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Supplementary Note 1 
 
Supplementary Fig. 1 represents three topographs (size: 65nm, 32 nm, and 16 nm) measured on the 
cleaved Pr227, along with their corresponding Fourier transforms. All images show the atomic resolution 
and the Kagome structure. Each Fourier transform shows sharp Bragg peaks at the corresponding 2π/a, 
which reflects a strongly periodic signal in the topograph. 
 



 
Supplementary Figure 1. Atomically resolved topographs (a-c) and their corresponding Fourier transforms 
(d-f) measured at T = 33 K. All topographs are obtained with a 256x256 pixels. As the size of the topographs 
decrease, the 6-fold Bragg peaks in their corresponding Fourier transform move closer to q=0 and the 
higher order Bragg peaks become visible. The large central peak at q=0 corresponds to long wavelength 
inhomogeneity.   
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Supplementary Note 2 
 
Overview of DFT studies on Pr2Ir2O7 
 
It has been shown experimentally that Pr2Ir2O7 in its ground state (GS) is a metallic compound with no 
long-range magnetic order1–7. Only two computational studies have been conducted at the density 
functional theory (DFT) level on characterizing the Pr2Ir2O7 GS8,9. Simulations with the the local density 
approximation (LDA)+U approach have shown that a paramagnetic semi-metallic state favored at Ueff = 0 
becomes antiferromagnetic (AFM) semi-metallic at Ueff values of ~1.3 eV and eventually AFM insulating at 
Ueff ~1.5-1.6 eV8, in disagreement with the experimental observations. More recently, Zhang et. al.9 
argued that the LDA+U approach is not a proper treatment for Pr2Ir2O7 due to the intrinsic tendency of 
the +U correction to favor magnetic insulating states. The study relied on the LDA+DMFT (dynamical mean 
field theory)10 approach and successfully reproduced the experimentally observed properties of the 
Pr2Ir2O7 GS.  
 
The primary focus of our DFT calculations was to (i) establish energetically favorable surface terminations 
in cleaved Pr2Ir2O7 samples at zero temperature and (ii) simulate STM images of possible terminations to 
help interpret experimental observations. The significant computational cost of the LDA+DMFT 
treatment11 makes it an impractical approach for the analysis of complex surfaces. In order to identify a 
suitable DFT flavor for this study, our starting point was the examination of Pr2Ir2O7 GS properties within 
three commonly used DFT12,13 approaches:  the generalized gradient approximation (GGA) with the 
Perdew–Burke–Ernzerhof (PBE) functional14, PBE+U15,16, and Heyd–Scuseria–Ernzerhof (HSE) hybrid 
functionals17.  
 
Tests of DFT approximations 
 
Our benchmarking included (i) a full optimization of the Pr2Ir2O7 bulk structure with the PBE and PBE+U 
approaches; and (ii) comparison of the magnetic order in the PBE, PBE+U, and HSE treatments against the 
experimental observations. For the PBE (+U) treatments, we also examined the effect of the spin-orbit 
coupling (SOC) and found it to be insignificant for the relevant structural, magnetic, and stability 
properties of Pr2Ir2O7. 
 
 

 
 

Supplementary Figure 2. a Relative energy of the ferromagnetic vs. non-magnetic bulk structures within 
various DFT treatments, and b average magnetic moment per Ir atom in the ferromagnetic bulk structure 
optimized with different DFT approaches.  

 



All DFT calculations were based on the PBE parametrization of the generalized gradient approximation 
(GGA)18 and the projector augmented wave (PAW) potentials19 as implemented in VASP20,21. A high energy 
cut-off of 500 eV and a dense k-point sampling of the Brillouin zone within the Monkhorst-Pack approach22 
were employed to ensure the numerical convergence of the calculations (5×5×5 for the benchmarking 
tests and 6×6×6 and 6×6×1 for the final calculations of bulk  and slab structures, respectively). In the 
PBE+U treatment, we optimized the bulk GS with three values of Ueff: 1.2, 1.6, and 2.0 eV. For the HSE 
hybrid functional calculations, we used the HSE0623 range-separated functional with 25% of short-range 
exact exchange interaction mixed, and chose to not downsample the Brillouin zone in the calculation of 
the exact non-local exchange term to achieve higher accuracy. As a common practice, the computationally 
demanding HSE calculations were performed for the structure fully optimized at the PBE level. 
 
Supplementary Fig. 2a shows the energy difference between the Pr2Ir2O7 bulk structure configurations 
with non-magnetic and collinear ferromagnetic (FM) initializations of atomic moments. Among the 
considered DFT flavors, only the PBE treatment correctly did not stabilize an (A)FM ordering, while the 
PBE+U and HSE approximations produced lower-energy states with significant FM moments on Ir atoms 
(Supplementary Fig. 2b). In the SOC non-collinear calculations, we extended the set of magnetic moment 
initializations with all-in-all-out and 2-in-2-out AFM configurations for Pr atoms in combination with 
various initial values for the Ir and O atoms and observed the same pattern: a non-magnetic state with 
PBE and non-zero magnetic moments on Ir atoms in PBE+U for all considered U>0 eV values. We 
determined that the fully relativistic treatment had little effect on the structural parameters of the PBE-
relaxed structure: inclusion of the SOC produced forces below 0.03 eV/Å and changed the lattice constant 
by less than 0.15%. Given this minor impact of the SOC on the properties relevant for the current study 
and the high computational cost of the fully relativistic treatment, we chose to rely on the PBE calculations 
in the simulation of Pr2Ir2O7 surfaces. 
 
Surface structures and exfoliation energies 
 
Full optimization of the cF88-Pr2Ir2O7 structure with space group #227 at the PBE level resulted in lattice 
parameter a = 10.512 Å and Wyckoff positions 48f (0.4190,1/8,1/8) and 8a (1/8,1/8,1/8) for O, 16d 
(1/2,1/2,1/2) for Ir, and 16c (0,0,0) for Pr atoms. This structure was used to construct the slabs for 
comparing the surface stabilities. 
 
As illustrated in Supplementary Fig. 3a, the bulk Pr2Ir2O7 GS structure in the (111) direction consists of 
alternating Pr- and Ir-rich layers (which will be referred to as A and B layers). Each O is bonded to 3 metal 
atoms within the layer and 1 metal atom in a neighboring layer, while the metal coordinations for bulk 
are PrO8 and IrO6. In isolated layers, the coordinations are (3PrO6 & 1IrO6) for A and (1PrO6 & 3IrO4) for B, 
so that one can assign (3xO6+1xO6)/3= 8 O atoms to A layers and (1xO6+3xO4)/3= 6 O atoms to B. Three 
relevant slab types can be constructed with the following surface terminations: [AB]n, [AB]nA, and [BA]nB, 
where n is the number of full formula units in the slab. The [AB]n slabs are non-symmetric but 
stoichiometric (Supplementary Fig. 3a), while [AB]nA and [BA]nB slabs are symmetric but non-
stoichiometric (Supplementary Fig. 3b,c). 
 



 
Supplementary Figure 3. Pr2Ir2O7 (111) slabs are formed from Pr- and Ir-rich layers (A and B layers, 
respectively). a A non-symmetric stoichiometric [AB]2 slab contains two formula units of the bulk structure 
with O, Ir, and Pr atoms shown in yellow, red, and blue, respectively. b A symmetric non-stoichiometric 
[AB]2A slab includes two formula units of bulk (shown with grey color) and an A layer. c A symmetric non-
stoichiometric [BA]2B slab with two bulk units (shown with grey color) and an extra B layer. 

 
The typical procedure in the calculation of surface energy is to construct slabs of the same termination 
and then calculate the surface energy24 as 
 

𝐸𝑠𝑢𝑟𝑓 =
1

2𝐴
(𝐸𝑠𝑙𝑎𝑏 − 𝑛𝐸𝑏𝑢𝑙𝑘) 

 
in which 𝐴 is the surface area, 𝐸𝑠𝑙𝑎𝑏  is the total DFT energy of the optimized slab, n is the number of bulk 
formula units in the slab, and 𝐸𝑏𝑢𝑙𝑘 is the DFT energy of the bulk structure per formula unit. However, 
since the [AB]nA and [BA]nB slabs are non-stoichiometric, this equation cannot be used to determine the 
surface energy of the A and B terminations separately. Supplementary Fig. 4b shows the convergence of 
the combined (A+B) surface energy as a function of the number of [AB] units in the stoichiometric slabs. 
The results indicate that converged results for surface stability can be obtained for slabs with only two 
[AB] units (44 atoms). The value of 132 meV/ Å2 (6.3 eV/u.c. of (111) slab) can be attributed primarily to 
the break of 3 Ir-O and 4 Pr-O bonds per u.c. of the slab. Supplementary Fig. 4(b) also illustrates that both 
A and B surfaces undergo similar degrees of structural rearrangement, as the energy differences between 
relaxed and unrelaxed terminations are close to 10 meV/ Å2 for each side. 
 
The stability of the individual A and B terminations can also be probed via the exfoliation of single layers. 
For the X = A and B, the exfoliation energy24 is defined as: 
 

𝐸𝑒𝑥𝑓. =
1

𝐴
(𝐸𝑋 + 𝐸[AB]𝑛 − 𝐸[AB]𝑛𝑋) 

 
in which 𝐸𝑋 is the energy of a single layer X and all energies are obtained after full optimization of the 
atomic positions in the slab. For each PBE calculation, we used the above-mentioned settings while the 



generated slab was separated with a 15 Å vacuum in the non-periodic direction to isolate the periodic 
boundary condition's effects in the DFT run. In geometry optimizations, all atoms were allowed to move 
while the lattice parameters were kept fixed. Moreover, to ensure that  electric dipole effects does not 
affect our calculations, we ran a set of optimization with dipole correction25 included and observed no 
difference in optimized geometries and the energy shift was ~0.5 meV/atom.  
 
Supplementary Fig. 4a shows the exfoliation energy for [AB]nA and [BA]nB for n up to 4. According to these 
calculations, the exfoliation energies for A and B layers are 158 and 62 meV/Å2, respectively. Note that 
their sum of 220 meV/Å2 is lower than the doubled value of the surface energy of 2×132 = 264 meV/Å2, 
so it is more energetically favorable to lift two individual A and B layers than to create two new cuts 
through the middle of the sample.  
 
It is important to note that transfer of top-most O atoms between A- and B-terminated surfaces during 
sample cleavage is expected to be uncommon because of unfavorable energetics. Our PBE calculations 
for stoichiometric [AB]3 slabs revealed that changing the natural 4:3 ratio of O atoms covering the 
respective Pr- and Ir-rich surfaces to 3:4 (5:2) raises the total energy by 1.2 (3.6) eV. The PBE+SOC 
calculations produce similar 1.2 (3.8) eV penalties. Therefore, cleaved (111) surfaces are expected to 
retain the natural number of O atoms.  
 
 

 
 

Supplementary Figure 4. a Exfoliation energy of A (Pr-rich) and B (Ir-rich) layers for peeling a single layer 
from the top of an [AB]n slab. b Total surface energy for [AB]n slab when the slab is unrelaxed (gray), only 
the B layer is relaxed (red), only the A layer is relaxed (blue), and the full slab is relaxed (black). 

 
STM simulation of Pr- and Ir-rich surfaces 
 
In order to simulate the constant-current STM images, we carried out an analysis of charge density 
isosurfaces for the A and B surface terminations. In each case, we optimized the slab at the PBE level with 
the settings detailed above. Using the charge density and wave functions from this run, a secondary 
calculation was performed to obtain the partial charge density for the states within  ±1 eV from the Fermi 
energy. Based on this data, we mapped the isosurfaces corresponding to various values of the charge 
density and obtained simulated STM images displayed in Supplementary Fig. 5. 
An important observable in experimental STM images is the "step size" between surface regions defined 
by different terminations, such as the type-A and type-B layers. Corresponding values can be computed 
from the DFT charge density profiles and used to differentiate surface types observed in the experiment. 
Our DFT results in Supplementary Fig. 6 and Supplementary Table 1 show consistent values of the 
calculated height steps for a wide range of currents in constant-current STM imaging: 3.44 Å and 2.65 Å 



for going from layer A to B and from layer B to A, respectively. Taking into account the grid size used to 
output the charge density in VASP and the variations in the metal atom positions within layers, we 
estimated the numerical error in the step height evaluations to be 0.12 Å. As discussed in the main text, 
this information turned out to be in excellent agreement with the experimental measurements and 
allowed us to identify conclusively plateaus with Pr- and Ir-rich terminations. 
 

 
Supplementary Figure 5. Simulated constant-current STM images for the a Pr-rich and b Ir-rich surfaces. 
The images demonstrate the relative depth of the 0.029 e Å-3 charge density iso-surface. Darker color 
indicates a deeper positioning of the charge density iso-surface. 

 
Supplementary Figure 6. Schematic of the average step size for a given value of the charge density going 
from a layer A to B; and b layer B to A. The values were obtained from the analysis of the charge density 
profile as detailed in Table 1. 

charge density 
(e Å-3) 

structures and step heights (Å) 

A to B B to A 

0.364 3.44 2.65 

0.675 3.44 2.65 

0.965 3.45 2.64 

 

Supplementary Table 1. Step size of the charge density going from layer A to B and vice versa. The values 
were tabulated for three different values of the charge density obtained in our DFT calculations. 
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Supplementary Note 3 
 
We examine here whether the phase separation of the electronic states is related to the different 
surface terminations of the sample. To do this, we examine (in Supplementary Fig. 7a) a topography 
which exhibits sub-unit cell islands. These islands are a different termination from the rest of the 
topograph, meaning that we have both Pr-rich and Ir-rich surfaces showing here. In Supplementary Fig. 
7c we show the Fourier transform of the topograph in (a), revealing the six Bragg peaks which 
correspond to the atomic Kagome structure in the sample. Supplementary Fig. 7d shows a linecut across 
the line shown in (a), revealing the island heights are less than a unit cell, and correspond to the Ir-rich 
surface termination as compared to our DFT calculations. To examine the possible relation of this to the 
phase separation, we also take a conductance map (Supplementary Fig. 7b) on the same area as the 
topograph in (a) at -14 meV. This map shows the electronic inhomogeneity and phase separation which 
we have been examining. Supplementary Fig. 7e shows the cross correlation between the topograph in 
(a) and the conductance maps at energies between -100 meV and +100 meV. The maximum value of 
correlation is 0.08, which means that at all the energies the correlation is negligible and there is no 
relation between the different surface terminations and the phase separation. Thus, the phase 
separation doesn’t originate from a tunneling sensitivity to different surface terminations.  
 

 
Supplementary Figure 7. a Topograph of a 65 nm area taken at 33 K. We see here two different 
surfaces. b Conductance map taken on the same area as the topograph in (a) and at an energy of -14 
meV (resonance energy), which shows the electronic inhomogeneity and phase separation. c The 
Fourier transform of the topograph shows the Bragg peaks corresponding to the Kagome atomic 
structure. d A linecut of the red line in (a) showing that the surface has sub-unit cell islands, indicating 
the presence of both Pr-rich and Ir-rich surfaces. e The cross correlation of the topograph in (a) and the 
conductance maps at energies from -100 meV to 100 meV, revealing no correlation between them for 
all energies.  
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Supplementary Note 4 
 
One base approximation of STM is that the conductance is roughly uniform over the measuring surface; 
this ensures that the conductance is proportional to the LDOS. This is enforced by maintaining the 
measured current above or below the Fermi energy at a constant value. In the case of Pr2Ir2O7, however, 
this approximation breaks down, leading to an arbitrary scaling of spectra from one point to another on 
the surface.  This renders the results of unsupervised machine learning unintelligible with unphysical 
bias. 
 
The setpoint effect results in arbitrary modulations of the data samples  

𝑥𝑛(𝑟) =  𝜆(𝑟)𝑥𝑛
𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙(𝑟) 

where the xn are D-dimensional data vectors and (r) accounts for an unknown setpoint scaling. To 
remove the unphysical modulation caused by the setpoint effect, each spectra was re-scaled to have 
unit norm in data-space upon interaction with the K-means algorithm. This is a bit different from the 
typical data science pre-process such as standardization, in which each of the D elements per sample 
has zero mean and unit standard deviation. We make this choice of normalization to remove the overall 
modulation due to the form of the setpoint effect. Following this clustering, all spectra are mapped back 
to their unnormalized form. 
 
This input data varies from being on a 64 by 64 grid to a 256 by 256 grid, with spectra sampled at either 
101 or 11 energies, respectively.  
 
All K-means calculations were implemented via SciKit-Learn's software package26, written in Python 3.7, 
and coded in the Jupyter environment27. We now give a brief review of the K-means framework. 
 
The K-means algorithm sorts N D-dimensional samples, xnd, into K clusters by separation distance in 
data-space. The distortion measure 
  

𝐽 =  ∑ ∑ 𝑟𝑛𝑘‖𝑥𝑛 − 𝜇𝑘‖2

𝑘𝑛
 

 
gives the degree to which the clusters represent the original data. While in this paper we used D-
dimensional Euclidean distance for our kernel, other options are certainly worth exploring in the future. 
The rnk are binary indicator variables which assign the nth sample to the kth cluster: rnk = 1 if k = argminj 

||xn - j||2 and k = 0 otherwise; the k are the cluster centers (means). We would like to determine the 

rnk
0 and k

0 which minimize the distortion measure28. 
 

This can be done iteratively, first by picking some initial values of the k, often randomly assigned. Each 
iteration that follows has two phases: first assign each sample to the cluster with the most proximal 
mean, then recalculate the mean of each cluster. That is, we minimize J with respect to the rnk with the 

k fixed, then minimize J with respect to k with the rnk fixed. Iteration is continued until convergence is 
obtained and there is no change in cluster assignment; convergence is guaranteed, though convergence 
to a global minimum is not28. 
  

Phase 1: 𝑟𝑛𝑘 =  {
1 𝑖𝑓 𝑘 =  𝑎𝑟𝑔𝑚𝑖𝑛𝑗 ‖𝑥𝑛 − 𝜇𝑘‖2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   ; with k fixed. 

 

Phase 2: 𝜇𝑘 =  
∑ 𝑟𝑛𝑘𝑥𝑛𝑛

∑ 𝑟𝑛𝑘𝑛
  ; with rnk fixed. 

 



We derive the equation used for Phase 2 from: 
𝑑𝐽

𝑑𝜇𝑘
= 2 ∑ 𝑟𝑛𝑘(𝑥𝑛 − 𝜇𝑘) = 0𝑛 .28 

 
The output of the K-means algorithm is a pre-determined number of clusters into which all the inputted 
spectra are sorted. We visualize these clusters in a cluster map, which shows the real-space distributions 
of each cluster. We also examine the means of each cluster. 
 
The input to the K-means algorithm was purely spectra, with no spatial information. However, the 
output of the algorithm shows a strong tendency of the spectral clusters to define spatial clusters, which 
we explore with the pair connectivity function. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Note 5 
 
We compare the results of the K-means calculations, which result in a cluster map (Supplementary Fig. 
8a), with the corresponding conductance map from which it was formed (Supplementary Fig. 8b). We 
see a strong correlation for energies near the resonance (the -20 meV energy is shown in Supplementary 
Fig. 8b). We observe this correlation both visually, as many of the clusters in each map clearly match up, 
as well as by calculating the correlation between the two maps. We plot this correlation as a function of 
conductance map energy (inset of Supplementary Fig. 8b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 8. a A 3-cluster K-means map. b A 256-pixel conductance map on which the K-
means algorithm in (a) was run. This map shows the -20 meV energy. Even by eye there is clearly a 
strong correlation between the conductance map and its corresponding K-means cluster map. The 
correlation is calculated to be 85%. 
 
 
We see that there is a strong correlation at biases below the Fermi energy, with the strongest 
correlations being around -10 to -30 meV. Thus, the K-means cluster maps are analogous to the STM 
conductance maps at energies around -20meV. The fact that the correlation drops for energies away 
from -20 meV is partially related to the STM set-point effect. 
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Supplementary Note 6 
 
We show in Supplementary Fig. 9 a set of conductance maps at energies from -50 meV to +50 meV, at 
33 K corresponding to the same field of view as Figure 1c and Figure 4a in the main manuscript. 
Underneath these conductance maps we show the Fourier transform of each map. The Fourier 
transforms all shows the six Bragg peaks which we expect from a Kagome lattice. Based on the six-fold 
symmetry we have taken the Fourier transforms and symmetrized them in order to enhance the images; 
the symmetrized Fourier transforms are shown here. We can clearly see the six Bragg peaks, and a 
central peak at q = 0 resulting from electronic inhomogeneity. We do not see any QPI signal with an 
energy dependence or any dispersion of a signal. 
 

Supplementary Figure 9. Energy dependent conductance maps and their corresponding Fourier 
transforms measured at 33 K. Energies from left to right: 50 meV, 30 meV, 10 meV, -10 meV, -30 meV,    
-50 meV. The Fourier transforms are symmetrized.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Supplementary Note 7 
 
To fit the resonance in the spectra, we use the Fano lineshape equation, which models the Kondo 
resonance. The Fano equation is given as  
 

𝑑𝐼

𝑑𝑉
~ 𝐴 

(
𝑉 − 𝐸

Γ
+ 𝑞)2

1 +  (
𝑉 − 𝐸

Γ
)2

+ 𝐶 + 𝑑 ∗ 𝑉 

 

where E is the energy of the resonance,  is the width of the resonance (half width at half max), A is 
related to the amplitude of the resonance, C + d*V provides a linear background, V is the applied bias, 
and q is the asymmetry parameter of the Fano equation.  
 
We start off by examining the average spectra of each of the three clusters. We know that the spectra 
which exhibit the resonance that we want to examine come from one of the three clusters shown in the 
K-means cluster maps. We then binarize the cluster maps so that the cluster which exhibits the 
resonance is separated from the two clusters which don’t have this resonance (Supplementary Fig. 10).  
 
                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 10. a A 3-cluster K-means map. The orange corresponds to the areas with the 
Kondo resonance which we study. b The K-means map in (a) binarized; the orange is the resonance 
areas, and the black is non-resonance areas. 
 
 
We then fit spectra from the cluster showing the resonance; we do this because the Fano lineshape 
model is based on the existence of a resonance. Trying to fit the model to a spectrum which doesn’t 
have this resonance is a meaningless exercise. 
 
When we examine some spectra from this resonance cluster, we see that the magnitude of the 
resonance continuously weakens and often disappears near the boundaries of the cluster 
(Supplementary Fig. 11). This occurs as a result of the continuous phase transition, which happens when 
going from one domain to the other. 
 
 

b a 

High Low 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 11. a-c Three spectra taken from the cluster whose average shows the Kondo 
resonance. Clearly a the first spectrum strongly shows the resonance; b the second, taken from a 
domain edge, shows the resonance quite weakly, while c the third does not show the resonance. d-f 
Derivative of the spectra in (a)-(c), respectively. Clearly, the derivatives of the spectrum which show the 
resonance are quite different than the derivative of the spectra without. 
 
 
In order to further remove spectra which do not have the resonance, we look at the first derivative of 
the spectra around the region where the resonance is seen; the resonance occurs around -10 meV, so 
we examine a range of roughly -40 meV to 10 meV. When the resonance is present, the maximum value 
of the derivative is much larger than the average value of the derivative (Supplementary Fig. 11). Using 
this fact, we remove from our fitting any spectra where the maximum is not significantly (usually 5 to 10 
times as much) larger than the average. Supplementary Fig. 12 shows the results of this filtering: we see 
the map from Supplementary Fig. 10b, and now the orange cluster is a more limited set of resonance 
spectra. This is the set to which we fit the resonance model. Additionally, many of the spectra which we 
remove this way, marked in green, are on the edges of domains, which indicates that the resonance is 
likely weaker on domain edges than at the center of the Kondo resonance domains. 
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Supplementary Figure 12. The map from Supplementary Fig. 10b, where the orange corresponds to the 
resonance areas and the black corresponds to the non-resonance areas. Now, the resonance clusters 
are filtered to remove as many non-resonance spectra as possible; these newly removed spectra are 
shown in green. Most of these are on domain edges. The remaining orange spectra are the ones we fit 
to the Fano lineshape. 
 
 
We now fit our filtered data using the Fano lineshape between -40 meV to 10 meV to accurately capture 
the resonance peak. Each spectrum is fit to the Fano lineshape with a simple linear background. 
Supplementary Fig. 13 shows a representative spectrum along with its fit in the -40 meV to 10 meV 
range. From each fit we extract histograms of the various parameters in the Fano equation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 13. A spectrum (blue markers) showing the Kondo resonance along with the fit 
(red line) of the resonance to the Fano lineshape.  
 

High 

Low 

-100 -75 -50 -25 0 25 50 75 100

Bias [meV]

0.09

0.11

0.13

0.15

0.17

C
o
n

d
u

c
ta

n
c
e

 [
a

.u
.]



We perform this analysis for K-means cluster maps formed from data at both 10 K and 33 K. We 

represent each of the parameters of interest, , E, and q, in the form of a histogram; we additionally 
calculate the amplitude, given as A(1 + q2). Supplementary Fig. 14 shows the histograms of these four 
quantities for both 10 K and 33 K. For these eight sets of data we calculate both the average value and 
the standard deviation. This standard deviation is calculated for each based off of the Gaussian which 
each histogram shows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 14. a-d 10 K data. a shows a histogram of the linewidth with an average of 7.4 ± 
2.2 meV. This results in a Kondo temperature of 56 K. b shows a histogram of the energy with an 
average of -7.6 ± 3.2 meV. c shows a histogram of the asymmetry parameter q with an average of -0.4 ± 
0.9. d shows a histogram of the amplitude with an average of 0.010 ± 0.006. e-h 33 K data. e shows a 
histogram of the linewidth with an average of 11.8 ± 1.9 meV. This results in a Kondo temperature of   
64 K. f shows a histogram of the energy with an average of -13.9 ± 2.3 meV. g shows a histogram of the 
asymmetry parameter q with an average of -2.2 ±1.0. h shows a histogram of the amplitude with an 
average of 0.04 ± 0.01. All errors are calculated as the standard deviation of the Gaussian shown. 
 
 
Using the average value of the linewidth of this Kondo resonance, and a relationship between the 
linewidth and the Kondo temperature, 

Γ =  √(𝜋 𝑘𝐵  𝑇)2 + 2(𝑘𝐵  𝑇𝐾)2 

we calculate the Kondo temperature. For the 10 K dataset we get a Kondo temperature of 56  20 K; for 

the 33 K dataset we get a Kondo temperature of 64  20 K. Since we form our range of Kondo 
temperatures from the standard deviation of the linewidths, the TK and the error here correspond to the 
range of Kondo temperatures through the entire Gaussian distribution.  
 
Additionally, we attempt to perform this fitting analysis for K-means cluster maps from 45 K data. As 
expected from the average spectra resulting from the 45 K cluster maps, the spectra at this temperature 
exhibit a very weak resonance. Furthermore, since the background is unknown, it makes the fitting less 
reliable.  
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Supplementary Note 8 
 
Here we compare the theoretical calculation of the DOS for a quadratic band touching to the 
experimental data obtained. Supplementary Fig. 15a shows the calculation of the DOS based on having 
two quadratic bands touching at the Fermi energy. The quadratic bands both above and below the 
Fermi energy are taken as identical. The units of the DOS are arbitrary. The DOS shows a partial gap 
structure with a square root energy dependence, which becomes thermally broadened at higher 
temperatures. In Supplementary Fig. 15b we have a similar picture, however we now have one 
adjustable parameter which allows modification of the DOS magnitude of one band. Supplementary Fig. 
15c, we show the experimentally obtained data from the dark green K-means clusters, at both 10 K and 
33 K. The figure shows the spatial average of all dark green spectra in the dataset. These show a similar 
DOS profile to the theoretical prediction. The minima of the spectra are within ±2 meV of the Fermi 
energy, indicating the charge neutrality and therefore the stoichiometry of the samples.  

 
 

 
Supplementary Figure 15. Density of states from a quadratic bands touching at EF with a no adjustable 
parameters, and b with one adjustable parameter. c Spatially averaged STM data, from the dark green 
domains. Data are shown for both 10 K and 33 K. The vertical axes have arbitrary units. 
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Supplementary Note 9 
 
We now examine histograms of conductance maps for data at both 10 K and 33 K, specifically the 
conductance maps at the energy where we observe the resonance peak, which happens around -10 to   
-20 meV. In Supplementary Fig. 16a we show a histogram of all conductance values from a conductance 
map taken at 10 K and at an energy of -10 meV. Similarly, in Supplementary Fig. 16c we show a 
histogram of all conductance values from a map taken at 33 K and also at an energy of -10 meV.  
 
For each temperature, we start with the 2-cluster K-means map (binarized map). Using the two clusters 
from K-means we split the conductance map into the same two clusters. We then take each of the two 
clusters individually and create a histogram from the conductance values which form each cluster. 
Plotted in Supplementary Fig. 16b and 16d we show the overall histogram (as seen in Supplementary 
Fig. 16a and 16c) along with the two clusters’ individual histograms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 16. a,c show the histograms of the entire set of conductance values taken from 
the conductance map at the resonance energy. a is at 10 K and is taken from a -10 meV conductance 
map and c is at 33 K and is also taken from a -10 meV conductance map. b,d show the histograms in 
(a),(c), respectively, with the histograms of the two clusters overlaid.  
 
 
The histograms in Supplementary Fig. 16 a,c allow us to look at the density of states (the value of the 
conductance) near the resonance, which is how we define our clusters. We see in the histograms the 
formation of a single Gaussian, rather than a binomial distribution, which indicates we have a 
continuous transition from the areas of low conductance to areas of high conductance. 
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Additionally, when we plot the density of states of the two clusters individually, we see that rather than 
being binomial there is a large overlap between the two, which supports the conclusion that one cluster 
transitions continuously into the other.



Supplementary Note 10 
 
When analyzing the geometric clusters, one of the important factors to consider is the accuracy of those 
clusters. The resolution of the conductance maps taken has a major effect on how accurately we see 
these clusters. With too low of a resolution, smaller clusters are not seen, and this greatly affects the 
analysis. Seen in Supplementary Fig. 17a,b are two conductance maps, both taken on the same area of 
65 nm. The first map is taken with a 64x64 pixel resolution, while the second is taken with 256x256 pixel 
resolution.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 17. a A conductance map taken with 64x64 pixel resolution. b A higher resolution 
256x256 pixel conductance map taken on the same area as the map in (a). c Zoomed-in image of the red 
box in (a). d Zoomed-in image of the red box in (b). Much more detail is clearly evident. 
 
 
 

a b 

c d 

High Low 



Looking at the map overall, many of the main clusters are seen in both maps. However, the details 
within these larger clusters are quite different between maps. This is because one pixel of the lower 
resolution map is equivalent to 16 pixels in the higher resolution map, thus allowing us to see much 
more detail. Supplementary Fig. 17c,d shows zoomed-in images from the red boxes in Supplementary 
Fig. 17a,b, allowing us to clearly see the difference in detail between the two resolutions.  
 
The areas and boundaries of each cluster are much more detailed, clusters which appeared to be 
connected can be seen to actually be separate, and smaller clusters that can’t be visualized in the lower 
resolution map can be seen in the higher resolution map. This improved resolution of clusters and their 
boundaries is essential for any proper geometric cluster analysis. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Note 11 
 
As discussed in the main paper, we use a K-means cluster map for the analysis of the domains. In 
Supplementary Fig. 18 and 19 we first compare the conductance map and K-means cluster map of the 
same data set. Supplementary Fig. 18a and 19a show the conductance map and K-means maps, 
respectively, of the same dataset. Supplementary Fig. 18b shows the spectra taken from high and low 
areas of conductance from the conductance map in Supplementary Fig. 18a; Supplementary Fig. 19b 
shows the average spectra from each of the two clusters shown in the K-means map in Supplementary 
Fig. 19a.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 18. A Conductance map taken with high resolution. b Spectra from areas of high 
(orange) and low (dark green) conductance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 19. a K-means cluster map from the dataset in Supplementary Fig. 18a. b Average 
spectra from the two clusters shown in (a). The orange spectrum correspond to the orange clusters and 
the black spectrum to the black clusters. 
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The significant conclusion from this comparison is that the K-means map separates the spectra into two 
clusters corresponding to high and low conductance areas in the conductance map, and thus are used to 
form the domains which we investigate. Using K-means rather than the conductance map for 
determining domains has the additional benefit of clearly defining the boundaries of each cluster; unlike 
in the conductance map, where there is no clear way to determine the boundary of each cluster. 
 
For the following analysis, we use two methods of limiting the clusters in the K-means map. The first 
way is to remove clusters of overly small and overly large area; this is shown in Supplementary Fig. 20b. 
The second method is to additionally remove clusters which cross the boundary of the image; this is 
shown in Supplementary Fig. 20c. There are two reasons why we want to limit the cluster areas. First, 
small clusters less than 5 pixels are just as likely to be random errors as they are to be a real cluster, so 
we eliminate them. Secondly, clusters with areas larger than 2000 pixels create much more variability 
and error in the fits, and often appear to be many clusters that are connected by just a single pixel, so 
we eliminate these as well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 20. a K-means cluster map. b Map after having removed clusters with areas 
smaller than 5 pixels and larger than 2000 pixels. c Map after having removed both small and large 
clusters and additionally removing clusters crossing the boundary of the image. 
 
 
While analyzing these domains we find that there is little difference between using the data in 
Supplementary Fig. 20b and Supplementary Fig. 20c. Thus we decide to limit our data by removing small 
and large clusters but leaving the boundary-crossing clusters intact. 
 
The way that we implement this data limitation varies depending on the analysis method. For both the 
box-counting method and for analyzing the cluster area distribution, the input to our algorithms is the 
dataset where we have already removed the small and large area clusters (seen in Supplementary Fig. 
20b). For the geometric domain analysis relating area, perimeter, and radius of gyration, we provide the 
full data (Supplementary Fig. 20a) and we then exclude the points from our fit which correspond to the 
large and small pixel areas in the dataset (excluded points shown by filled in circles in main paper 
figure). 
 
The box-counting method is known to theoretically measure the dimension of fractal patterns. We use 
this idea to measure the fractal dimension of the clusters. We divide the 256-pixel map into a mesh of 
boxes. We vary this box size from 1 pixel up to 12 pixels, and for each different box size we count the 
number of boxes N that include part of a cluster. We then fit this data to the scale-invariant power law 

𝑁 ~ (
1

𝑏𝑜𝑥𝑠𝑖𝑧𝑒
)𝐷, using the least square method, to find the fractal dimension D = 1.49 ± 0.02.  

a c b 



 
Additionally, we analyze the fractal properties of these clusters using geometric domain methods. We 
apply an image region analysis software which looks at all the clusters and tells us both the area and 
perimeter of each. From these measurements we also calculate the radius of gyration, 

𝑅𝑔 =  √⟨(𝑟 − ⟨𝑟⟩)2⟩ , where r is summed over all the points in each individual cluster, for each cluster in 

the map. 
 
A scale-invariant property similar to that of the box-counting method appears in the cluster area 
distribution: the cluster area A and the number of clusters N(A) follow the power law 𝑁(𝐴) ~ 𝐴𝜏. We 
take all the areas of the clusters, logarithmically bin them, count and normalize the numbers of clusters 
with areas within the logarithmic bins, and fit this data to the power law; we then get a Fisher exponent 

of  = 1.62 ± 0.16.  
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Supplementary Figure 21. a K-means cluster map (50 nm) forced using two clusters. The experimental data 
was acquired with a 64x64 pixel resolution and extrapolated into a 128x128pixels. The black clusters were used 
for the fractal analysis. The data is taken at 10 K. b The fractal dimension analysis using a box-counting method 
resulting in a fractal dimension D = 1.41 ± 0.06. The data points are fitted by the least square method to the 

power law 𝑁 =  (
1

𝑏𝑜𝑥𝑠𝑖𝑧𝑒
)

𝐷
where N denotes the number of boxes of clusters. c Perimeter vs area of the 

clusters. Filled circles are excluded from the fit. Using P = AD/2 gives a fractal dimension value of D = 1.45 ± 0.04; 
this agrees very well with the box-counting method. d Cluster area distribution with logarithmic binning, giving 

a Fisher exponent  = 1.69 ± 0.23. e Utilizing the radius of gyration for each cluster, the equation 𝐴 = 𝑅𝑔
𝑑𝑣 

gives a value of dv = 1.69 ± 0.11. f Similarly using 𝑃 =  𝑅𝑔
𝑑ℎ gives a value of dh = 1.28 ± 0.04. These exponents 

are comparable to the those obtained in the main paper for the 33 K data. 
 



Similar relationships exist relating the area and perimeter and relating the radius of gyration to the area 

and to the perimeter. Using P = cAD/2 gives a fractal dimension value of D = 1.53 ± 0.03, using 𝐴 = 𝑅𝑔
𝑑𝑣 

gives a value for the volume fractal dimension of dv = 1.76 ± 0.06 and using P = 𝑅𝑔
𝑑ℎgives a value for 

the hull fractal dimension of dh = 1.39 ± 0.03. 
 
All of the errors that we give for the various critical exponents come from calculating the 95% 
confidence value for each of the fittings we perform. 
 
We also analyze and obtain the similar parameters for a 10 K dataset (Supplementary Fig. 21). We can 
see that all of the exponents obtained here are quite similar to the values obtained from the previous 
dataset. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Note 12 

 
Without inputting any spatial information to the K-means calculation, the output spectral clusters 
manifest as spatially distinct domains. To understand the statistics of these spatial clusters, we use a 
tool of graph theory typical to the field of percolation called the pair connectivity function (PCF)29–31, 

defined as 𝑔𝑐𝑜𝑛𝑛(𝑟) =  𝑟−(𝑑+2+𝜂)𝑒
−𝑟

𝜉⁄ . Using this we capture the spatial cluster size and near-transition 

power law behavior. Here d is the dimensionality,  is the connectivity, and  is the correlation length. 
 

For surface measurements d = 2, so 𝑔𝑐𝑜𝑛𝑛(𝑟) =  𝑟−𝜂𝑒
−𝑟

𝜉⁄ . To compute gconn(r) from our experimental 
data we turn to an equivalent quantity: the likelihood that two points are connected, given that they 
belong to the same spectral cluster, and that the points are a distance r apart. We know which points 
are in the same spectral clusters from the results of the k-means clustering. Once a sampling of gconn(r) 
has been constructed, the connectivity exponent and the correlation length are extracted by fitting this 
function to the extracted data. 
 
To compute this likelihood of connection between two points, we sample the fraction   

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑖𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠
 

a thousand times at a given range. Repeating this for several values of r, we obtain the approximation 

 𝑔𝑐𝑜𝑛𝑛(𝑟) =  𝑟−𝜂𝑒
−𝑟

𝜉⁄  ≈  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑖𝑟𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑑
(𝑟) 

for each spectral cluster. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Note 13 
 
To understand the unique behaviour of the Kondo scale and its sensitivity to small perturbations of the 
chemical potential in the case of a quadratic band touching at the Fermi energy, we also consider, for 
comparison, a usual metallic system where the density of states is roughly a constant. 
We model this case in terms of two degenerate conduction-electron bands, each having a semi-elliptic 

density of state 𝜌(𝐸) =
2

𝐷2𝜋
√𝐷2 − 𝐸2, with  not being too far away from E = 0. 

Supplementary Fig. 22 plots the corresponding result, 𝑇𝐾
0(𝜇)/𝑇𝐾

0(𝜇0 = −0.2𝐷) as a function of . 
Compared with the quadratic band touching case, the Kondo scale is considerably less sensitive to the 

change in . 
  

 
  

Supplementary Figure 22. Measure of the Kondo scale, 𝑇𝐾
0(𝜇)/𝑇𝐾

0(𝜇0 = −0.2𝐷), as a function of the 
chemical potential for a metallic band with roughly constant density of states (red data points) and for a 
quadratic band touching (blue data points).   
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