SD = 1.69)[]"                                                                                                                               | "[] continuous, numerically anchored visual<br>analog scale (VAS) from 0 to 8 (0, no<br>sensation; 1, nonpainful warmth; 2, low pain;<br>5, moderate pain; 8, maximum tolerable<br>pain)."                                                                            |
| 2 | Bingel          | 2006 | 19 | laser           | L & R<br>hand<br>(d) | 0.001                               | "[] laser pain stimuli of 600 mJ each were applied to the respective hand every 6–8 s"                                                                                                                                                                                                                         | "[] another vocal command ('rating')<br>prompted the subject to rate the average<br>sensation for the last four painful stimuli with<br>hand signs on the numerical rank scale<br>(NRS) ranging from 0 (no sensation) to 4<br>(maximum pain used in the experiment)." |
| 3 | Bingel          | 2011 | 22 | heat            | R calf<br>(d)        | 6                                   | "For each participant, the temperature of the<br>thermode was adjusted to produce a pain<br>intensity rating of 70 on a VAS, where 0<br>corresponds to "no pain" and 100 to<br>"unbearable pain." This temperature was<br>delivered during all runs."                                                          | "[] pain intensity rating performed on a VAS (100 parts; endpoints labeled with no pain and unbearable pain)."                                                                                                                                                        |
| 4 | Choi            | 2011 | 15 | electri-<br>cal | L hand<br>(d)        | 15                                  | "Each participant received the same level of<br>electrical stimulation (2 Hz, 20 mA, duration:<br>15 s) during fMRI scanning []"                                                                                                                                                                               | "Ratings were assessed using a Numerical<br>Rating Scale ranging from 0 to 100 (0 = no<br>pain or anxiety; 100 = maximum imaginable<br>pain or anxiety)."                                                                                                             |
| 5 | Eippert         | 2009 | 40 | heat            | L forearm<br>(v)     | 17                                  | "Importantly, in both sessions subjects were<br>stimulated with the same temperature<br>(equivalent to 60 on the VAS)."                                                                                                                                                                                        | "[](VAS; 100 parts; endpoints labeled with<br>"no pain" and "unbearable pain")[]"                                                                                                                                                                                     |
| 6 | Ellingsen       | 2013 | 28 | heat            | L forearm<br>(d)     | 10                                  | "A moderately painful temperature, which<br>was selected for each participant before the<br>first fMRI session (5 on a numeric rating<br>scale, NRS, with anchors $0 = no pain$ ;<br>1 = pain threshold; $10 = intense pain$ ), was<br>used in both fMRI sessions (mean<br>temperature = $47.1 \pm 0.73$ °C)." | "Hedonic Ratings. A VAS (-5to +5) with<br>anchors "unpleasant" and "pleasant" […]"                                                                                                                                                                                    |

# Supplementary Table 2: included studies: design, demographics, & heat stimulation

| 7  | Elsenbruch | 2012 | 36 | disten-<br>sion | C rectal         | 31 | "Subjects were prompted to rate the<br>sensation as follows: 1 = no perception;<br>2 = doubtful perception; 3 = sure perception;<br>4 = little discomfort; 5 = severe discomfort,<br>still tolerable; 6 = pain, not tolerable. For<br>repeated distensions in the scanner, the<br>pressure corresponding to a rating of 5 was<br>chosen."                                                                                               | "Visual analogue scales (VAS) (0 to 100 mm;<br>ends defined as 0: none to 100: very much)<br>were completed after each session to<br>quantify subjective pain[]"                                                                                                                                                        |
|----|------------|------|----|-----------------|------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8  | Freeman    | 2015 | 24 | heat            | R forearm<br>(v) | 7  | "[] temperature was moderate [10–11 out of 20 rating] on the final 6 regions demarcated on the volar forearm."                                                                                                                                                                                                                                                                                                                          | "[]Gracely Scales (0–20) (Gracely et al.,<br>1978a, 1978b) that they [the participants]<br>would use to rate their pain[]"                                                                                                                                                                                              |
| 9  | Geuter     | 2013 | 40 | heat            | L forearm<br>(v) | 16 | "[]identical stimuli (VAS 60) were applied<br>on placebo and control patches, respectively<br>(15 on each patch)[]"                                                                                                                                                                                                                                                                                                                     | "[] subjects rated their pain intensity on a<br>computerized visual analogue scale (VAS)<br>ranging from 0 to 100. The scale was<br>anchored with "no pain" and "unbearable<br>pain". Subjects were instructed to rate<br>"unbearable pain" only in case they had to lift<br>the thermode because of too intense pain." |
| 10 | Kessner    | 2014 | 39 | heat            | L forearm<br>(v) | 16 | "In all participants, a stimulus intensity of VAS 50 was applied at the ointment treatment site and of VAS 80 at the untreated site (15 stimuli each)."                                                                                                                                                                                                                                                                                 | ""The participants were asked to rate each<br>pain stimulus on a Visual Analog Scale (VAS,<br>[100 parts; endpoints labeled as "no pain"<br>and "unbearable pain"]).""                                                                                                                                                  |
| 11 | Kong       | 2006 | 10 | heat            | R forearm<br>(v) | 5  | "Temperatures that elicited subjective<br>intensity ratings in the low pain range (8–11;<br>the mild to moderate range on the 0–20<br>Sensory Box scale) and high pain range (14–<br>17; the strong to intense range on the 0–20<br>Sensory Box scale) were selected for each<br>subject."                                                                                                                                              | "[] teach the subjects to rate the stimuli<br>using the Sensory Box and Affective Box 0–<br>20 scales (Gracely et al., 1978a,b, 1979)."                                                                                                                                                                                 |
| 12 | Kong       | 2009 | 12 | heat            | R forearm<br>(v) | 12 | "[] temperatures eliciting subjective<br>intensity ratings in the LOW pain range (~5;<br>which indicates weak on the 0–20 Sensory<br>Scale) and HIGH pain range (~15; strong)<br>were selected for each individual[]"<br>"stimulus temperatures and the<br>corresponding subjective sensory ratings<br>(mean $\pm$ SD) were 48.1 $\pm$ 1.1 °C and<br>14.5 $\pm$ 1.6 for HIGH pain; 45.1 $\pm$ 1.6 °C and<br>5.0 $\pm$ 2.7 for LOW pain" | "Gracely Sensory and Affective scales<br>(Gracely et al., 1978a,b) were<br>used to measure subjective pain ratings."                                                                                                                                                                                                    |

| 13 | Lui                | 2010 | 31  | laser           | L or R foot<br>(v)      | ~0.05 | "An ascending series of stimuli were<br>delivered in steps of 0.5 J, starting from very<br>low intensities (0.5 J, below warmth<br>threshold) until a mild-to-moderate pain<br>intensity was achieved for each subject."                                                                                                                                                                                                                                                                                  | "[]volunteers had to rate the perceivedpain<br>intensity,byrotatingaknobwhichmovedacursor<br>on a computerized visual analogue scale<br>(VAS), anchored at 0 = no pain, and<br>100 = worst imaginable pain."                                                  |
|----|--------------------|------|-----|-----------------|-------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14 | Rütgen             | 2015 | 102 | electri-<br>cal | L hand<br>(d)           | 0.5   | "In the fMRI experiment, average stimulation<br>intensity was 0.16 mA (SD 0.15) for<br>nonpainful sensations and 0.74 mA (SD 0.59)<br>for painful sensations."                                                                                                                                                                                                                                                                                                                                            | "After stimulation of themselves, participants<br>rated their own pain (self-directed pain<br>ratings), using the question "How painful was<br>this stimulus for you?" on a seven-point rating<br>scale ranging from "not at all" to "extremely<br>painful."" |
| 15 | Schenk             | 2014 | 32  | caps +<br>heat  | L & R<br>forearm<br>(v) | 20    | "Temperature calibration was per- formed to<br>elicit a pain level of approximately 6 on a<br>VAS (0–10)", "The average temperature<br>corresponding to a VAS rating of 6 was 39.8<br>± 2.9°C on capsaicin-pretreated skin."                                                                                                                                                                                                                                                                              | "[] subjects rated their perceived pain<br>intensity on a VAS scale (0–10, end points<br>labeled with "no pain at all" and "unbearable<br>pain", 10 seconds)."                                                                                                |
| 16 | Theysohn           | 2014 | 30  | disten-<br>sion | C rectal                | 16.8  | "In all three sessions, subjects received rectal distensions at a pressure just below the individual pain threshold[]"                                                                                                                                                                                                                                                                                                                                                                                    | "[] distension-induced pain (after each<br>distension) VAS scales, with ends defined as<br>'no pain/tension' and 'maximal pain/tension'.<br>For analyses, all responses were quantified<br>in mm from '0' to '100'."                                          |
| 17 | Wager <sup>A</sup> | 2004 | 24  | electri-<br>cal | R forearm<br>(v)        | 6     | Mild shock intensity was defined as the level<br>of the shock just prior to the point at which<br>participants acknowledged pain<br>(mean = $1.44$ mA, sd = $0.85$ mA). Intense<br>shocks were set at the maximum level<br>participants could tolerate (mean = $3.75$ mA,<br>sd = $2.34$ mA).                                                                                                                                                                                                             | "participants rated the intensity of the shock<br>on a 10-point scale" — original pain ratings<br>not available, only placebo-control contrast of<br>ratings                                                                                                  |
| 18 | Wager <sup>B</sup> | 2004 | 23  | heat            | L forearm<br>(v)        | 17    | "Two repetitions of 3 temperatures(starting at<br>45, 47, and 49 degrees Celsius) were<br>administered, and temperatures were<br>adjusted and the test repeated as necessary<br>to find pain levels 2, 5, and 8 for each<br>participant on a 10-point scale (1 was "just<br>painful", 10 was "unbearable pain"). On all<br>trials, a 20-s thermal stimulation (17 s<br>plateau, 1.5 s ramp up / ramp down to<br>baseline)was followed by a 40-s rest period.<br>Temperatures were 45.4 degrees centigrade | "[] reported pain levels [] on a 10-point<br>scale (1 = just painful; 10 = unbearable pain)"<br>— original pain ratings not available, only<br>placebo-control contrast of ratings                                                                            |

|    |        |      |    |      |                  |    | on average (sd = 1.1) for Level 2, 47.0<br>(sd = 0.9) for Level 5, and 48.1 (sd = 1.0) for<br>Level 8."                            |                                                                                                                                                                                                                                                                                                                                                                                                            |
|----|--------|------|----|------|------------------|----|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19 | Wrobel | 2014 | 38 | heat | L forearm<br>(v) | 17 | "[]placebo and control sites were stimu-<br>lated with the same individually calibrated<br>temperature cor- responding to VAS 60." | "VAS (100 parts; endpoints labeled with 'no pain' and 'unbearable pain')"                                                                                                                                                                                                                                                                                                                                  |
| 20 | Zeidan | 2015 | 19 | heat | R leg<br>(d)     | 12 | "heat; 49°C + neutral; 35°C" (Figure 1)                                                                                            | "pain intensity and unpleasantness ratings<br>were as- sessed with a 15 cmplastic sliding<br>visual analog scale (VAS) (Price et al., 1994)<br>[]The minimum rating ("0") was designated<br>as "no pain sensation" and "not at all<br>unpleasant," whereas the maximum ("10")<br>was labeled as "most intense pain sensation<br>imag- inable" or "most unpleasant sensation<br>imaginable," respectively." |

Abbreviations: <sup>A</sup> Sub-study 1; <sup>B</sup> Sub-study 2; Caps, capsaicin; (d), dorsal; na, not available; (v), ventral.

| Supplementary Table 3: included studies: placebo condition |
|------------------------------------------------------------|
|------------------------------------------------------------|

| #  | First author       | year | Placebo induction | Placebo type     | Placebo treatment conditions                                |
|----|--------------------|------|-------------------|------------------|-------------------------------------------------------------|
| 1  | Atlas              | 2012 | Suggestions       | IV-infusion      | Within(hidden vs open remifentanil)*                        |
| 2  | Bingel             | 2006 | Suggestions +     | Topical cream    | Within(placebo vs control)                                  |
|    |                    |      | conditioning      |                  |                                                             |
| 3  | Bingel             | 2011 | Suggestions +     | IV-infusion      | Within(hidden vs open remifentanil)*                        |
|    |                    |      | conditioning      |                  |                                                             |
| 4  | Choi               | 2011 | Suggestions +     | IV-infusion      | Within(high vs low vs no efficacy)                          |
| _  |                    |      | conditioning      | · · · ·          |                                                             |
| 5  | Eippert            | 2009 | Suggestions +     | lopical cream    | Within(placebo vs control) x Between(naloxone vs saline)    |
| 0  |                    | 0040 | conditioning      |                  |                                                             |
| 6  | Ellingsen          | 2013 | Suggestions       | Nasal spray      | Within(placebo vs no treatment)                             |
| /  | Elsenbruch         | 2012 | Suggestions       |                  | Within(high vs low vs no chance of efficacy)                |
| 8  | Freeman            | 2015 | Suggestions +     | I opical cream   | Within(placebo vs nocebo vs control)                        |
| 0  | Coutor             | 2012 | Suggestions       | Topical groom    | Within (expansive high ve cheen low ve no officeev)         |
| 9  | Geulei             | 2013 | suggestions +     | ropical cream    | within (expensive high vs cheap low vs no enicacy)          |
| 10 | Kessner            | 2014 | Conditioning      | Topical cream    | Between(effective vs ineffective placebo conditioning)      |
| 11 | Kong               | 2006 | Suggestions +     | Sham acupuncture | Within(placebo vs control)                                  |
|    | liteng             | 2000 | conditioning      |                  |                                                             |
| 12 | Kong               | 2009 | Suggestions +     | Sham acupuncture | Within(placebo vs control)                                  |
|    | -                  |      | conditioning      |                  |                                                             |
| 13 | Lui                | 2010 | Suggestions +     | Placebo TENS     | Within(placebo vs control)                                  |
|    |                    |      | conditioning      |                  |                                                             |
| 14 | Rütgen             | 2015 | Suggestions +     | Pill             | Between(placebo vs no treatment)                            |
|    |                    |      | conditioning      |                  |                                                             |
| 15 | Schenk             | 2014 | Suggestions       | Topical cream    | Within(hidden vs open*) x Within(placebo vs control)        |
| 16 | Theysohn           | 2014 | Suggestions       | IV-infusion      | Within(placebo vs control)                                  |
| 17 | Wager <sup>A</sup> | 2004 | Suggestions       | Topical cream    | Within(placebo vs control)                                  |
| 18 | Wager <sup>B</sup> | 2004 | Suggestions +     | Topical cream    | Within(placebo vs control)                                  |
|    |                    |      | conditioning      |                  |                                                             |
| 19 | Wrobel             | 2014 | Suggestions +     | Topical cream    | Within(placebo vs control) x Between(haloperidol vs saline) |
|    |                    |      | conditioning      |                  |                                                             |
| 20 | Zeidan             | 2015 | Suggestions +     | Topical cream    | Within(placebo vs no treatment)                             |
|    |                    |      | conditioning      |                  |                                                             |

\* In analogy to the other studies open treatment were treated as "placebo conditions" and hidden treatment conditions as "control condition". **Abbreviations:** between, between-group factor; <sup>A</sup> Sub-study 1; <sup>B</sup> Sub-study 2; IV, intravenous; within, within subject factor.

| #  | First author       | year | Field Strength | TR (ms) | TE (ms) | Resolution (mm) | Images/participant |
|----|--------------------|------|----------------|---------|---------|-----------------|--------------------|
|    |                    |      | (Tesia)        |         |         |                 |                    |
| 1  | Atlas              | 2012 | 1.5            | 2000    | 34      | 3.5*3.5*4.0     | 1980               |
| 2  | Bingel             | 2006 | 1.5            | 2600    | 40      | 3.3*3.3*4.0     | 976                |
| 3  | Bingel             | 2011 | 3              | 3000    | 30      | 3.5*3.5*3.0     | ø 734              |
| 4  | Choi               | 2011 | 3              | 3000    | 30      | 3.8*3.8*4.0     | 300                |
| 5  | Eippert            | 2009 | 3              | 2620    | 26      | 2.0*2.0*3.0     | ø 658              |
| 6  | Ellingsen          | 2013 | 3              | 2000    | 30      | 3.0*3.0*3.3     | 510                |
| 7  | Elsenbruch         | 2012 | 1.5            | 3100    | 50      | 3.8*3.8*3.3     | 591                |
| 8  | Freeman            | 2015 | 3              | 2000    | 40      | 3.1*3.1*5.0     | unknown            |
| 9  | Geuter             | 2013 | 3              | 2580    | 26      | 2.0*2.0*3.0     | ø 1137             |
| 10 | Kessner            | 2014 | 3              | 2580    | 26      | 2.0*2.0*3.0     | 662                |
| 11 | Kong               | 2006 | 3              | 2000    | 40      | 3.1*3.1*5.0     | unknown            |
| 12 | Kong               | 2009 | 3              | 2000    | 40      | 3.1*3.1*5.0     | unknown            |
| 13 | Lui                | 2010 | 3              | 3014    | 35      | 1.9*1.9*3.5     | 648                |
| 14 | Rütgen             | 2015 | 3              | 1800    | 33      | 1.5*1.5*2.0     | ø 507              |
| 15 | Schenk             | 2014 | 3              | 2580    | 26      | 2.0*2.0*2.0     | 1260               |
| 16 | Theysohn           | 2014 | 1.5            | 2400    | 26      | 2.6*2.6*3.0     | 617                |
| 17 | Wager <sup>A</sup> | 2004 | 3              | 1800    | 22      | 3.8*3.8*5.0     | 600                |
| 18 | Wager <sup>B</sup> | 2004 | 3              | 1500    | 20      | 3.0*3.0*4.0     | 640                |
| 19 | Wrobel             | 2014 | 3              | 2580    | 25      | 2.0*2.0*3.0     | ø 655              |
| 20 | Zeidan*            | 2015 | 3              | NA      | NA      | 3.4*3.4*6.0     | 8                  |

Supplementary Table 4: included studies: functional neuro imaging acquisition characteristics

All studies obtained blood-oxygenation-dependent (BOLD) signal using echo-planar imaging (EPI) variants. except for one study (\*) using arterial spin labeling (ASL). Image number represents the number of volumes per participant used in the original analysis; for studies with varying imaging duration average (Ø) images per participant are reported. All information was obtained from the original publications and (where available) from analysis files (e.g. SPM.mat or design.mat).

Abbreviations: <sup>A</sup> Sub-study 1; <sup>B</sup> Sub-study 2; NA, not applicable; TR repetition time; TE echo time.

| #  | First<br>author    | Year | Softwa<br>re | Slice<br>timin<br>g | Spati<br>al<br>smoo<br>thing | Tempor<br>al high-<br>pass<br>filter (s) | Other<br>filters | Imag<br>e<br>type | Modeled pain<br>duration (s) | HRF       | Nuisance<br>regressors   | Parametric<br>modulators      |
|----|--------------------|------|--------------|---------------------|------------------------------|------------------------------------------|------------------|-------------------|------------------------------|-----------|--------------------------|-------------------------------|
|    |                    |      |              |                     | (mm)                         |                                          |                  |                   |                              |           |                          |                               |
| 1  | Atlas              | 2012 | SPM5         | Yes                 | 8*8*8                        | 180                                      | no               | beta              | 14.2                         | custom    | motion + outliers        | expectation +<br>remifentanil |
| 2  | Bingel             | 2006 | SPM2         | no                  | 8*8*8                        | 128                                      | no               | con               | Event                        | canonical | no                       | temp derivative               |
| 3  | Bingel             | 2011 | SPM5         | yes                 | 8*8*8                        | 128                                      | no               | beta              | 6.0                          | canonical | no                       | no                            |
| 4  | Choi               | 2011 | SPM8         | no                  | 5*5*5                        | 50                                       | no               | beta              | 15.0                         | canonical | no                       | TD                            |
| 5  | Eippert            | 2009 | SPM5         | yes                 | 8*8*8                        | 128                                      | no               | con               | 10.0 early, 10.0 late        | canonical | no                       | no                            |
| 6  | Ellingsen          | 2013 | FSL          | no                  | 5*5*5                        | 120                                      | ICA              | con               | 10.0                         | gamma     | no                       | no                            |
| 7  | Elsenbruch         | 2012 | SPM5         | no                  | 9*9*9                        | 140                                      | LP               | beta              | 31.0                         | canonical | no                       | no                            |
| 8  | Freeman            | 2015 | SPM8         | no                  | 8*8*8                        | 128                                      | no               | con               | 7.0                          | canonical | no                       | no                            |
| 9  | Geuter             | 2013 | SPM8         | no                  | 6*6*6                        | 128                                      | no               | con               | 10.0 early, 10.0 late        | canonical | motion + CRF & WM signal | no                            |
| 10 | Kessner            | 2014 | SPM8         | yes                 | 8*8*8                        | 128                                      | no               | beta              | 10.0 early, 10.0 late        | canonical | no                       | no                            |
| 11 | Kong               | 2006 | SPM2         | no                  | 8*8*8                        | 128                                      | no               | con               | 5.0                          | canonical | no                       | no                            |
| 12 | Kong               | 2009 | SPM2         | no                  | 8*8*8                        | 128                                      | no               | con               | 7.0                          | canonical | no                       | no                            |
| 13 | Lui                | 2010 | SPM5         | yes                 | 4*4*8                        | 128                                      | no               | con               | Event                        | canonical | no                       | TD + ratings                  |
| 14 | Rütgen             | 2015 | SPM12        | yes                 | 6*6*6                        | 128                                      | no               | con               | 4.4                          | canonical | motion                   | no                            |
| 15 | Schenk             | 2014 | SPM8         | no                  | 6*6*6                        | 128                                      | no               | beta              | 20.0                         | canonical | no                       | no                            |
| 16 | Theysohn           | 2014 | SPM8         | no                  | 8*8*8                        | 120                                      | LP               | beta              | 16.8                         | canonical | no                       | no                            |
| 17 | Wager <sup>A</sup> | 2004 | SPM99        | yes                 | 6*6*6                        | 128                                      | LP               | con               | 20.0                         | canonical | no                       | no                            |
| 18 | Wager <sup>B</sup> | 2004 | SPM99        | yes                 | 9*9*9                        | 100                                      | WM mask          | beta              | 6.0                          | none      | movement                 | no                            |
| 19 | Wrobel             | 2014 | SPM8         | yes                 | 8*8*8                        | 128                                      | no               | beta              | 10.0 early, 10.0 late        | canonical | no                       | no                            |
| 20 | Zeidan*            | 2015 | FSL          | NA                  | 9*9*9                        | NA                                       | NA               | con               | 12.0                         | NA        | movement +<br>WM signal  | no                            |

Supplementary Table 5: included studies: pre-processing and first-level analysis of neuroimages

All studies obtained blood-oxygenation-dependent (BOLD) signal using echo-planar imaging (EPI) variants, except for \* who obtained arterial spin labeling (ASL). For spatial smoothing a gaussian kernel filter was used in all studies, full-width-half-maximum kernel is provided in mm. All information was obtained from the original publications and (where available) from analysis files (e.g. SPM.mat or design.mat). Source data (results as 3d-volumes) are provided at https://osf.io/n9mb3/.

Abbreviations: <sup>A</sup> Sub-study 1; <sup>B</sup> Sub-study 2; CRF, cerebrospinal fluid; hrf, hemodynamic response function; ICA, independent-component analysis used for temporal noise filtering; LP, temporal low pass filter; NA, not applicable; TD, temporal derivative; TE, echo time; temo, temporal; TR, repetition time; WM, white matter.

| #  | First Author       | year | Full sample                                                | Conservative sample                                        |
|----|--------------------|------|------------------------------------------------------------|------------------------------------------------------------|
| 1  | Atlas              | 2012 | Hidden vs open remifentanil; sum(pain stimulation,         | Hidden vs open remifentanil; sum(pain stimulation,         |
|    |                    |      | remifentanil effect, expectation period)                   | remifentanil effect, expectation period)                   |
| 2  | Bingel             | 2006 | Control vs placebo; mean(left & right side)                | Control vs placebo; mean(left & right side)                |
| 3  | Bingel             | 2011 | Remifentanil hidden vs open                                | Excluded due to fixed testing sequence                     |
| 4  | Choi               | 2011 | No treatment vs mean(low, high efficacy placebo)           | No treatment vs mean(low, high efficacy placebo)           |
| 5  | Eippert            | 2009 | Control vs placebo; mean(early, late pain), saline and     | Control vs placebo; mean(early, late pain), saline and     |
|    |                    |      | naloxone group                                             | naloxone group                                             |
| 6  | Ellingsen          | 2013 | Placebo vs no treatment; painful heat                      | Placebo vs no treatment; painful heat                      |
| 7  | Elsenbruch         | 2012 | No (0%) vs certain (100%) placebo                          | No (0%) vs certain (100%) placebo                          |
| 8  | Freeman            | 2015 | Control vs placebo                                         | Control vs placebo                                         |
| 9  | Geuter             | 2013 | Control vs mean (weak, strong placebo); mean(early, late   | Control vs mean (weak, strong placebo); mean(early, late   |
|    |                    |      | pain)                                                      | pain)                                                      |
| 10 | Kessner            | 2014 | Negative vs positive experience group (placebo site)       | Negative vs positive experience group (placebo site)       |
| 11 | Kong               | 2006 | Control vs placebo (high pain)                             | Control vs placebo (high pain)                             |
| 12 | Kong               | 2009 | Control vs placebo (high pain)                             | Control vs placebo (high pain)                             |
| 13 | Lui                | 2010 | Red vs green cue signifying sham TENS off/on               | Red vs green cue signifying sham TENS off/on               |
| 14 | Rütgen             | 2015 | No treatment vs placebo group                              | Excluded due to responder selection                        |
| 15 | Schenk             | 2014 | mean(control, hidden lidocaine) vs mean(placebo, open      | mean(control, hidden lidocaine) vs mean(placebo, open      |
|    |                    |      | lidocaine)                                                 | lidocaine)                                                 |
| 16 | Theysohn           | 2014 | No (0%) vs certain (100%) placebo                          | No (0%) vs certain (100%) placebo                          |
| 17 | Wager <sup>A</sup> | 2004 | Control vs placebo*                                        | Control vs placebo*                                        |
| 18 | Wager <sup>B</sup> | 2004 | Control vs placebo*                                        | Excluded due to responder selection                        |
| 19 | Wrobel             | 2014 | Control vs placebo; mean(early pain, late pain), (saline & | Control vs placebo; mean(early pain, late pain), (saline & |
|    |                    |      | haloperidol group)                                         | haloperidol group)                                         |
| 20 | Zeidan             | 2015 | Control vs placebo*; placebo group                         | Excluded due to fixed testing sequence and different       |
|    |                    |      |                                                            | imaging modality                                           |

Supplementary Table 6: experimental conditions selected for full and conservative analysis

For studies marked with an asterisk (\*) imaging data were only available as separate contrasts for pain activation and placebo conditions, which could not be re-combined post-hoc. Consequently the within-subject correlations necessary to estimate Hedges' g<sub>rm</sub> could not be obtained. We therefore imputed the mean correlation observed across all other within-subject studies in these cases. **Abbreviations:** <sup>A</sup> Sub-study 1; <sup>B</sup> Sub-study 2.

| Supplementary Table 7: risk of bias assessment according | to the Cochrane risk-of-bias assessment tool: |
|----------------------------------------------------------|-----------------------------------------------|
|----------------------------------------------------------|-----------------------------------------------|

| Туре | e of bias:         |      | Selection                  | Performance                                           | Detection                                                       | Attrition                                            |                                                         |                                                                          | Testing Sequence                                   |                                                                             |
|------|--------------------|------|----------------------------|-------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------|
| #    | first<br>author    | date | allocation to<br>treatment | blinding of<br>subjects and<br>treatment<br>providers | analyst blinding                                                | subjects<br>available<br>/ entered<br>testing<br>(%) | subjects<br>available /<br>complete<br>d testing<br>(%) | subjects<br>available<br>/ included<br>in<br>original<br>analysis<br>(%) | sequence of<br>placebo<br>sessions per<br>protocol | % of<br>participants<br>where<br>control was<br>tested<br>before<br>placebo |
| 1    | Atlas              | 2012 | WI-subject                 |                                                       |                                                                 | 87.5                                                 | 100.0                                                   | 100.0                                                                    | balanced                                           | 42.9                                                                        |
| 2    | Bingel             | 2006 | WI-subject                 |                                                       |                                                                 | 95.0                                                 | 100.0                                                   | 100.0                                                                    | alternating                                        | 50.0                                                                        |
| 3    | Bingel             | 2011 | WI-subject                 |                                                       |                                                                 | 95.7                                                 | 100.0                                                   | 100.0                                                                    | pre-post                                           | 100.0                                                                       |
| 4    | Choi               | 2011 | WI-subject                 |                                                       |                                                                 | 100.0                                                | 100.0                                                   | 100.0                                                                    | ?                                                  | ?                                                                           |
| 5    | Eippert            | 2009 | WI-subject                 |                                                       | No blinding of<br>analysts, choice<br>of pre-<br>processing and | 83.3                                                 | 100.0                                                   | 100.0                                                                    | balanced                                           | 55.0                                                                        |
| 6    | Ellingsen          | 2013 | WI-subject                 |                                                       |                                                                 | 93.3                                                 | 100.0                                                   | 100.0                                                                    | balanced                                           | 53.6                                                                        |
| 7    | Elsenbruch         | 2012 | WI-subject                 |                                                       |                                                                 | 100.0                                                | 100.0                                                   | 100.0                                                                    | balanced                                           | 55.6                                                                        |
| 8    | Freeman            | 2015 | WI-subject                 |                                                       |                                                                 | 63.2                                                 | 100.0                                                   | 100.0                                                                    | alternating                                        | 50.0                                                                        |
| 9    | Geuter             | 2013 | WI-subject                 | No blinding of                                        |                                                                 | 76.9                                                 | 83.3                                                    | 100.0                                                                    | balanced                                           | 46.3                                                                        |
| 10   | Kessner            | 2014 | randomization list         | subjects and                                          |                                                                 | 97.5                                                 | 100.0                                                   | 100.0                                                                    | balanced                                           | 48.6                                                                        |
| 11   | Kong               | 2006 | WI-subject                 | treatment                                             | approach may                                                    | 41.7                                                 | 62.5                                                    | 62.5                                                                     | alternating                                        | 50.0                                                                        |
| 12   | Kong               | 2009 | WI-subject                 | providers                                             | affect whole-                                                   | ?                                                    | ?                                                       | 100.0                                                                    | alternating                                        | 50.0                                                                        |
| 13   | Lui                | 2010 | WI-subject                 |                                                       | brain summary                                                   | 86.1                                                 | 93.9                                                    | 100.0                                                                    | alternating                                        | 50.0                                                                        |
| 14   | Rütgen             | 2015 | responder selection        |                                                       | images                                                          | 85.0                                                 | 100.0                                                   | 100.0                                                                    | between-group                                      | NA                                                                          |
| 15   | Schenk             | 2014 | WI-subject                 |                                                       |                                                                 | 82.1                                                 | 100.0                                                   | 100.0                                                                    | balanced                                           | 53.1                                                                        |
| 16   | Theysohn           | 2014 | WI-subject                 |                                                       |                                                                 | 83.3                                                 | 90.9                                                    | 100.0                                                                    | balanced                                           | 60.0                                                                        |
| 17   | Wager <sup>A</sup> | 2004 | WI-subject                 |                                                       |                                                                 | 96.0                                                 | 96.0                                                    | 100.0                                                                    | balanced                                           | ?                                                                           |
| 18   | Wager <sup>B</sup> | 2004 | responder selection        |                                                       |                                                                 | 95.8                                                 | 95.8                                                    | 100.0                                                                    | balanced                                           | ?                                                                           |
| 19   | Wrobel             | 2014 | WI-subject                 |                                                       |                                                                 | 76.0                                                 | 86.4                                                    | 100.0                                                                    | balanced                                           | 42.1                                                                        |
| 20   | Zeidan             | 2015 | WI-subject                 |                                                       |                                                                 | 85.0                                                 | 85.0                                                    | 89.5                                                                     | pre-post                                           | 100.0                                                                       |
| Tota | l:                 |      | -                          | -                                                     | -                                                               | 84.4 <sup>1</sup>                                    | 95.2 <sup>1</sup>                                       | 98.7                                                                     | -                                                  | 54.1 <sup>1</sup>                                                           |

Red cells denote parameters indicating high risk of bias, yellow cells unknown risk of bias and green cells low risk **Abbreviations:** ?, unknown; <sup>A</sup> Sub-study 1; <sup>B</sup> Sub-study 2; <sup>1</sup> excluding studies with unknown values; NA not applicable; NPS, neurologic pain signature; WI-subject, within-subject study design

Supplementary Table 8: clusters showing a significant negative correlation between brain activity and behavioral placebo analgesia — conservative sample (sans between-subject studies, high risk-of-bias studies, outliers), random effects analysis

| # | Atlas label                                                        | hem | x   | у   | z  | size | n   | $\tau^2$ | r     | SEM  | z-<br>scor<br>e | <b>р</b> ғwе<br>R |
|---|--------------------------------------------------------------------|-----|-----|-----|----|------|-----|----------|-------|------|-----------------|-------------------|
| 1 | Ant. cingulate g (48%), paracingulate g (28%)                      | L   | -6  | 6   | 40 | 48   | 373 | 0.01     | -0.27 | 0.06 | 4.49            | .028              |
| 2 | SMA (63%), superior frontal g (9%)                                 | R   | 6   | 4   | 58 | 34   | 373 | 0.00     | -0.25 | 0.05 | 4.66            | .018              |
| 3 | Precentral g (11%), post. cingulate g (10%)                        | R   | 16  | -18 | 40 | 15   | 372 | 0.02     | -0.26 | 0.07 | 3.99            | .036              |
| 4 | Thalamus (98%), prefrontal- (48%†) / premotor- (26%†) subportion   | R   | 18  | -18 | 10 | 14   | 372 | 0.00     | -0.25 | 0.05 | 4.62            | .025              |
| 5 | Thalamus (99%), prefrontal- (59%†) / temporal- (39%†) subportion   | L   | -10 | -8  | 12 | 10   | 373 | 0.00     | -0.26 | 0.06 | 4.83            | .018              |
| 6 | Superior frontal g (8%), SMA (7%)                                  | R   | 12  | 6   | 60 | 8    | 373 | 0.00     | -0.25 | 0.05 | 4.71            | .017              |
| 7 | Thalamus (7%), prefrontal- (24%†) / postparietal- (6%†) subportion | R   | 18  | -6  | 16 | 5    | 372 | 0.00     | -0.25 | 0.05 | 4.69            | .023              |
| 8 | Central operculum (48%), insula (17.5%)                            | R   | 38  | -16 | 18 | 2    | 372 | 0.00     | -0.24 | 0.05 | 4.52            | .040              |
| 9 | Parietal operculum (30%), ant. supramarginal g (20%)               | R   | 54  | -28 | 28 | 2    | 373 | 0.00     | -0.24 | 0.05 | 4.54            | .047              |

Significant clusters of correlation between brain activity (pain<sub>placebo</sub> – pain<sub>control</sub>) and placebo analgesia (pain<sub>control</sub> – pain<sub>placebo</sub>) at a threshold of  $p_{FWER} < .05$ , corrected for multiple comparisons. Cluster labels are provided with probability estimates from the Harvard (Sub-)Cortical (unmarked), Thalamic Connectivity (†), or Talairach (\*) atlas. [Square brackets] denote comments. "Size" denotes cluster size in voxels of 2\*2\*2 mm, all other parameters refer to the peak voxel. All voxels listed showed decreased brain activity with increasing behavioral placebo analgesia, no voxel with positive correlations reached the threshold of statistical significance after correcting for multiple comparisons. Source data (results as 3d-volumes) are provided at <a href="https://osf.io/n9mb3/">https://osf.io/n9mb3/</a>.

Abbreviations: Ant, anterior; B, bilateral; g, gyrus; hem, hemisphere; L, left; perm, permutation test; PL, posterior lobe; post, posterior; R, right; sup, superior; TOFC, Temporal Occipital Fusiform Cortex; WM, white matter.

| #  | Atlas label                                                                  | hem | x   | У   | z   | size      | n   | <i>t</i> <sup>2</sup> | g    | SEM  | <i>z</i> -<br>scor | <b>p</b> fwe<br>R |
|----|------------------------------------------------------------------------------|-----|-----|-----|-----|-----------|-----|-----------------------|------|------|--------------------|-------------------|
|    |                                                                              |     |     |     |     |           |     |                       |      |      | е                  |                   |
| 1  | Frontal pole (10%), insula (6%), [large cluster spanning insula, DLPFC, SII] | R   | 36  | 8   | 8   | 1183<br>4 | 603 | 0.45                  | 1.68 | 0.18 | 9.33               | .000              |
| 2  | Insula (8%), frontal pole (8%), [large cluster spanning insula, DLPFC, SII]  | L   | -32 | 18  | 4   | 8808      | 603 | 0.50                  | 1.52 | 0.19 | 8.15               | .000              |
| 3  | Paracingulate g (23.4%), ant. cingulate g (19%)                              | R   | 2   | 18  | 46  | 3449      | 603 | 0.37                  | 1.18 | 0.16 | 7.28               | .000              |
| 4  | Cerebellum, crus I (39% <sup>o</sup> ), lobule VI (15% <sup>o</sup> )        | L   | -30 | -66 | -30 | 1219      | 598 | 0.42                  | 0.87 | 0.17 | 5.28               | .000              |
| 5  | Post. cingulate g (32%)                                                      | R   | 2   | -28 | 26  | 560       | 603 | 0.51                  | 1.03 | 0.18 | 5.67               | .000              |
| 6  | Caudate (26%)                                                                | R   | 14  | 10  | 0   | 338       | 603 | 0.33                  | 0.92 | 0.15 | 6.07               | .000              |
| 7  | Cerebellum, crus I (63%°), lobule VI (11%°)                                  | R   | 28  | -66 | -32 | 288       | 597 | 0.37                  | 0.76 | 0.16 | 4.83               | .000              |
| 8  | Thalamus, prefrontal (14%†) / premotor (3%†) subportion                      | R   | 12  | -12 | 2   | 128       | 603 | 0.55                  | 0.73 | 0.19 | 3.92               | .045              |
| 9  | Precuneus (42%), cuneus (13%)                                                | R   | 12  | -70 | 38  | 105       | 603 | 0.25                  | 0.69 | 0.13 | 5.25               | .000              |
| 10 | Cerebellum, crus II (77%°), crus I (6%°)                                     | R   | 10  | -84 | -30 | 10        | 586 | 0.19                  | 0.53 | 0.12 | 4.30               | .029              |
| 11 | Cerebellum, lobules I-VI (97%°)                                              | L   | -4  | -50 | -10 | 6         | 603 | 0.18                  | 0.51 | 0.12 | 4.32               | .028              |
| 12 | Precuneus (40%), cuneus (8%)                                                 | L   | -10 | -72 | 38  | 6         | 603 | 0.37                  | 0.62 | 0.15 | 4.04               | .031              |

## Supplementary Table 9A: clusters of significant increase in pain-related activity — full sample, random effects analysis

Significant clusters of activation and de-activation for the contrast pain – baseline (pooled across placebo and control conditions) at a threshold of p<sub>FWER</sub> < .05, corrected for multiple comparisons. Cluster labels are provided with probability estimates from the Harvard (Sub-)Cortical (unmarked), Thalamic Connectivity (†), Probabilistic Cerebellar<sup>o</sup>) or Talairach (\*) atlas. [Square brackets] denote comments. "Size" denotes cluster size in voxels of 2\*2\*2 mm, all other parameters refer to the peak voxel. Source data (results as 3d-volumes) are provided at <a href="https://osf.io/n9mb3/">https://osf.io/n9mb3/</a>.

Abbreviations: Ant, anterior; AL, anterior lobe; C, cortex; DLPFC, dorso-lateral prefrontal cortex; g, gyrus; inf, inferior; perm, permutation test; post, posterior; PL, posterior lobe; SII, secondary somatosensory cortex; sup., superior.

| #  | Atlas label                                                    | hem | x   | У   | z   | size | n   | τ <sup>2</sup> | g     | SEM  | <i>z</i> -<br>scor<br>e | <b>p</b> fwe<br>R |
|----|----------------------------------------------------------------|-----|-----|-----|-----|------|-----|----------------|-------|------|-------------------------|-------------------|
| 1  | Paracingulate g (27%), frontal medial c (24%)                  | В   | -2  | 48  | -14 | 1131 | 590 | 0.16           | -0.63 | 0.12 | -5.48                   | .000              |
| 2  | Precuneus (45%), post. cingulate g (29%)                       | В   | 2   | -58 | 22  | 1118 | 601 | 0.14           | -0.74 | 0.11 | -6.63                   | .000              |
| 3  | Sup. lateral occipital c (54%), angular g (7%)                 | R   | 46  | -70 | 26  | 524  | 603 | 0.24           | -0.79 | 0.13 | -5.97                   | .000              |
| 4  | Sup. lateral occipital c (61%), angular g (4%)                 | L   | -36 | -80 | 28  | 465  | 603 | 0.42           | -0.82 | 0.16 | -4.97                   | .000              |
| 5  | Post. temporal fusiform c (38%), post. parahippocampal g (29%) | L   | -30 | -38 | -18 | 193  | 603 | 0.28           | -0.73 | 0.14 | -5.25                   | .000              |
| 6  | Post. temporal fusiform c (40%), post. parahippocampal g (25%) | R   | 30  | -36 | -20 | 161  | 602 | 0.46           | -0.79 | 0.17 | -4.65                   | .001              |
| 7  | Occipital pole (32%), inf. lateral occipital c (26%)           | R   | 28  | -94 | -6  | 77   | 601 | 0.47           | -0.64 | 0.17 | -3.77                   | .041              |
| 8  | Postcentral g (49%), precentral g (8%)                         | L   | -46 | -22 | 60  | 69   | 586 | 0.28           | -0.68 | 0.14 | -4.82                   | .004              |
| 9  | Occipital pole (27%), inf. lateral occipital c (26%)           | L   | -30 | -92 | -8  | 65   | 603 | 0.36           | -0.59 | 0.15 | -3.89                   | .041              |
| 10 | Middle (28%) / superior frontal g (24%)                        | R   | 24  | 28  | 42  | 64   | 602 | 0.12           | -0.50 | 0.10 | -4.89                   | .000              |
| 11 | Postcentral (40%) g, precentral (37%) g                        | L   | -60 | -6  | 32  | 25   | 601 | 0.12           | -0.48 | 0.10 | -4.73                   | .004              |
| 12 | Ant. (15%) / post. middle temporal (39%) g                     | L   | -58 | -6  | -20 | 18   | 598 | 0.21           | -0.52 | 0.12 | -4.20                   | .018              |
| 13 | Superior (29%) / middle frontal (22%) g                        | L   | -22 | 26  | 44  | 15   | 603 | 0.10           | -0.43 | 0.10 | -4.46                   | .027              |

## Supplementary Table 9B: clusters of significant decrease in pain-related activity — full sample, random effects analysis

Significant clusters of activation and de-activation for the contrast pain – baseline (pooled across placebo and control conditions) at a threshold of *p*<sub>FWER</sub> < .05, corrected for multiple comparisons. Cluster labels are provided with probability estimates from the Harvard (Sub-)Cortical (unmarked), Thalamic Connectivity (†), Probabilistic Cerebellar<sup>o</sup>) or Talairach (\*) atlas. [Square brackets] denote comments. "Size" denotes cluster size in voxels of 2\*2\*2 mm, all other parameters refer to the peak voxel. Source data (results as 3d-volumes) are provided at <a href="https://osf.io/n9mb3/">https://osf.io/n9mb3/</a>.

Abbreviations: Ant, anterior; AL, anterior lobe; C, cortex; DLPFC, dorso-lateral prefrontal cortex; g, gyrus; inf, inferior; perm, permutation test; post, posterior; PL, posterior lobe; SII, secondary somatosensory cortex; sup., superior.

## Supplementary Table 10: clusters of placebo-treatment induced reduction in pain-related activity — full sample, random effects analysis

| # | Atlas label                             | hem | x   | У   | z   | size | n   | t <sup>2</sup> | g     | SEM  | z-<br>scor<br>e | <b>P</b> FWE<br>R |  |
|---|-----------------------------------------|-----|-----|-----|-----|------|-----|----------------|-------|------|-----------------|-------------------|--|
| 1 | Insula (64.5%)                          | R   | 38  | 8   | 0   | 2    | 603 | 0.00           | -0.17 | 0.04 | -4.16           | .040              |  |
| 2 | Corpus callosum (100%*) [near splenium] | L   | -6  | -32 | 12  | 2    | 602 | 0.00           | -0.19 | 0.05 | -3.88           | .034              |  |
| 3 | Cerebellum, crus I (83%º)               | L   | -40 | -64 | -24 | 1    | 594 | 0.00           | -0.17 | 0.04 | -3.92           | .049              |  |

Significant peak voxel of activation and de-activation for the contrast pain<sub>placebol</sub> – pain<sub>control</sub> at a threshold of *p*<sub>FWER</sub> < .05, corrected for multiple comparisons. "Size" refers to the number of contiguous voxels (2\*2\*2 mm) surpassing voxel-level significance, all other parameters refer to the peak voxel. Labels are provided with probability estimates from the Harvard (Sub-)Cortical if not denoted otherwise, or using the Cerebellar (°), or Talairach (\*) atlas. No voxel showing positive activation changes reached the significance threshold. Source data (results as 3d-volumes) are provided at https://osf.io/n9mb3/.

Abbreviations: hem, hemisphere; L, left; R, right; permutation-based p-value corrected for multiple comparisons using the z-max method (family-wise error level).

| #  | Atlas label                                                        | hem | x   | У   | z   | size | n   | t <sup>2</sup> | g    | SEM  | <i>z</i> -<br>scor<br>e | <b>p</b> fwe<br>R |
|----|--------------------------------------------------------------------|-----|-----|-----|-----|------|-----|----------------|------|------|-------------------------|-------------------|
| 1  | Sup. lateral occipital c (71%) [bordering parietal cortex]         | L   | -34 | -80 | 42  | 10   | 565 | 0.03           | 0.19 | 0.03 | 5.80                    | .003              |
| 2  | Middle frontal g (58%), frontal pole (11%)                         | R   | 46  | 32  | 36  | 6    | 572 | 0.04           | 0.22 | 0.04 | 5.92                    | .002              |
| 3  | Precuneus (35%), sup. lateral occipital c (9%)                     | L   | -8  | -68 | 50  | 5    | 603 | 0.05           | 0.17 | 0.04 | 4.14                    | .019              |
| 4  | Frontal pole (34%)                                                 | R   | 28  | 52  | -4  | 3    | 569 | 0.04           | 0.18 | 0.04 | 4.25                    | .017              |
| 5  | Angular g (7%), sup. parietal lobule (6%)                          | R   | 30  | -50 | 36  | 3    | 603 | 0.02           | 0.18 | 0.04 | 4.23                    | .017              |
| 6  | Post. middle temporal g (61%), post. inferior temporal g (6%)      | R   | 64  | -20 | -18 | 2    | 601 | 0.02           | 0.19 | 0.04 | 4.58                    | .011              |
| 7  | Middle frontal g (31%), inferior frontal g, pars opercularis (13%) | L   | -42 | 10  | 32  | 2    | 603 | 0.05           | 0.16 | 0.04 | 4.29                    | .033              |
| 8  | Angular g (35%), sup. parietal lobule (17%)                        | R   | 40  | -54 | 42  | 2    | 603 | 0.02           | 0.15 | 0.04 | 4.18                    | .026              |
| 9  | Amygdala (8%)                                                      | L   | -32 | -8  | -16 | 1    | 603 | 0.11           | 0.20 | 0.04 | 5.08                    | .008              |
| 10 | Frontal pole (93%)                                                 | L   | -44 | 48  | 4   | 1    | 582 | 0.02           | 0.15 | 0.04 | 4.11                    | .034              |
| 11 | Angular gyrus (37%), sup. lateral occipital c (6%)                 | R   | 44  | -54 | 42  | 1    | 603 | 0.02           | 0.16 | 0.04 | 3.90                    | .046              |
| 12 | Angular gyrus (34%), sup. lateral occipital c (26%)                | R   | 46  | -56 | 52  | 1    | 603 | 0.02           | 0.16 | 0.04 | 3.97                    | .042              |

Supplementary Table 11A: clusters of placebo-treatment induced increase in pain-related activity — full sample, fixed effects analysis

Significant clusters of activation and de-activation for the contrast pain<sub>placebol</sub> – pain<sub>control</sub> at a threshold of *p*<sub>FWER</sub> < .05, corrected for multiple comparisons. Note that fixed effects analysis does not account for between study differences in effect sizes. Cluster labels are provided with probability estimates from the Harvard (Sub-)Cortical (unmarked), Probabilistic Cerebellar (°) or Talairach (\*) atlas. [Square brackets] denote comments. "Size" denotes cluster size in voxels of 2\*2\*2 mm, all other parameters refer to the peak voxel. Source data (results as 3d-volumes) are provided at <u>https://osf.io/n9mb3/</u>. **Abbreviations:** g, gyrus; hem, hemisphere; L, left; perm, permutation test; PL, posterior lobe; post, posterior; R, right; sup, superior; TOFC, Temporal Occipital Fusiform Cortex; WM, white matter.

| # | Atlas label                             | hem | x   | у   | z   | size | n   | <i>τ</i> <sup>2</sup> | g     | SEM  | <i>z</i> -<br>scor<br>e | <b>p</b> fwe<br>R |
|---|-----------------------------------------|-----|-----|-----|-----|------|-----|-----------------------|-------|------|-------------------------|-------------------|
| 1 | Putamen (77%)                           | L   | -24 | 2   | -6  | 36   | 598 | 0.06                  | -0.22 | 0.05 | -4.98                   | .003              |
| 2 | Insula (53%)                            | R   | 36  | 8   | 0   | 8    | 603 | 0.00                  | -0.17 | 0.04 | -4.22                   | .018              |
| 3 | Parietal white matter (100%*)           | L   | -26 | -52 | 30  | 2    | 580 | 0.04                  | -0.19 | 0.03 | -5.37                   | .009              |
| 4 | Cerebellum, crus I (85%°)               | L   | -44 | -62 | -26 | 1    | 586 | 0.00                  | -0.16 | 0.04 | -3.95                   | .045              |
| 5 | Cerebellum, crus I (83%º)               | L   | -40 | -64 | -24 | 1    | 594 | 0.00                  | -0.17 | 0.04 | -3.92                   | .046              |
| 6 | Corpus callosum (100%*) [near splenium] | L   | -2  | -36 | 6   | 1    | 592 | 0.00                  | -0.18 | 0.05 | -3.88                   | .049              |
| 7 | Corpus callosum (100%*) [near splenium] | L   | -6  | -32 | 12  | 1    | 602 | 0.00                  | -0.19 | 0.05 | -3.88                   | .045              |

Supplementary Table 11B: clusters of placebo-treatment induced reductions in pain-related activity — full sample, fixed effects analysis

Significant clusters of activation and de-activation for the contrast pain<sub>placebol</sub> – pain<sub>control</sub> at a threshold of *p*<sub>FWER</sub> < .05, corrected for multiple comparisons. Note that fixed effects analysis does not account for between study differences in effect sizes. Cluster labels are provided with probability estimates from the Harvard (Sub-)Cortical (unmarked), Probabilistic Cerebellar (<sup>0</sup>) or Talairach (\*) atlas. [Square brackets] denote comments. "Size" denotes cluster size in voxels of 2\*2\*2 mm, all other parameters refer to the peak voxel. Source data (results as 3d-volumes) are provided at <u>https://osf.io/n9mb3/</u>. **Abbreviations:** g, gyrus; hem, hemisphere; L, left; perm, permutation test; PL, posterior lobe; post, posterior; R, right; sup, superior; TOFC, Temporal Occipital Fusiform Cortex; WM, white matter.

Supplementary Table 12: clusters showing a significant negative correlation between brain activity and behavioral placebo analgesia — full sample (sans between-subject studies), random effects analysis

| # | Atlas label                                                      | hem | x   | у   | z  | size | n   | <i>t</i> <sup>2</sup> | r     | SEM  | <i>z</i> -<br>scor<br>e | <b>p</b> fwe<br>R |
|---|------------------------------------------------------------------|-----|-----|-----|----|------|-----|-----------------------|-------|------|-------------------------|-------------------|
| 1 | Thalamus (99%), prefrontal- (63%†) / premotor- (18%†) subportion | R   | 10  | -18 | 6  | 46   | 460 | 0.01                  | -0.26 | 0.05 | 4.89                    | .010              |
| 2 | Thalamus (97%), prefrontal- (65%†) / temporal- (34%†) subportion | L   | -10 | -8  | 12 | 19   | 460 | 0.00                  | -0.24 | 0.05 | 5.05                    | .005              |
| 3 | Ant. cingulate g (41%), paracingulate g (27%)                    | L   | -4  | 8   | 40 | 19   | 460 | 0.01                  | -0.23 | 0.05 | 4.48                    | .039              |
| 4 | Inferior frontal g, pars triangularis (10%)                      | R   | 54  | 20  | -6 | 1    | 413 | 0.00                  | -0.23 | 0.05 | 4.35                    | .049              |
| 5 | Precentral g (15%), post. cingulate g (12%)                      | R   | 16  | -20 | 40 | 1    | 437 | 0.01                  | -0.24 | 0.05 | 4.55                    | .045              |
| 6 | SMA (63%), superior frontal g (15%)                              | R   | 4   | 6   | 64 | 1    | 460 | 0.00                  | -0.23 | 0.05 | 4.57                    | .043              |

Significant clusters of correlation between brain activity (pain<sub>placebo</sub> – pain<sub>control</sub>) and placebo analgesia (pain<sub>control</sub> – pain<sub>placebo</sub>) at a threshold of  $p_{FWER} < .05$ , corrected for multiple comparisons. Cluster labels are provided with probability estimates from the Harvard (Sub-)Cortical (unmarked), Thalamic Connectivity (†), or Talairach (\*) atlas. [Square brackets] denote comments. "Size" denotes cluster size in voxels of 2\*2\*2 mm, all other parameters refer to the peak voxel. All voxels listed showed decreased brain activity with increasing behavioral placebo analgesia, no voxel with positive correlations reached the threshold of statistical significance after correcting for multiple comparisons. Source data (results as 3d-volumes) are provided at <u>https://osf.io/nemb3/</u>.

Abbreviations: Ant, anterior; B, bilateral; g, gyrus; hem, hemisphere; L, left; perm, permutation test; PL, posterior lobe; post, posterior; R, right; sup, superior; TOFC, Temporal Occipital Fusiform Cortex; WM, white matter.

## **Supplementary References**

- Zunhammer, M., Bingel, U. & Wager, T. D. Placebo Effects on the Neurologic Pain Signature: A Metaanalysis of Individual Participant Functional Magnetic Resonance Imaging Data. *JAMA Neurol.* (2018). doi:10.1001/jamaneurol.2018.2017
- Atlas, L. Y. & Wager, T. D. A meta-analysis of brain mechanisms of placebo analgesia: consistent findings and unanswered questions. *Handb. Exp. Pharmacol.* 225, 37–69 (2014).
- Wager, T. D. & Atlas, L. Y. The neuroscience of placebo effects: Connecting context, learning and health. *Nat. Rev. Neurosci.* 16, 403–418 (2015).
- 4. Fehse, K. & Maikowski, L. Placebo responses to original vs generic ASA brands during exposure to noxious heat: a pilot fMRI study of neurofunctional correlates. *Pain Med.* **16**, 1967–1974 (2015).
- van der Meulen, M., Kamping, S. & Anton, F. The role of cognitive reappraisal in placebo analgesia: An fMRI study. Soc. Cogn. Affect. Neurosci. 12, 1128–1137 (2017).
- Schenk, L. A., Sprenger, C., Onat, S., Colloca, L. & Büchel, C. Suppression of Striatal Prediction Errors by the Prefrontal Cortex in Placebo Hypoalgesia. *J. Neurosci.* 37, 9715–9723 (2017).
- Gollub, R. L. *et al.* A Functional Neuroimaging Study of Expectancy Effects on Pain Response in Patients With Knee Osteoarthritis. *J. Pain* (2018). doi:10.1016/j.jpain.2017.12.260
- Linnman, C. *et al.* Molecular and functional PET-fMRI measures of placebo analgesia in episodic migraine: Preliminary findings. *NeuroImage Clin.* 17, 680–690 (2018).
- Yue, Y. & Collaku, A. Correlation of Pain Reduction with fMRI BOLD Response in Osteoarthritis Patients Treated with Paracetamol: Randomized, Double-Blind, Crossover Clinical Efficacy Study. *Pain Med.* 355–367 (2017). doi:10.1093/pm/pnx157
- Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. (The Cochrane Collaboration, 2011).
- Paludan-Müller, A., Teindl Laursen, D. R. & Hróbjartsson, A. Mechanisms and direction of allocation bias in randomised clinical trials. *BMC Med. Res. Methodol.* 16, 133 (2016).
- Hróbjartsson, A., Kaptchuk, T. J. & Miller, F. G. Placebo effect studies are susceptible to response bias and to other types of biases. *J. Clin. Epidemiol.* 64, 1223–9 (2011).
- Benedetti, F. Placebo and the new physiology of the doctor-patient relationship. *Physiol. Rev.* 93, 1207–46 (2013).
- 14. Kessner, S., Wiech, K., Forkmann, K., Ploner, M. & Bingel, U. The effect of treatment history on

therapeutic outcome: an experimental approach. JAMA Intern. Med. 173, 1468-9 (2013).

- 15. Gelman, A. & Loken, E. The garden of forking paths: Why multiple comparisons can be a problem, even when there is no "fishing expedition" or "p-hacking" and the research hypothesis was posited ahead of time. *Psychol. Bull.* **140**, 1272–1280 (2014).
- Kong, J. *et al.* Expectancy and treatment interactions: a dissociation between acupuncture analgesia and expectancy evoked placebo analgesia. *Neuroimage* 45, 940–9 (2009).
- Kong, J. *et al.* Brain activity associated with expectancy-enhanced placebo analgesia as measured by functional magnetic resonance imaging. *J. Neurosci.* 26, 381–8 (2006).
- Zeidan, F. *et al.* Mindfulness Meditation-Based Pain Relief Employs Different Neural Mechanisms Than Placebo and Sham Mindfulness Meditation-Induced Analgesia. *J. Neurosci.* 35, 15307–15325 (2015).
- Schmucker, C. *et al.* Extent of non-publication in cohorts of studies approved by research ethics committees or included in trial registries. *PLoS One* 9, 1–25 (2014).
- Wager, T. D. *et al.* Placebo-induced changes in FMRI in the anticipation and experience of pain. *Science* 303, 1162–7 (2004).
- Choi, J. C. *et al.* Placebo effects on analgesia related to testosterone and premotor activation. *Neuroreport* 22, 419–23 (2011).
- Bingel, U., Lorenz, J., Schoell, E., Weiller, C. & Büchel, C. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. *Pain* 120, 8–15 (2006).
- Huber, A., Lui, F. & Porro, C. A. Hypnotic susceptibility modulates brain activity related to experimental placebo analgesia. *Pain* 154, 1509–1518 (2013).
- Freeman, S. *et al.* Distinct neural representations of placebo and nocebo effects. *Neuroimage* 112, 197–207 (2015).
- 25. Bingel, U. *et al.* The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifertanil. *Sci. Transl. Med.* **3**, 70ra14 (2011).
- 26. Rütgen, M. *et al.* Placebo analgesia and its opioidergic regulation suggest that empathy for pain is grounded in self pain. *Proc. Natl. Acad. Sci. U. S. A.* **112**, E5638-46 (2015).
- 27. Spisák, T. *et al.* Probabilistic TFCE: A generalized combination of cluster size and voxel intensity to increase statistical power. *Neuroimage* **185**, 12–26 (2019).
- Deeks, J. J. & Higgins, J. P. Statistical algorithms in Review Manager 5 on behalf of the Statistical Methods Group of The Cochrane Collaboration. Documentation 2010, (2010).
- 29. Atlas, L. Y. et al. Dissociable influences of opiates and expectations on pain. J. Neurosci. 32, 8053-64

(2012).

- Friston, K. J., Rotshtein, P., Geng, J. J., Sterzer, P. & Henson, R. N. A critique of functional localisers. *Neuroimage* 30, 1077–1087 (2006).
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for ttests and ANOVAs. *Front. Psychol.* 4, 1–12 (2013).
- Borenstein, M., Hedges, L. V, Higgins, J. P. T. & Rothstein, H. R. Effect Sizes Based on Means. in Introduction to Meta-Analysis (2009). doi:10.1002/9780470743386.ch6
- 33. Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. *Hum. Brain Mapp.* **15**, 1–25 (2002).
- 34. Desikan, R. S. *et al.* An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. *Neuroimage* **31**, 968–80 (2006).
- Behrens, T. E. J. *et al.* Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. *Nat. Neurosci.* 6, 750–7 (2003).
- Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E. & Ramnani, N. A probabilistic MR atlas of the human cerebellum. *Neuroimage* 46, 39–46 (2009).
- Lancaster, J. L. *et al.* Bias between MNI and talairach coordinates analyzed using the ICBM-152 brain template. *Hum. Brain Mapp.* 28, 1194–1205 (2007).
- MacCallum, R. C., Zhang, S., Preacher, K. J. & Rucker, D. D. On the practice of dichotomization of quantitative variables. *Psychol. Methods* 7, 19–40 (2002).
- 39. Yeo, B. T. T. *et al.* The organization of the human cerebral cortex estimated by intrinsic functional connectivity. *J. Neurophysiol.* **106**, 1125–1165 (2011).
- 40. Faillenot, I., Heckemann, R. A., Frot, M. & Hammers, A. Macroanatomy and 3D probabilistic atlas of the human insula. *Neuroimage* **150**, 88–98 (2017).
- 41. Krauth, A. *et al.* A mean three-dimensional atlas of the human thalamus: Generation from multiple histological data. *Neuroimage* **49**, 2053–2062 (2010).