
Region  Location  Size P (min) Center Coordinates 

    (voxels)                               (MNI) 

      X Y Z  

A. At study entry 

Non-converters < freezers + converters  

Left Thalamus  Medial and lateral 1126 .006 -11 -22 7 

Right Thalamus  Medial and lateral 917 .012 13 -22 7 

B. Change over two years 

Non-converters < converters 

Brainstem  Posterior Midbrain 433 .045 -1 -39 -16 

Left Thalamus  Lateral  150 .060 -15 -11 5 

Left Amygdala  Medial Inferior  66 .083 -18 -7 20 

 

Supplementary Table 1. Local volume differences at study entry and over two years. 

Clusters where local volume differences were significant, corrected for age, gender and daily 

levodopa equivalent dose, thresholded at PFWE < .05 for analyses at study entry and at PFWE < 

.1 for analyses over two years. A – between non-converters and freezers and converters at 

study entry, B – between non-converters and converters over two years. 



 

Model performance 
AUC 0.82 
Youden’s Index (YI) cutoff 0.2 
Accuracy at YI 78.6% 
Sensitivity at YI 76% 
Specificity at YI 79% 
Brier Score 0.12 

 

Parameter Selection Frequency (% models) 
Age 28.7% 
Gender 66.7% 
Levodopa Equivalent Dose 96.3% 
Left thalamus local volume 56.8% 
Right thalamus local volume 36.5% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 2. Bootstrap resampling of predictive model selection and evaluation. One 

thousand resamples with replacement were made from the original dataset and in each resample, 

backward selection was used to fit a logistic regression model (P-stay = .1). The performance of 

the fitted model was evaluated in the original dataset and estimates were averaged and reported 

below. 



 

 

Variable Left Thalamus  Right Thalamus 

Disease Severity   

Daily Levodopa Equivalent Dose -.264 -.173 

MDS-UPDRS Part I Non-Motor ADL .023 .05 

MDS-UPDRS Part II Motor ADL -.215 -.111 

MDS-UPDRS Part III Motor Exam .050 .232 

MDS-UPDRS Part IV Motor Complications .430** .436** 

Cognition   

Montreal Cognitive Assessment total score .246 .205 

Trail Making Test time (Part B minus Part A) -.342* -.380* 

Alternate Naming Test time -.426** -.320* 

Frontal Assessment Battery total score .277 .264 

Figure of Rey Copy time -.329* -.404** 

Figure of Rey Recall score .319* .262 

Affect & Balance   

Hospital Anxiety and Depression - Anxiety score .017 -.015 

Hospital Anxiety and Depression - Depression score -.125 -.008 

MiniBEST total score .210 .255 

Supplementary Table 3. Bivariate Pearson correlation coefficient between clinical measures 

and local volumes in the significant clusters at study entry. Only non-freezers at study entry (non-

converters and converters) were included in this analysis. * - P < .05, ** - P < .01. 



Sub-nuclei 
Left thalamus 

local volume 

Right thalamus 

local volume 

Left thalamus 

local volume 

change 
 Left Right Left Right Left Right 

Gross volume .189 .205 .190 .237 .185 .242 

Anteroventral .225 .295* .308* .510** .146 .057 

Central Medial .435** .494** .468** .593** .135 .156 

Central Lateral .113 .294* .099 .471** .175 .123 

Centromedian -.063 .012 -.078 .014 .145 .180 

Laterodorsal .176 .306* .212 .473** .282 .181 

Lateral geniculate .067 .163 .036 .038 .202 .127 

Lateral posterior -.086 .079 -.100 .220 .202 .255 

Limitans (suprageniculate) -.266 -.292 -.202 -.299* -.213 -.434** 

Mediodorsal medial parvocellular .158 .122 .214 .144 -.037 -.053 

Mediodorsal medial magnocellular .445** .412** .463** .511** -.031 .022 

Medial Geniculate .208 .166 .166 .053 .102 .040 

Reuniens (medial ventral) .446** .503** .547** .622** .000 .154 

Paracentral .398** .278 .363* .346* .314* .034 

Parafascicular -.226 .036 -.182 .059 .152 .185 

Paratenial -.123 -.048 -.007 .030 -.008 -.135 

Pulvinar Anterior .300* .392** .276 .391** .158 .015 

Pulvinar Inferior .033 .084 -.060 -.017 .061 .185 

Pulvinar Lateral .086 -.045 .094 -.167 -.002 -.028 

Pulvinar Medial .180 .238 .110 .199 .164 .216 

Ventral anterior .129 .036 .134 .147 -.041 .030 

Ventral anterior magnocellular .168 .245 .151 .344* .069 .002 

Ventral lateral anterior .140 .095 .157 .160 -.032 .249 

Ventral lateral posterior .112 .079 .149 .133 .169 .175 

Ventromedial -.108 -.095 -.092 -.139 -.013 .207 

Ventral posterolateral -.127 -.066 -.082 -.099 .146 .144 

Supplementary Table 4.  Bivariate Pearson’s correlation coefficient between right and left 

thalamus sub-nuclei volumes and local volumes in the two clusters at study entry (first four 

columns) and with change scores in sub-nuclei volumes and the left thalamus cluster over the 

two years (last two columns). Only non-freezers at study entry were included for the analysis 

at study entry (N = 45) and over two years (N = 43). * - P < .05, ** - P < .01  



 

Seed Target Beta T(36) P-unc P-FDR 

Study Entry: Non-Converters < Converters 

Right Parafascicular Left Cerebellum .19 4.51 <.001 .025 

Right Parafascicular Right Posterior Cingulate Cortex .16 3.85 <.001 .038 

Left Mediodorsal magnacellular Left Dorsolateral Prefrontal Cortex .26 5.11 <.001 .004 

Left Mediodorsal magnacellular Left Dorsolateral Prefrontal Cortex .31 4.12 <.001 .040 

Left Mediodorsal magnacellular Left Paralimbic Cortex .21 3.93 <.001 .046 

Right Anteroventral Left Posterior Cingulate Cortex .18 3.56 .001 .021 

Right Anteroventral Left Middle Cingulate Cortex .16 3.35 .002 .026 

Right Anteroventral Left Posterior Cingulate Cortex .19 3.3 .002 .029 

Right Anteroventral Left Middle Cingulate Cortex .18 3.15 .003 .035 

Right Anteroventral Left Posterior Cingulate Cortex .15 3.13 .004 .036 

Right Anteroventral Left Putamen .19 3.04 .004 .040 

Right Anteroventral Left Posterior Cingulate Cortex .14 2.93 .006 .048 

Right Anteroventral Right Thalamus .28 4.23 <.001 .009 

Right Anteroventral Right Ventral Diencephalon .17 3.87 <.001 .014 

Right Anteroventral Right Paralimbic Cortex .17 3.56 .001 .021 

Right Anteroventral Right Posterior Cingulate Cortex .2 3.2 .003 .034 

Right Anteroventral Right Posterior Cingulate Cortex .17 3.15 .003 .035 

Right Anteroventral Right Middle Cingulate Cortex .19 3.1 .004 .038 

Right Anteroventral Right Dorsolateral Prefrontal Cortex .2 3.05 .004 .040 

Right Anteroventral Right Middle Cingulate Cortex .14 2.96 .005 .047 

Right Anteroventral Right Anterior Cingulate Cortex .17 2.92 .006 .048 

Study Entry: Non-Converters > Converters 

Right Ventral Anterior Right Primary Somatosensory Cortex -.25 -4.57 <.001 .021 

Left Parafascicular Left Inferior Frontal Sulcus -.13 -4.05 <.001 .049 

Right Parafascicular Left Insula Granular Cortex -.2 -3.82 .001 .038 

Right Parafascicular Left Retroinsular Auditory Cortex -.17 -3.71 .001 .039 

Right Parafascicular Left Posterior Opercular Cortex -.17 -3.61 .001 .039 

Left Parafascicular Right Auditory Association Cortex -.18 -4.38 <.001 .036 

Right Parafascicular Right 
Medial Superior Temporal 

Cortex 
-.16 -4.05 <.001 .038 

Right Parafascicular Right Dorsal Stream Visual Cortex -.15 -3.91 <.001 .038 

Right Parafascicular Right Middle Temporal Cortex -.15 -3.66 .001 .039 

Right Parafascicular Right Posterior Opercular Cortex -.15 -3.62 .001 .039 

Left Lateral Geniculate Right Middle Temporal Gyrus -.16 -4.34 <.001 .026 

Left Lateral Geniculate Right Orbitofrontal Cortex -.15 -4.26 <.001 .026 

Right Centeromedian Left Orbitofrontal Cortex -.18 -4.88 <.001 .008 

Right Anteroventral Left Primary Somatosensory Cortex -.28 -4.91 <.001 .008 

Supplementary Table 5. Differences in thalamo-cortical resting state functional connectivity between 

non-converters and converters at study entry and over two years. Effect size (beta value), T-statistic (two-

tailed), uncorrected and false discovery rate corrected p-values are shown. Beta values and T-statistics are 

always in the direction of converters. Age, gender and daily levodopa equivalent dose were entered as 

covariates. 



Right Anteroventral Left Dorsal Stream Visual Cortex -.24 -4.47 <.001 .009 

Right Anteroventral Left Superior Parietal Cortex -.24 -4.34 <.001 .009 

Right Anteroventral Left Superior Parietal Cortex -.19 -4.22 <.001 .009 

Right Anteroventral Left Posterior Temporal Cortex -.23 -4.16 <.001 .009 

Right Anteroventral Left Primary Somatosensory Cortex -.23 -3.73 .001 .016 

Right Anteroventral Left Primary Somatosensory Cortex -.25 -3.5 .001 .023 

Right Anteroventral Left Inferior Parietal Cortex -.22 -3.49 .001 .023 

Right Anteroventral Left Superior Parietal Cortex -.16 -3.45 .001 .023 

Right Anteroventral Left Premotor Cortex -.17 -3.41 .002 .025 

Right Anteroventral Left 
Medial Superior Temporal 

Cortex 
-.2 -3.23 .003 .033 

Right Anteroventral Left Superior Parietal Cortex -.17 -3.19 .003 .035 

Right Anteroventral Left Superior Parietal Cortex -.16 -3.08 .004 .039 

Right Anteroventral Left Primary Somatosensory Cortex -.17 -2.98 .005 .046 

Right Anteroventral Left Posterior Opercular Cortex -.18 -2.95 .006 .048 

Right Anteroventral Left Inferior Parietal Cortex -.17 -2.93 .006 .048 

Right Anteroventral Right Primary Somatosensory Cortex -.26 -4.45 <.001 .009 

Right Anteroventral Right Superior Parietal Cortex -.19 -4.2 <.001 .009 

Right Anteroventral Right Inferior Parietal Cortex -.23 -3.99 <.001 .013 

Right Anteroventral Right Premotor Cortex -.25 -3.94 <.001 .013 

Right Anteroventral Right Superior Parietal Cortex -.2 -3.93 <.001 .013 

Right Anteroventral Right Primary Somatosensory Cortex -.25 -3.77 .001 .016 

Right Anteroventral Right Superior Parietal Cortex -.2 -3.73 .001 .016 

Right Anteroventral Right 
Medial Superior Temporal 

Cortex 
-.23 -3.71 .001 .016 

Right Anteroventral Right Primary Somatosensory Cortex -.25 -3.59 .001 .021 

Right Anteroventral Right Primary Motor Cortex -.25 -3.46 .001 .023 

Right Anteroventral Right Lateral Occipital Cortex -.18 -3.4 .002 .025 

Right Anteroventral Right 
Temporo-Parieto-Occipital 

Junction 
-.18 -3.37 .002 .026 

Right Anteroventral Right Superior Parietal Cortex -.13 -3.27 .002 .031 

Right Anteroventral Right Primary Somatosensory Cortex -.21 -3.15 .003 .035 

Right Anteroventral Right Superior Parietal Cortex -.18 -3.07 .004 .039 

Change over two years: Non-Converters < Converters 

Left Suprageniculate Right Posterior Cingulate Cortex .23 4.41 <.001 .033 

Left Pulvinar Inferior Right Premotor Cortex .22 4.7 <.001 .014 

Right Parafascicular Right Posterior Insular Cortex .28 4.9 <.001 .008 

Left Parafascicular Right Primary Somatosensory Cortex .24 4.28 <.001 .050 

Left Lateral Geniculate Right Middle Temporal Gyrus .22 4.86 <.001 .009 

Change over two years: Non-Converters > Converters 

Left Mediodorsal magnacellular Left Dorsolateral Prefrontal Cortex -.34 -4.21 <.001 .030 

Left Mediodorsal magnacellular Right Medial Prefrontal Cortex -.34 -4.28 <.001 .030 

Left Lateral Posterior Left Superior Parietal Cortex -.21 -4.5 <.001 .026 



 

Supplementary Table 6. PPMI validation cohort. Linear mixed model estimates, 95% confidence intervals 

(CI) and probability values for the left thalamus change cluster for all terms included in the model. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect Estimate 

95% CI 

Lower 

95% CI 

Upper P 

Intercept 1.141 .947 1.336 <.0001 

Age -.016 -.019 -.014 <.0001 

Sex (male vs female) -.125 -.176 -.073 <.0001 

Right Caudate DAT DVR .004 -.031 .039 .818 

Left Caudate DAT DVR .030 -.005 .065 .091 

Right Putamen DAT DVR -.048 -.088 -.008 .019 

Left Putamen DAT DVR -.043 -.092 .006 .087 

Years of follow-up .008 .001 .015 .024 

Years of follow-up^2 -.001 -.004 .003 .658 

Group (converters vs non-converters) -.079 -.155 -.004 .039 

Years of follow-up * Group (converters vs non-converters) -.018 -.029 -.007 .001 

Years of follow-up^2 * Group (converters vs non-converters) .007 .0001 .014 .048 



Supplementary Methods – Resting State Analysis 

Results included in this manuscript come from preprocessing performed using fMRIPrep 1.5.8 (Esteban, 

Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); RRID:SCR_016216), which is based on Nipype 1.4.1 

(Gorgolewski et al. (2011); Gorgolewski et al. (2018); RRID:SCR_002502). 

Anatomical data preprocessing 

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection 

(Tustison et al. 2010), distributed with ANTs 2.2.0 (Avants et al. 2008, RRID:SCR_004757), and used as 

T1w-reference throughout the workflow. The T1w-reference was then skull-stripped with a Nipype 

implementation of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target 

template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) 

was performed on the brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, Zhang, Brady, and 

Smith 2001). Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, Dale, 

Fischl, and Sereno 1999), and the brain mask estimated previously was refined with a custom variation of the 

method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of 

Mindboggle (RRID:SCR_002438, Klein et al. 2017). Volume-based spatial normalization to two standard 

spaces (MNI152NLin2009cAsym, MNI152NLin6Asym) was performed through nonlinear registration with 

antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w reference and the T1w template. 

The following templates were selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template 

version 2009c [Fonov et al. (2009), RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], 

FSL’s MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model 

[Evans et al. (2012), RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym]. 

Functional data preprocessing 

For each of the 1 BOLD runs found per subject (across all tasks and sessions), the following preprocessing 

was performed. First, a reference volume and its skull-stripped version were generated using a custom 

methodology of fMRIPrep. A B0-nonuniformity map (or fieldmap) was estimated based on a phase-difference 

map calculated with a dual-echo GRE (gradient-recall echo) sequence, processed with a custom workflow of 



SDCFlows inspired by the epidewarp.fsl script and further improvements in HCP Pipelines (Glasser et al. 

2013). The fieldmap was then co-registered to the target EPI (echo-planar imaging) reference run and 

converted to a displacements field map (amenable to registration tools such as ANTs) with FSL’s fugue and 

other SDCflows tools. Based on the estimated susceptibility distortion, a corrected EPI (echo-planar imaging) 

reference was calculated for a more accurate co-registration with the anatomical reference. The BOLD 

reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which implements 

boundary-based registration (Greve and Fischl 2009). Co-registration was configured with six degrees of 

freedom. Head-motion parameters with respect to the BOLD reference (transformation matrices, and six 

corresponding rotation and translation parameters) are estimated before any spatiotemporal filtering using 

mcflirt (FSL 5.0.9, Jenkinson et al. 2002). BOLD runs were slice-time corrected using 3dTshift from AFNI 

20160207 (Cox and Hyde 1997, RRID:SCR_005927). The BOLD time-series, were resampled to surfaces on 

the following spaces: fsaverage5. The BOLD time-series (including slice-timing correction when applied) 

were resampled onto their original, native space by applying a single, composite transform to correct for head-

motion and susceptibility distortions. These resampled BOLD time-series will be referred to as preprocessed 

BOLD in original space, or just preprocessed BOLD. The BOLD time-series were resampled into several 

standard spaces, correspondingly generating the following spatially-normalized, preprocessed BOLD runs: 

MNI152NLin2009cAsym, MNI152NLin6Asym. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. Automatic removal of motion artifacts using 

independent component analysis (ICA-AROMA, Pruim et al. 2015) was performed on the preprocessed 

BOLD on MNI space time-series after removal of non-steady state volumes and spatial smoothing with an 

isotropic, Gaussian kernel of 6mm FWHM (full-width half-maximum). Corresponding “non-aggresively” 

denoised runs were produced after such smoothing. Additionally, the “aggressive” noise-regressors were 

collected and placed in the corresponding confounds file. Several confounding time-series were calculated 

based on the preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise global 

signals. FD and DVARS are calculated for each functional run, both using their implementations in Nipype 

(following the definitions by Power et al. 2014). The three global signals are extracted within the CSF, the 

WM, and the whole-brain masks. Additionally, a set of physiological regressors were extracted to allow for 

component-based noise correction (CompCor, Behzadi et al. 2007). Principal components are estimated after 



high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off) for the 

two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor components are then 

calculated from the top 5% variable voxels within a mask covering the subcortical regions. This subcortical 

mask is obtained by heavily eroding the brain mask, which ensures it does not include cortical GM regions. 

For aCompCor, components are calculated within the intersection of the aforementioned mask and the union 

of CSF and WM masks calculated in T1w space, after their projection to the native space of each functional 

run (using the inverse BOLD-to-T1w transformation). Components are also calculated separately within the 

WM and CSF masks. For each CompCor decomposition, the k components with the largest singular values 

are retained, such that the retained components’ time series are sufficient to explain 50 percent of variance 

across the nuisance mask (CSF, WM, combined, or temporal). The remaining components are dropped from 

consideration. The head-motion estimates calculated in the correction step were also placed within the 

corresponding confounds file. The confound time series derived from head motion estimates and global signals 

were expanded with the inclusion of temporal derivatives and quadratic terms for each (Satterthwaite et al. 

2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated as motion 

outliers. All resamplings can be performed with a single interpolation step by composing all the pertinent 

transformations (i.e. head-motion transform matrices, susceptibility distortion correction when available, and 

co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were performed using 

antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the smoothing effects of 

other kernels (Lanczos 1964). Non-gridded (surface) resamplings were performed using mri_vol2surf 

(FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.6.1 (Abraham et al. 2014, RRID:SCR_001362), mostly 

within the functional processing workflow. For more details of the pipeline, see the section corresponding to 

workflows in fMRIPrep’s documentation. 

Copyright Waiver 

The above boilerplate text was automatically generated by fMRIPrep with the express intention that users 

should copy and paste this text into their manuscripts unchanged. It is released under the CC0 license. 

Additional Preprocessing 



Volumes were scrubbed if the frame-wise displacement exceeded 0.5 mm or the temporal derivative of the 

root mean square variance of the blood oxygen-level dependent signal was an outlier– that is, if it exceeded 

the 75th percentile plus three times the interquartile range (Power et al., 2012). Complete scans were excluded 

if maximum frame-wise displacement exceeded 5 mm, or if less than four minutes of data remained after 

scrubbing. Two non-converters and two converters were excluded due to high-motion censoring. Based on 

recent evaluations of motion correction strategies (Parkes et al., 2018; Satterthwaite et al., 2019), motion 

correction and denoising involved ICA-AROMA (Pruim et al., 2015), implemented with FSL’s reg_filt. This 

was followed by compound regression of motion realignment parameters, their first order temporal derivatives 

and their quadratic and cubic effects (36 parameters), average white matter, CSF and grey matter (equivalent 

to global signal) time series and scrubbing regressors implemented in CONN toolbox. Time series also 

underwent linear de-trending to correct drift, and high-pass temporal filtering at 0.008 Hz post-regression. 

Thalamic sub-nuclei segmentations were used as participant-specific seed regions. Parcellations of the cortex 

based on the Human Connectome Project multimodal atlas (HCP-MMP1.0) (Glasser et al., 2016) which were 

constructed using FreeSurfer and a custom script (Neurolab, 2018), were used as participant-specific target 

regions. Seed-to-target coupling was analyzed between non-converters and converters at study entry and over 

two years using an analysis of covariance with age, sex and daily levodopa equivalent dose included as 

covariates. Multiple comparisons for each seed region were corrected with the false discovery rate procedure 

(Benjamini and Hochberg, 1995). 
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