

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Effects of Age, Gender, and Menopausal status on Small Dense Low-Density Lipoprotein Cholesterol and Low-Density Lipoprotein Cholesterol Fractions; A Population-Based Study

bmjopen-2020-041613
Original research
12-Jun-2020
Izumida, Toshihide; Kanazawa Medical University Himi Municipal Hospital, ; University of Toyama, Yoshikazu, Nakamura; Jichi Medical University, Public Health Sato, Yukihiro Ishikawa, Shizukiyo; Jichi Ika Daigaku, Department of General Medicine
CARDIOLOGY, Heart failure < CARDIOLOGY, Ischaemic heart disease < CARDIOLOGY, INTERNAL MEDICINE
12 Iz Ho Sa Is

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reziez onz

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

4		
5 6	1	[TITLE] Effects of Age, Gender, and Menopausal status on Small Dense
7	2	Low-Density Lipoprotein Cholesterol and Low-Density Lipoprotein Cholesterol
8 9	3	Fractions; A Population-Based Study
10	4	
11 12		
13	5	Authors: Toshihide Izumida ¹ , Yosikazu Nakamura ² , Yukihiro Sato ³ , Shizukiyo
14 15	6	lshikawa ²
16	7	
17 19	8	¹ Division of Community Medicine, Kanazawa Medical University Himi Municipal
18 19	9	Hospital, Himi, Toyama, Japan
20 21	10	1130 Kurakawa, Himi, Toyama 935-0025, Japan
22 23	11	² Division of Public Health, Center for Community Medicine, Jichi Medical University,
24	12	Shimotsuke, Tochigi, Japan
25 26	13	3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
27 28	14	³ Internal Medicine, Kamiichi General Hospital, Nakaniikawa-gun, Toyama, Japan
29	15	51 Hoonji, Kamiichi, Nakaniikawa-gun, Toyama 930-0391, Japan
30 31	16	
32	$\begin{array}{c} 17\\18\end{array}$	Corresponding Author: Shizukiyo Ishikawa
33	10 19	Division of Public Health, Center for Community Medicine, Jichi Medical University,
34 35	$\frac{10}{20}$	3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
36	21	E-mail: <u>i-shizu@jichi.ac.jp</u>
37	22	
38	23	
39	24	E-mail address: Toshihide Izumida, m07011ti@jichi.ac.jp; Yosikazu Nakamura,
40 41	25	nakamuyk@jichi.ac.jp; Yukihiro Sato, yukisato@fancy.ocn.ne.jp; Shizukiyo Ishikawa,
42	26	i-shizu@jichi.ac.jp
43 44	27	
45	28	Keywords: small dense low-density lipoprotein cholesterol, small dense low-density
46 47	29	lipoprotein cholesterol / low-density lipoprotein cholesterol ratio, age, gender,
48	30	menopause
49 50	31	
51	32	Total word count: 2745 (abstract: 248, without keywords; main text: 2497, from the
52	33	introduction until the conclusion)
53	34	
54	35	Number of Tables: 3
55	36	Figures: 3
56	37	Supplementary materials: 5
57	38	
58		
59	39	AUTHOR CONTRIBUTIONS
60		

BMJ Open

2 3 4		
5 6	40	All authors have participated in the research and designed the study; TI and SI
7 8	41	performed the statistics analysis; TI contributed to the drafting of the manuscript. All
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	41 42	performed the statistics analysis; TI contributed to the drafting of the manuscript. All authors read and approved the final manuscript.
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56		
57 58 59		

43 ABSTRACT

Objectives: Small dense low-density lipoprotein cholesterol (sdLDL-C) might be a 45 better cardiovascular disease (CVD) indicator than low-density lipoprotein cholesterol 46 (LDL-C); however, details regarding its epidemiology remain elusive. The present study 47 aimed at evaluating the effect of age, gender, and menopausal status on sdLDL-C 48 levels and sdLDL-C/LDL-C ratio in the Japanese population.

- **Design:** This was a cross-sectional study.
- 52 Setting: 13 rural districts in Japan, 2010-2017

Participants: This study included 5,208 participants (2,397 men and 2,811 women), 55 who underwent the health mass screening that was conducted in accordance with the 56 medical care system for the elderly and obtained informed consent for this study.

Results: In men, the sdLDL-C levels and sdLDL-C/LDL-C ratio increased during younger adulthood, peaked at 50–54 years, and then decreased. In women, relatively regular increasing trends of sdLDL-C level and sdLDL-C/LDL-C ratio until approximately 65 years, followed by a downward or pleated trend. The crossover of sdLDL-C levels for the genders occurred at 70-74 years, but the crossover of sdLDL-C/LDL-C ratio could not be observed. Standardized sdLDL-C levels and sdLDL-C/LDL-C ratio in 50-year old men, premenopausal women, and postmenopausal women were 26.6, 22.7, and 27.4 mg/dL and 0.24, 0.15, and 0.23, respectively. The differences between premenopausal and postmenopausal women were significant (P < 0.001).

Conclusions: SdLDL-C and sdLDL-C/LDL-C ratios showed different distributions by 69 age, gender, and menopausal status with trends different from other lipids. A 70 subgroup-specific approach would be necessary to implement sdLDL-C for CVD 71 prevention strategies, fully considering age-related trends, gender differences, and 72 menopausal status.

- (248 words / within 300 words)

75	Strengths and limitations of this study
76	1. To the best of our knowledge, the present study is the first to demonstrate the effects
77	of age, gender, and menopausal status on the sdLDL-C and sdLDL-C/LDL-C ratio.
78	2. This study is based on a large representative sample from Japanese general
79	population.
80	3. Serum lipid markers were measured by the standardized program proposed by the
81	Clinical and Laboratory Standards Institute.
82	4. It is unclear whether our results of sdLDL-C would be valid for other populations.
83	5. This study did not control for several confounding factors, such as diet, life activity,
84	
	socioeconomic status, and genetic factors.
00	
	76 77 78 79 80 81 82

INTRODUCTION

Although hypercholesterolemia is one of the leading causes of cardiovascular disease (CVD), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (nonHDL-C) have not been good enough to predict risk stratification and the novel target is needed.¹⁻³ Small dense low-density lipoprotein cholesterol (sdLDL-C) easily penetrates into the arterial wall, has a high susceptibility to oxidation, and may exacerbate and perpetuate atherosclerosis.⁴ In fact, patients with metabolic syndrome, which have been found as highly atherogenic conditions without hypercholesterolemia, have elevated sdLDL-C.⁵ Current studies suggest that the sdLDL-C or sdLDL-C/LDL-C ratio might be the better factors for the prediction of CVD than total cholesterol (TC) or LDL-C in the general population or patients with CVD.6-9

However, almost all of the current analytical strategies might be not able to adjust accurately the interaction between age and sdLDL-C due to the association between the lipid factors and age, which might follow a curvilinear model. Few studies have evaluated how age is associated with sdLDL-C and sdLDL-C/LDL-C ratio over a wide age range and distinguished the effects of menopause and gender on sdLDL-C and sdLDL-C fraction from those of aging.^{10,11}

Diet composition, which is affected by aging, is associated with blood cholesterol and the absorption, synthesis, and metabolism per se of fat and lipoproteins change with age.^{12,13} Another study showed Asian age-related trends of traditional lipid profiles displayed roughly an increasing trend, followed by a decreasing one at the middle-aged stage.^{14,15} Meanwhile, sdLDL-C has been regulated by more complex mechanisms than regulating traditional lipids and might be plateaued or increased even at the middle-aged by changed metabolic functions with aging influencing sdLDL-C synthesis.^{5,7,12,16,17} Furthermore, the detailed multiple mechanisms of metabolizing sdLDLs are unknown in the real-world, population-based setting and the age-related trend of sdLDL-C might be different from the sdLDL-C/LDL-C ratio. In other words, the ability to generate sdLDL-C from LDL-C might be different among each generation, gender, and menopausal status. Therefore, we evaluated the effect of age, gender, and

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	

119 menopausal status on sdLDL-C and sdLDL-C/LDL-C ratio in Japanese general 120 population.

- 121
- 123 **METHODS**

122

124Population

125The Jichi Medical School (JMS)-II Cohort Study is a prospective, population-based 126 cohort study of the risk factors of atherosclerosis and CVD in the Japanese general 127 population. A total of 6,436 individuals participated in this study. Details of the methods 128 of enrollment have been reported previously.^{18,19} In brief, from April 2010 through 129December 2017, this study evaluated Japanese individuals who were residents of 13 130 rural districts in Japan, Shimotsuke, Kakara, Sue, Omori, Kamiichi, Wara, Takasu, 131 Onabi, Nakatsu, Yame, Miwa, Ueno, and Saji areas. Local government offices in each 132community issued invitations to eligible residents for the mass CVD screening, and 133 personal invitations were also sent to all potential participants by mail. All the 134 participants in the present study provided written informed consent prior to inclusion. 135The study protocol and data analysis plan were approved by the institutional review 136 board of Jichi Medical School (Tochigi, Japan, IRB No. G09-39 [G17-64 revised]).

137 We excluded individuals as follows: 1) taking lipid-lowering agents or 138 anti-hyperglycemia agents (n = 1,073); 2) the use of hormone replacement therapy (n = 139 96); and 3) the data such as age, gender status, menopausal status, and sdLDL-C were 140 not available (n = 73).

141

142Measurements

143 A central committee, composed of the chief medical officers of all 13 participating 144districts, developed a detailed manual for data collection. Body weight was recorded 145with the subjects clothed. Height was measured with stockinged feet. Body mass index 146 (BMI) was calculated as weight (kg) / height (m²). Blood samples were taken after 147overnight fasting. TC was measured via a cholesterol dehydrogenase-ultraviolet 148 method. Triglycerides (TG) was measured using an enzymatic method. LDL-C and 58 149 high-density lipoprotein cholesterol (HDL-C) were measured by direct methods. 59

SdLDL-C level was directly and selectively measured using a commercial kit (sdLDL-EX from Denka Seiken, Tokyo, Japan). An external laboratory (SRL, Tokyo, Japan) measured the serum lipid markers. The markers were measured by the standardized program proposed by the Clinical and Laboratory Standards Institute. The nonHDL-C was calculated by subtracting HDL-C from TC. Information about medical history, lifestyle, and menopausal status were obtained with a self-reported questionnaire. Smoking status was classified as smoking, former smoking, or never-smoking.

Statistical analysis

Baseline characteristics were summarized as mean ± standard deviation (SD) for normally distributed continuous variables and numbers and percentages for categorical variables. SdLDL-C and TG were highly skewed; these data were expressed as the median and interguartile range and transformed into natural logarithms before statistical analysis.

The one-way analysis of variance (ANOVA) was used for comparison among three groups, and differences were tested via post hoc pairwise comparison (Bonferroni). To explore the age-related trend in sdLDL-C and sdLDL-C/LDL-C ratio with age, geometric means or means and 95 percent confidence intervals for each variable in 5-year age ranges were derived and plotted against age range in each of the three groups.

Among the three groups, correlations between age and each parameter were assessed using multiple linear regression analysis. The agreement between the estimated sdLDL-C and sdLDL-C/LDL-C ratio and measured ones was assessed by Pearson's correlation coefficient. To evaluate the effect of menopausal status on sdLDL-C and sdLDL-C/LDL-C ratio, using the beta value of each variable from the analysis in the premenopausal and postmenopausal group, data were standardized to a nominal 50 years of menopausal age, never smoking and zero alcohol for participants with normal weight (BMI 18.5-22.0). All statistical analyses were performed using SPSS version 22 (IBM, Chicago, IL, USA), and statistical significance was defined as P < 0.05.

- Patient and public involvement

Participants of this study or members of the public were not directly and personally involved with study design, data provision, analysis and publication of the study.

1 2	
3 4	
5 6	
7 8	
9 10	
11 12	
13 14	
15	
16 17 18	
19 20	
20 21 22	
22 23 24	
25	
26 27 28	
28 29	
30 31	
32 33	
34 35	
36 37	
38 39	
40 41	
42 43	
44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
58 59	
60	

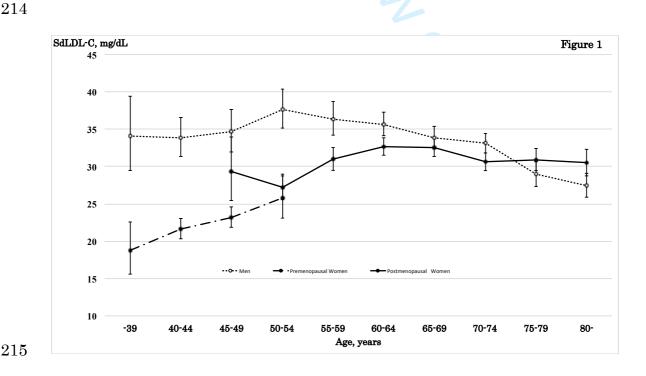
182RESULTS

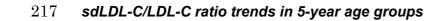
183 **Baseline characteristics**

184 After exclusions, 517 premenopausal women (mean age ± SD, 45.1 ± 4.2 years), 2,294 185postmenopausal women (66.5 ± 8.8 years) and 2,397 men (64.1 ± 11.2 years) were 186 analyzed. Demographic data for the three groups are shown in Table 1. Compared with 187 men, premenopausal women had higher HDL-C and postmenopausal women had 188 higher TC, LDL-C, HDL-C, and nonHDL-C. Compared with premenopausal women, 189 postmenopausal women had higher fasting glucose, TC, LDL-C, TG, nonHDL-C, 190 TC/LDL-C, sdLDL-C, and sdLDL-C/LDL-C. TC and LDL-C didn't differ between men 191 and premenopausal women.

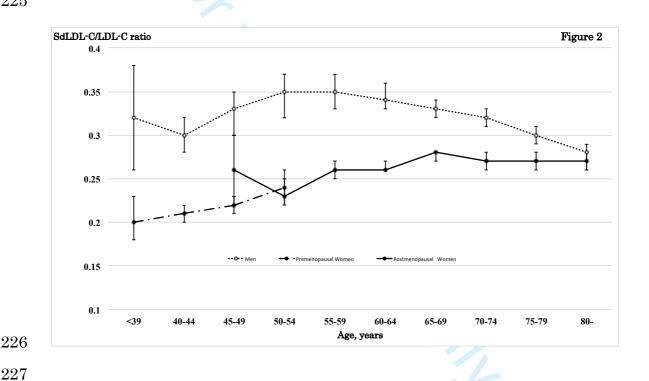
192 193

194 Table 1 Baseline characteristics

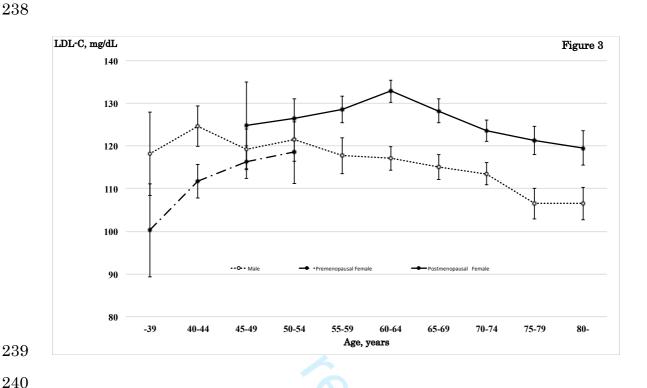

	Group 1 (G1)	Group2 (G2)	Group3 (G3)			
	Men	Premenopausal	Postmenopausal	Р	Р	P
	(n=2,397)	Women (n=517)	Women (n=2,294)	G1 vs G2	G1 vs G3	G2 vs G3
Age, years	64.1±11.2	45.1±4.2	66.5 ± 8.8	<0.001	<0.001	<0.001
BMI, kg/m2	23.3±3.0	22.3 ± 3.6	22.5 ± 3.3	< 0.001	<0.001	0.631
Smoking						
Current	600 (25.1%)	40 (7.7%)	67 (2.9%)	<0.001	<0.001	0.007
EX	1204 (50.3%)	73 (14.1%)	97 (4.2%)	<0.001	<0.001	<0.001
Drinker	1869 (78.2%)	316 (61.1%)	866 (37.8%)	<0.001	<0.001	<0.001
Glucose, mg/dL	100.7 ± 17.8	90.9±9.4	96.3 ± 12.3	<0.001	<0.001	<0.001
TC, mg/dL	198.7 ± 32.9	199.2 ± 31.2	$215.4 {\pm} 31.6$	1.000	<0.001	<0.001
LDL-C, mg/dL	115.2 ± 29.6	114.2 ± 28.5	126.7 ± 28.7	1.000	<0.001	<0.001
TGs, mg/dL	100 (71, 146)	68 (50, 94)	89 (67, 123)	< 0.001	<0.001	<0.001
HDL-C, mg/dL	56.3 ± 13.8	67.8 ± 14.7	62.8 ± 14.9	< 0.001	<0.001	<0.001
Non HDL-C, mg/dL	142.4 ± 32.6	131.4 ± 31.2	152.5 ± 31.3	< 0.001	<0.001	<0.001
TC/HDL-C	3.7 ± 1.0	3.1 ± 0.8	$3.6 {\pm} 0.9$	< 0.001	<0.001	<0.001
SdLDL-C. mg/dL	34.1 (24.8, 46.5)	23.0 (16.8, 30.5)	31.2 (23.5, 41.8)	< 0.001	<0.001	<0.001
SdLDL-C/LDL-C	0.32 ± 0.14	$0.22 {\pm} 0.08$	0.29 ± 0.12	< 0.001	< 0.001	< 0.001


Data are expressed as mean±standard deviation (SD), %, and median (25th percentile, 75th percentile). P-values were assessed in one-way analysis of variance (ANOVA) and post hoc pairwise comparison (Bonferroni). BMI=body mass index; TC= total cholesterol; LDL-C= low-density lipoprotein cholesterol; TGs= triglycerides; HDL-C=high-density lipoprotein cholesterol; non HDL-C= non high-density lipoprotein cholesterol; sdLDL-C=small dense low-density lipoprotein cholesterol.

sdLDL-C trends in 5-year age groups


To assess the age-related trend in sdLDL-C levels, a 5-year age stratification was applied, and geometric mean sdLDL-C levels for each age groups were calculated and plotted against gender.

For men, the level of sdLDL-C increased from 34.1 mg / dL in those < 39 years to a maximum of 37.7 mg / dL in those of 50-54 years, followed by decreasing from 36.4 mg / dL in those of 55-59 years to 27.4 mg / dL in those of $80 \le$ years (Figure 1). For women, a relatively regular increasing trend of the sdLDL-C level was found up to 60-64 year-olds. After 65 years, a downward trend was fitted. The maximum of the sdLDL-C level of women was 32.7 mg / dL. Moreover, sdLDL-C levels in men were higher than those in women for all age groups younger than 70-74-year-olds but exceeded those in women after the age of 75-79 years.


SdLDL-C/LDL-C ratio in men increased from 0.30 in 40-44-year-olds to a maximum of 0.35 in 50-54-year-olds, plateaued in those of 55-59 years, and then decreased from 0.34 in those of 60-64 years to 0.28 in those of 80 \leq years (Figure 2). For women, these values increased from 0.20 in those < 39 years to a maximum of 0.28 in those of 65-69 years and plateaued after 70 \leq years (with mean levels of 0.27). SdLDL-C/LDL-C ratio in men was higher than those in women for all age groups and the crossover of sdLDL-C/LDL-C ratio for the genders did not occur.

228Trends in other lipoproteins (LDL-C, total cholesterol, TG, HDL-C, and total229cholesterol/HDL-C ratio) in 5-year age groups

LDL-C level in men decreased almost linearly, while LDL-C level in women rapidly increased from 100.3 mg / dL in those aged < 39 years to a maximum of 132.8 mg / dL in 60-64-year-olds and decreased from 128.2 mg / dL in those aged 65-69 to 119.5 mg / dL in those 80≤ years (Figure 3). The level of TC, nonHDL-C, and TC/HDL-C ratio revealed a pattern similar to the trend of LDL-C levels (Supplementary Figure 1-3). The TG levels in men decreased almost linearly, while the level in women increased linearly (Supplementary Figure 4). HDL-C in both men and women decreased almost linearly

(Supplementary Figure 5).

SdLDL-C and sdLDL-C/LDL-C ratio in the standardized analysis among the three groups

To standardize sdLDL-C and sdLDL-C/LDL-C ratio among the three groups and validate the above-mentioned turning points, the participants were re-stratified by age ranges corresponding to increasing, plateau and decreasing phases for each marker by gender and multiple linear regression analysis was then applied.

As shown in Table 2, among men, age was positively and negatively associated with log-transformed small dense low-density lipoprotein cholesterol (LNsdLDL-C) levels in those \leq 54 years and \geq 55 years, with beta values of 0.006 and -0.010, respectively. Among premenopausal women, postmenopausal women \leq 64 years, and postmenopausal women $65 \ge$ years, beta values of age were 0.014, 0.014 and, -0.004, respectively. But the association between LNsdLDL-C and age was not significantly associated with men \leq 54 years.

- Table 2 Factors Associated with LN sdLDL-C Level in Age Groups by Gender

Variable	β	SE	Р
<u>Men</u> ≤54,	n=475; mean±SD, 46.7±4.9 y	ears, Pearson's r= 0.320 (P	<0.001)
Age	0.006	0.004	0.169
BMI	0.033	0.006	< 0.001
Fasting glucose	0.004	0.002	0.003
Smoker			
Current	0.018	0.054	0.747
EX	0.050	0.053	0.342
Drinker	0.144	0.059	0.015
Men	≥55, n=1,922; 68.4±7.6 years, 2	Pearson's r= 0.316 (P<0.0	01)
Age	-0.010	0.001	< 0.001
BMI	0.032	0.003	< 0.001
Fasting glucose	0.002	0.001	< 0.001
Smoker			
Current	0.025	0.030	0.402
EX	0.032	0.024	0.192
Drinker	0.076	0.024	0.001
Women (Pr	remenopausal), n=517; 45.1±4.	2 years, Pearson's r=0.330	(P<0.001)
Age	0.014	0.005	0.002
BMI	0.024	0.006	< 0.001
Fasting glucose	0.008	0.002	< 0.001
Smoker			
Current	0.021	0.072	0.775
EX	-0.005	0.056	0.934
Drinker	0.033	0.039	0.398
Women≤64 years	(Postmenopausal), n=978; 58	.3±4.5 years, Pearson's r=0	0.261 (P<0.001)
Age	0.014	0.003	< 0.001
BMI	0.019	0.004	< 0.001
Fasting glucose	0.004	0.001	< 0.001
Smoker			
Current	0.052	0.067	0.437

2	
3	
4	
5	
ć	
0	
7	
8	
٥.	
10	
10	
11	
12	
12	
15	
14	
15	
16	
17	
17	
18	
19	
20	
21	
21	
22	
23	
4 5 6 7 8 10 11 12 13 14 15 16 17 18 20 21 23 24 25 26 27 30 31 32 33 34 35 36 378 301 323 34 35 36 378 392	
27	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
33	
34	
35	
36	
50	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
50	
57	
50	

EX	0.036	0.051	0.479
Drinker	0.007	0.026	0.792
Women 65≥ y	vears (Postmenopausal), n=1,316;	72.6 ± 5.7 year olds, Pearson's r	=0.228 (P<0.001)
Age	-0.004	0.002	0.045
BMI	0.022	0.004	< 0.001
Fasting glucose	0.003	0.001	0.001
Smoker			
Current	-0.086	0.078	0.267
EX	0.204	0.076	0.007
Drinker	-0.007	0.024	0.760

257 β is a coefficient indicating a one-unit increase in an independent variable in 258 multivariable linear logic regression analyses. SE=standard error; LNsdLDL-C=log 259 transformed small dense low-density lipoprotein cholesterol; BMI=body mass index. 260

261

As shown in Table 3, the beta values of age for sdLDL-C/LDL-C ratio in men \leq 54 years, 55-59 years, and 60 \geq years, were 0.003, 0.004, and -0.002, respectively. In women, the beta values of age for sdLDL-C/LDL-C ratio in premenopausal women, postmenopausal women \leq 69 years, and 70 \geq years were 0.001, 0.002, and 0.000, respectively. The association between sdLDL-C/LDL-C and age was not significantly associated with men 55-59 years, premenopausal women, and postmenopausal women 70 \geq years.

269

270

58 59 60 271 Table 3 Factors Associated with SdLDL-C/LDL-C Ratio in Age Groups by Gender

Variable	β	SE	Р
Men ≤54 yea	ars, n=475; mean \pm SD, 46.7 \pm 4.9 y	year olds, Pearson's r= 0.32	0 (P<0.001)
Age	0.003	0.001	0.020
BMI	0.005	0.002	0.012
Fasting glucose	0.001	0.000	0.010
Smoker			
Current	0.029	0.016	0.081

BMJ Open

EX	0.011	0.016	0.50
Drinker	0.049	0.018	0.00'
Men 55	-59 years, n=245; 57.2±1.4 yea	ars, Pearson's r= 0.222 (P<0	.001)
Age	0.004	0.007	0.589
BMI	0.003	0.003	0.38
Fasting glucose	0.001	0.001	0.28
Smoker			
Current	0.049	0.032	0.12
EX	0.062	0.030	0.042
Drinker	0.055	0.027	0.04
Men 60 <u>2</u>	≥ years, n=1,677; 70.0±6.8 ye	ars, Pearson's r= 0.272 (P<0).001)
Age	-0.002	0.000	<0.00
BMI	0.005	0.001	< 0.00
Fasting glucose	0.001	0.000	< 0.00
Smoker			
Current	0.029	0.009	0.001
EX	0.009	0.007	0.23
Drinker	0.055	0.007	<0.00
Women (Pr	remenopausal), n=517; 45.1 \pm 4	.2 years, Pearson's r=0.313 (F	< 0.001)
Age	0.001	0.001	0.147
BMI	0.003	0.001	0.002
Fasting glucose	0.001	0.000	< 0.00
Smoker			
Current	0.010	0.012	0.413
EX	0.000	0.010	0.988
Drinker	0.015	0.007	0.02'
Women≤69 years	(Postmenopausal), n=1,434; 6	51.0±5.5 years, Pearson's r=0).264 (P<0.001)
Age	0.002	0.000	<0.00
BMI	0.004	0.001	< 0.00
Fasting glucose	0.001	0.000	<0.00

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
13 14	
15	
15 16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20 29	
29	
30	
31 32	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
56	
57	
58	
59	
60	

281

1

	Current	0.001	0.012	0.914	
	EX	0.013	0.010	0.201	
	Drinker	0.003	0.005	0.555	
	Women 70≥ years (Postmenopa	ausal), n=860; 75.6±4.6 ye	ar olds, Pearson's r=0.167 (l	?<0.001)	
	Age	0.000	0.001	0.704	
	BMI	0.004	0.001	< 0.001	
	Fasting glucose	0.001	0.000	< 0.001	
	Smoker				
	Current	-0.049	0.025	0.052	
	EX	0.034	0.021	0102	
	Drinker	-0.004	0.006	0.501	
2	β is a coefficient indicating	g a one-unit increas	e in an independen	t variable in	
3	multivariable linear logic regression analyses. SE=standard error; sdLDL-C=small				
L	dense low-density lipopro	tein cholesterol;	LDL-C=low-density	lipoprotein	
5	cholesterol; BMI=body mass index.				
6					
7					
8	Considering the beta value of e	ach variable, 50-year	old standardized sdL	DL-C levels in	
)	men, premenopausal women, and postmenopausal women were 26.6 mg / dL (95 %				
~					

CI; 26.4-26.9 mg / dL), 22.7 mg / dL (95 % CI; 22.5-22.9 mg / dL), and 27.4 mg / dL

(95 % CI; 27.3-27.5 mg/dL), respectively. Standardized sdLDL-C/LDL-C ratio in men,

282 premenopausal women, and postmenopausal women were 0.242 (95 % CI; 283 0.240-0.244), 0.154 (95 % CI; 0.153-0.156), and 0.227 (95 % CI; 0.224-0.230), 284respectively. These differences between premenopausal women and postmenopausal 285women were significant (Bonferroni analysis, P < 0.001). 286

287DISCUSSION

288To the best of our knowledge, the present study is the first to demonstrate the effects of 289 age, gender, and menopausal status on the sdLDL-C and sdLDL-C/LDL-C ratio. The 290 age-related sdLDL-C trends showed roughly an increasing phase, followed by a 291decreasing phase in men and a plateaued phase in middle-aged women. The 292 age-related sdLDL-C trend in men, but not in women, was similar to traditional lipid

cholesterol profiles. The reason for this gender difference might be related to the mechanism of hypertriglyceridemia in postmenopausal women, which induced small LDL particles.²⁰⁻²² There were age or gender-related differences in the ability to generate sdLDL-C from LDL-C. This ability in men was higher than that in women for all age groups or standardized groups, which is identical to the fact that atherosclerosis is more common in men than in women, considering sdLDL-C is a highly atherogenic factor.

- Our study showed three important results. First, age showed partial correlation trends with sdLDL-C levels and sdLDL-C/LDL-C ratio and non-linear trends between age and sdLDL-C and sdLDL-C/LDL-C ratio were found in both men and women. Therefore, using the sdLDL-C and sdLDL-C/LDL-C ratio, the definition of CVD risk assessment and the adaption of the lipid-lowering therapy should fully consider age-related trends and gender differences.

Second, menopausal status was an additional determinant of increasing sdLDL-C and sdLDL-C/LDL-C ratio. Many factors such as excess adiposity, free fatty acids, apo-lipoproteins, and action of lipoprotein lipase activity and cholesterol ester transfer protein affected multiple and complex mechanisms regulating sdLDL.^{12,16,17} In postmenopausal women, the decrease of plasma estrogen levels plays a significant role in reducing the clearance of LDL particles via LDL receptor and increasing TG and the number of smaller LDL particles.²³ This hormone change was related to the process of regulating sdLDL-C but there was little evidence available on the association between menopausal status and sdLDL-C or sdLDL-C/LDL-C ratio in a real-world, population setting.²⁴ Our results showed that sdLDL-C in postmenopausal women was 0.8 or 3.9 mg / dL higher than men or premenopausal women in the standardized analysis.

Finally, the relationships between age-related trends in sdLDL-C and sdLDL-C/LDL-C ratio and gender were different from traditional lipid factors, such as LDL-C. The crossover of LDL-C for the genders occurred in middle-aged patients. On the contrary, the crossover of sdLDL-C occurred between 70-74 years and the sdLDL-C/LDL-C ratio did not occur. Rather than LDL-C, the results of the sdLDL-C and sdLDL-C/LDL-C ratio might reflect the fact that, for all age groups, men have more susceptible to CVD than

women, even with the narrowing gap of risk for CVD in postmenopausal women.²⁵

- Our findings suggest that a subgroup-specific approach is required to develop efficient
 - CVD prevention strategies using the sdLDL-C and sdLDL-C/LDL-C ratio.

Limitations

Our study has several limitations. First, age-related trends and levels of traditional lipid factors were almost similar to National Health and Nutrition Survey in Japan and our age-related trends of these factors were also similar to the trends of the Korean and Chinese Singaporeans population.^{14,15} But the trends of the US population or healthy Caucasian^{26,27} were not similar. Especially in healthy Caucasian patients aged \geq 70 years, the trends for TC, LDL-C, and nonHDL-C differed from our observed trends and continuously increased. Although our results could not identify the mechanism, there might be racial differences. Therefore, it is unclear whether our results of sdLDL-C would be valid for these populations. Second, compared with mean lipid levels of the Korean population from KNHANES, Japanese men showed higher mean TC, LDL-C, and HDL levels (TC 199 mg / dL; LDL-C 115 mg / dL; HDL-C 56 mg / dL) compared to Korean men (TC 183 mg / dL; LDL-C 106 mg / dL; HDL 50 mg / dL), and Japanese women also showed higher mean levels (TC 212 mg / dL; LDL-C 124 mg / dL; HDL-C 64 mg / dL) than Korean women (TC 188 mg / dL; LDL-C 111 mg / dL; HDL-C 55 mg / dL). The reason for the difference in the lipoprotein profile between Japanese and Korean populations might be due to genetics and environmental factors. It is also unknown whether these factors might affect sdLDL-C levels and sdLDL-C/LDL-C ratio because sdLDLs are regulated through complex mechanisms. Third, we did not control for the effects of diet, life activity, socioeconomic status, and genetic factors, which might be associated with changes in lipid metabolism.^{28,29,30}

CONCLUSION

SdLDL-C and sdLDL-C/LDL-C ratio are differently distributed by age, gender, and menopausal status. Our findings suggest that a subgroup-specific approach is required

3 4		
5	356	to develop efficient CVD prevention strategies using the sdLDL-C and sdLDL-C/LDL-C
6 7	$\frac{350}{357}$	ratio.
8 9	358	
10 11	359	List of abbreviations
12	360	sdLDL-C: small dense low-density lipoprotein cholesterol; CVD: cardiovascular disease;
13 14	361	LDL-C: low-density lipoprotein cholesterol; TC: total cholesterol; LDL-C: low-density
15 16	362	lipoprotein cholesterol; TGs :triglycerides; HDL-C :high-density lipoprotein cholesterol:
17	363	nonHDL-C: non-high-density lipoprotein cholesterol; LNsdLDL-C: log-transformed small
18 19	364	dense low-density lipoprotein cholesterol: JMS: Jichi Medical School: ANOVA: analysis
20 21	365	of variance
22	366	
23 24	367	of variance
25 26		
27 28		
29		
30 31		
32 33		
34		
35 36		
37 38		
39 40		
41		
42 43		
44 45		
46		
47 48		
49 50		
51 52		
53		
54 55		
56 57		
58		
59 60		

DECLARATIONS

369 Acknowledgements

The authors thank the public health doctors, nurses, and officers in Shimotsuke,
Kakara, Sue, Omori, Kamiichi, Wara, Takasu, Onabi, Nakatsu, Yame, Miwa, Ueno, and
Saji areas, Japan, for their help, support, and contributions.

374 Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All the participants included in the present study provided written informed consent prior to inclusion, and this study was approved by the Institutional Review Board of Jichi Medical School (Tochigi, Japan, IRB No. G09-39 [G17-64 revised]).

28 381

29
30382AUTHOR CONTRIBUTIONS

All authors have participated in the research and designed the study; TI and SI
 performed the statistics analysis; TI contributed to the drafting of the manuscript. All
 authors read and approved the final manuscript.

37 386

Consent for publication

388 All the participants included in the present study provided written informed consent for389 publication.

45 391 **Competing interests**

392 The authors declare they have no conflict of interest with respect to this research study393 and paper.

50 394

⁵¹ 52 395 **Funding**

⁵³ 396 This research was supported by the MEXT-Supported Program for the Strategic
 ⁵⁵ 397 Research Foundation at Private Universities (S0901032); a Japanese Society for the
 ⁵⁶ 398 Promotion of Science KAKENHI grant (No. 16K09141); a Grant-In-Aid from the Ministry
 ⁵⁸ 399 of Health, Labour, and Welfare; Health and Labor Sciences and Japan Comprehensive

1 2 3 4 5		
6 7	400 401	Research on Cardiovascular and Lifestyle-Related Diseases grants (H26-Junkankitou-[Seisaku]-Ippan-001 and H29-Junkankitou-Ippan-003; IRB No.
8 9	402	G09-39 [G17-64 revised]); and Jichi Medical University Almuni Association Project
10 11	403	Grant 2020.
12 13 14	404	
15 16	405	
17 18		
19 20 21		
21 22 23		
24 25		
26 27 28		
28 29 30		
31 32		
33 34		
35 36 37		
38 39		
40 41		
42 43 44		
45 46		
47 48		
49 50 51		
51 52 53		
54 55		
56 57		
58 59 60		
00		

4		
5 6	406	REFERENCES
7 8	407	1. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS,
9	408	Braun LT, de Ferranti S, Faiella-Tomma- sino J, Forman DE, Goldberg R,
10 11	409	Heidenreich PA, Hlatky MA, Jones DW, Lloyd-Jones D, Lopez-Pajares N, Ndu-
12 13	410	mele CE, Orringer CE, Peralta CA, Saseen JJ, Smith SC Jr, Sperling L, Virani
14	411	SS, Yeboah J. 2018AHA/ACC/
15 16	412	AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/ NLA/PCNA Guideline on
17 18	413	the Management of Blood Cholesterol. Circulation, 2019; 139: e1082-e1143
19	414	2. Lawler PR, Akinkuolie AO, Harada P, Glynn RJ, Chasman DI, Ridker PM,
20 21	415	Mora S. Residual Risk of Athero- sclerotic Cardiovascular Events in Relation to
22 23	416	Reductions in Very-Low-Density Lipoproteins. J Am Heart Assoc, 2017; 6: 1-11
24	417	3. Varbo A, Nordestgaard BG. Remnant Cholesterol and Triglyceride-Rich
25 26	418	Lipoproteins in Atherosclerosis Progres- sion and Cardiovascular Disease.
27 28	419	Arterioscler Thromb Vasc Biol, 2016; 36: 2133-2135
29	420	4. Ivanova EA, Myasoedova VA, Melnichenko AA, Grechko AV, Orekhov AN.
30 31	421	Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic
32 33	422	Diseases. Oxidative Medicine and Cellular Longevity, 2017; 2017: 1273042
34 35	423	5. Kathiresan S, Otvos JD, Sullivan LM, Keyes MJ, Schaefer EJ, Wilson PWF,
36	424	D'Agostino RB, Vasan RS, Robins SJ. Increased Small Low-Density Lipoprotein
37 38	425	Particle Number. Circulation, 2006; 113: 20-29
39 40	426	6. Arai H, Kokubo Y, Watanabe M, Sawamura T, Ito Y, Minagawa A, Okamura T,
41	427	Miyamato Y. Small dense low-density lipoproteins cholesterol can predict
42 43	428	incident car- diovascular disease in an urban Japanese cohort: the Suita study. J
44 45	429	Atheroscler Thromb, 2013; 20: 195-203
46	430	7. Hoogeveen RC, Gaubatz JW, Sun W, Dodge RC, Crosby JR, Jiang J, Couper
47 48	431	D, Virani SS, Kathiresan S, Boerwin- kle E, Ballantyne CM. Small Dense
49 50	432	Low-Density Lipo- protein-Cholesterol Concentrations Predict Risk for Cor-
51	433	onary Heart Disease. Arterioscler Thromb Vasc Biol, 2014; 34: 1069-1077
52 53	434	8. St-Pierre AC, Cantin B, Dagenais GR, Mauriège P, Ber- nard P-M, Després
54 55	435	J-P, Lamarche B. Low-Density Lipoprotein Subfractions and the Long-Term Risk
56	436	of Ischemic Heart Disease in Men. Arterioscler Thromb Vasc Biol, 2005; 25:
57 58	437	553-559
59 60	438	9. Nishikura T, Koba S, Yokota Y, Hirano T, Tsunoda F, Shoji M, Hamazaki Y,

BMJ Open

439	Suzuki H, Itoh Y, Katagiri T, Kobayashi Y. Elevated small dense low-density
	lipoprotein cholesterol as a predictor for future cardiovascular events in patients
	with stable coronary artery disease. J Atheroscler Thromb. 2014;21(8):755-67.
	10. Mogarekar MR, Kulkarni SK. Small Dense Low Density Lipoprotein
	Cholesterol, Paraoxonase 1 and Lipid Profile in Postmenopausal Women:
	Quality or Quantity? Arch Med Res. 2015 Oct;46(7):534-8.
445	11. Gentile M, Panico S, Mattiello A, Ubaldi S, Iannuzzo G, De Michele M,
446	lannuzzi A, Rubba P. Association between small dense LDL and early
447	atherosclerosis in a sample of menopausal women. Clin Chim Acta.
448	2013;426:1-5.
449	12. Johnson AA, Stolzing A. The role of lipid metabolism in aging, lifespan
450	regulation, and age-related disease. Aging Cell. 2019;18(6):e13048.
451	13. Toth MJ, Tchernof A. Lipid metabolism in the elderly. Eur J Clin Nutr.
452	2000 ;54 Suppl 3:S121-5.
453	14. Park JH, Lee MH, Shim JS, Choi DP, Song BM, Lee SW, Choi H, Kim HC.
454	Effects of age, sex, and menopausal status on blood cholesterol profile in the
455	korean population. Korean Circ J. 2015 Mar;45(2):141-8.
456	15. Goh VH, Tong TY, Mok HP, Said B. Differential impact of aging and gender
457	on lipid and lipoprotein profiles in a cohort of healthy Chinese Singaporeans.
458	Asian J Androl. 2007;9(6):787-94.
459	16. Qamar A, Khetarpal SA, Khera AV, Qasim A, Rader DJ, Reilly MP. Plasma
460	apolipoprotein C-III levels, triglycer- ides, and coronary artery calcification in type
461	2 diabetics. Arterioscler Thromb Vasc Biol, 2015; 35: 1880-1888
462	17. Pechlaner R, Tsimikas S, Yin X, Willeit P, Baig F, Santer P, Oberhollenzer F,
463	Egger G, Witztum JL, Alexander VJ, Willeit J, Kiechl S, Mayr M.
464	Very-Low-Density Lipopro- tein-Associated Apolipoproteins Predict
465	Cardiovascular Events and Are Lowered by Inhibition of APOC-III. Journal of the
466	American College of Cardiology, 2017; 69: 789-800
467	18. Ishikawa S, Gotoh T, Nago N, Kayaba K; Jichi Medical School (JMS) Cohort
468	Study Group.The Jichi Medical School (JMS) Cohort Study: design, baseline
469	data and standardized mortality ratios. J Epidemiol. 2002;12:408-17.
470	19. Izumida T, Nakamura Y, Hino Y, Ishikawa S. Combined Effect of Small
471	Dense Low-Density Lipoprotein Cholesterol (sdLDL-C) and Remnant-Like
	446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 469 470

472 Particle Cholesterol (RLP-C) on Low-Grade Inflammation. J Atheroscler Thromb.473 2020;27:319-330.

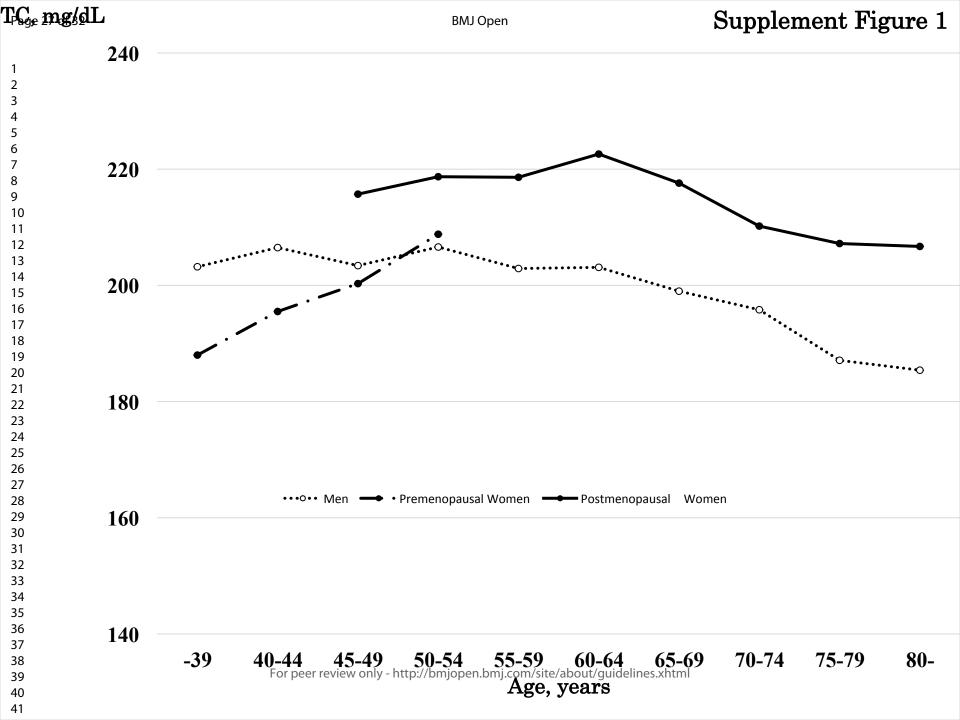
6 7

8

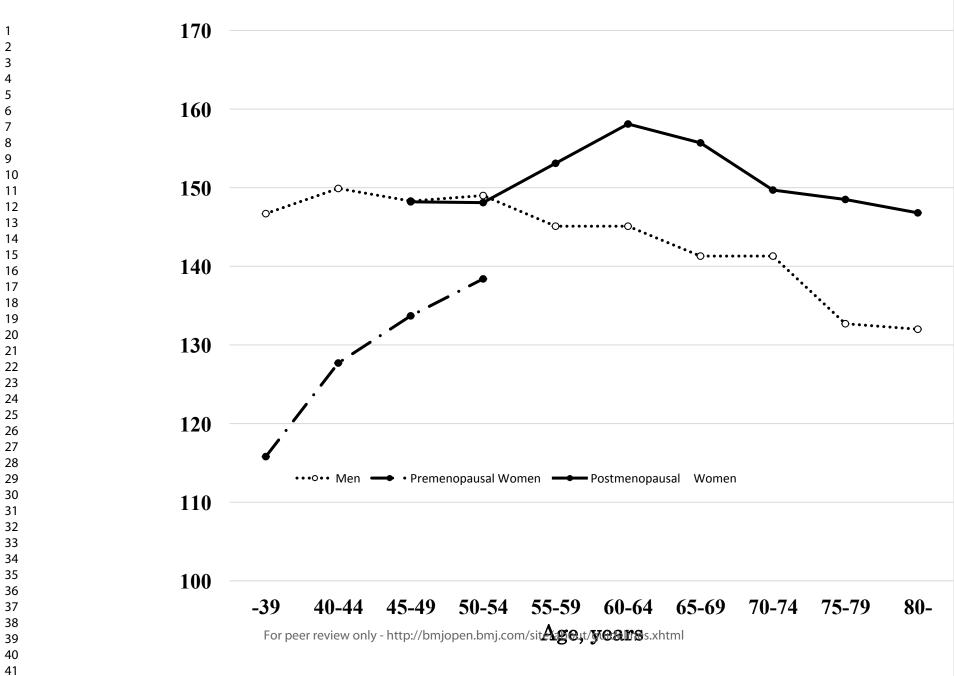
⁹ 474 20. Cho Y, Lee SG, Jee SH, Kim JH. Hypertriglyceridemia is a major factor
¹⁰ 475 associated with elevated levels of small dense LDL cholesterol in patients with
¹² 476 metabolic syndrome. Ann Lab Med. 2015;35(6):586-94.

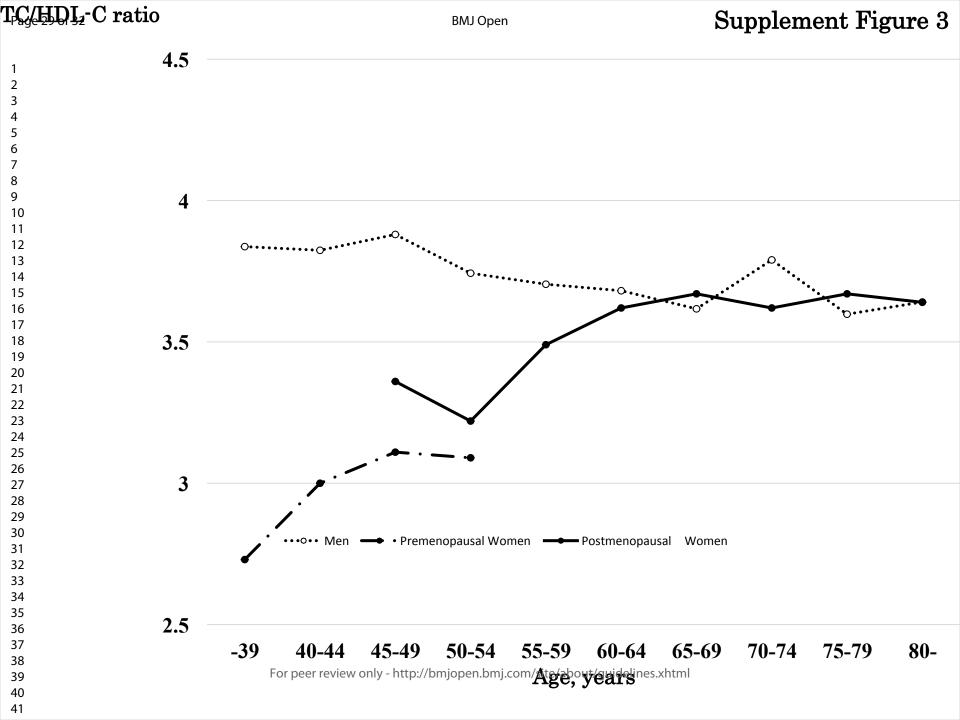
477 21. Hayashi T, Koba S, Ito Y, Hirano T. Method for estimating high sdLDL-C by
 478 measuring triglyceride and apolipoprotein B levels. Lipids Health Dis. 2017 Jan
 479 26;16(1):21.

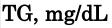
480 22. Dayspring TD. Understanding hypertriglyceridemia in women: clinical impact
 481 and management with prescription omega-3-acid ethyl esters. Int J Womens
 482 Health. 2011 Mar 9;3:87-97.

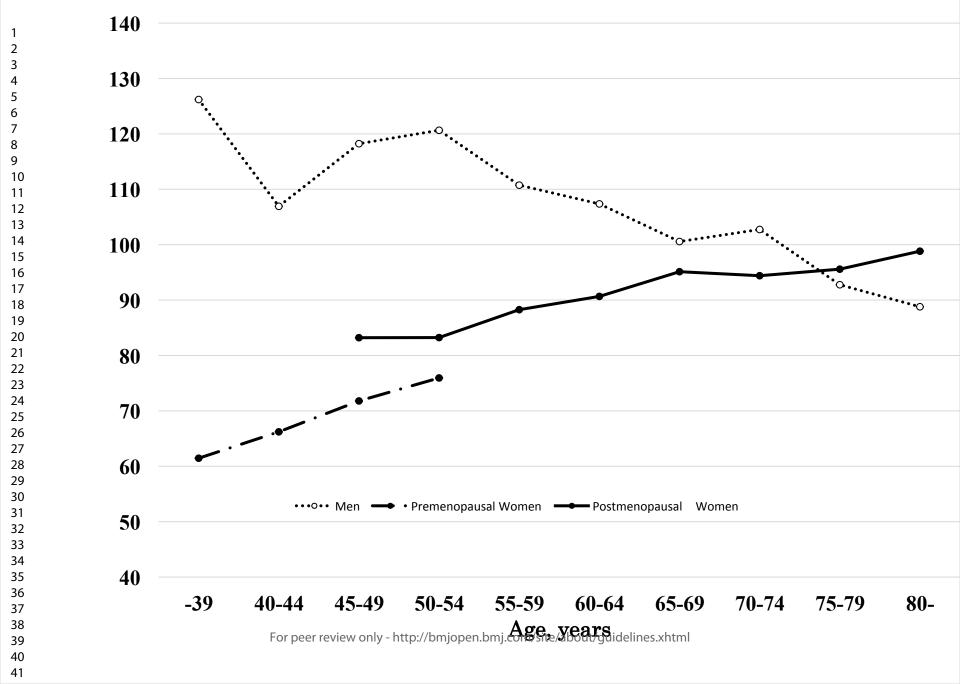

- 483 23. Campos H, Walsh BW, Judge H, Sacks FM. Effect of estrogen on very low
 484 density lipoprotein and low density lipoprotein subclass metabolism in
 485 postmenopausal women. J Clin Endocrinol Metab. 1997 Dec;82(12):3955-63.
- 486 24. Carr MC, Kim KH, Zambon A, Mitchell ES, Woods NF, Casazza CP, Purnell
 487 JQ, Hokanson JE, Brunzell JD, Schwartz RS. Changes in LDL density across
 488 the menopausal transition. J Investig Med. 2000 Jul;48(4):245-50.

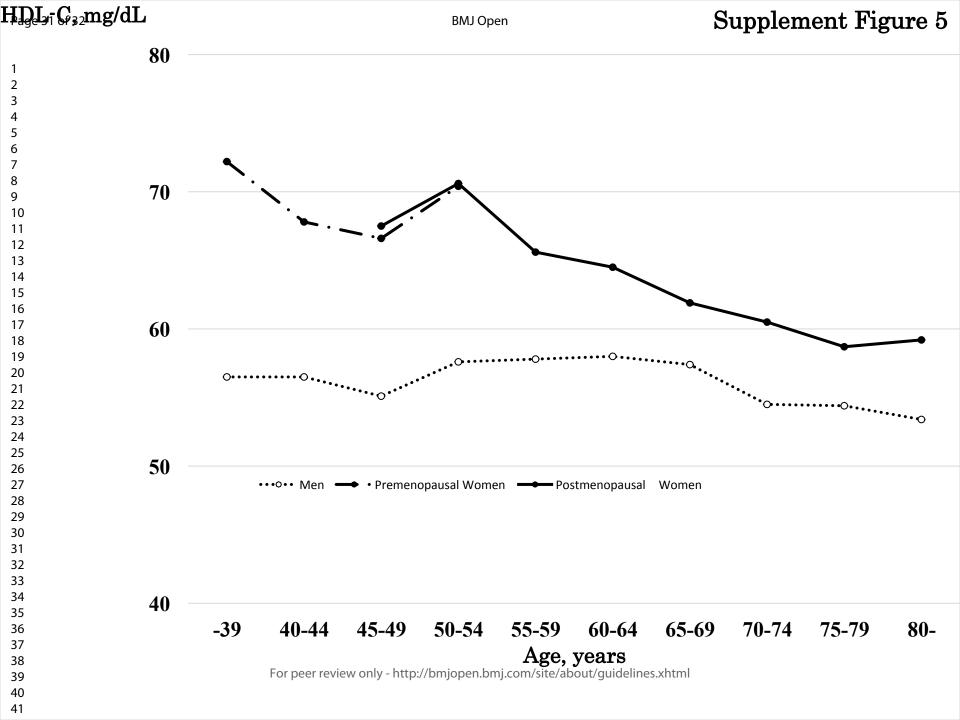
489 25. Bhatnagar P, Wickramasinghe K, Williams J, Rayner M, Townsend N.The
 490 epidemiology of cardiovascular disease in the UK 2014. Heart.;101(15):1182-9.


- 491 26. Anagnostis P, Stevenson JC, Crook D, Johnston DG, Godsland IF. Effects of
 492 menopause, gender and age on lipids and high-density lipoprotein cholesterol
 493 subfractions. Maturitas. 2015;81(1):62-8.
- 494 494 27. Schaefer EJ, Lamon-Fava S, Cohn SD, Schaefer MM, Ordovas JM, Castelli
 495 WP, Wilson PW.Effects of age, gender, and menopausal status on plasma low
 496 density lipoprotein cholesterol and apolipoprotein B levels in the Framingham
 497 Offspring Study. J Lipid Res.;35(5):779-92.
- 49
 498
 50
 51
 499
 52
 500
 500
 510
 511
 511
 512
 512
 513
 514
 514
 514
 515
 515
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
 5163
- 54 501 29. Slopen N, Goodman E, Koenen KC, Kubzansky LD. Socioeconomic and
 55 502 other social stressors and biomarkers of cardiometabolic risk in youth: a
 57 503 systematic review of less studied risk factors. PLoS One. 2013;8(5):e64418.
- 59 504 30. Garcia CK, Mues G, Liao Y, Hyatt T, Patil N, Cohen JC, Hobbs HH.


1 2 3 4		
5 6	505	Sequence diversity in genes of lipid metabolism. Genome Res. 2001
7 8	506	Jun;11(6):1043-52.
9	507	
10 11		
12		
13 14		
15 16		
17		
18 19		
20 21		
22 23		
24		
25 26		
27 28		
29		
30 31		
32 33		
34		
35 36		
37 38		
39		
40 41		
42 43		
44		
45 46		
47 48		
49		
50 51		
52 53		
54		
55 56		
57 58		
59		
60		


1		
2 3		
4		
5 6 7	508	FIGURE LEGENDS
8 9 10	509	Figure 1. Geometric mean and 95% confidence interval of sdLDL-C for age,
11 12	510	gender, and menopausal status
13 14	511	
15 16	512	Figure 2. Mean and 95% confidence interval of sdLDL-C/LDL-C ratio for age,
17 18	513	gender, and menopausal status
19	514	
20 21	515	Figure 3. Mean and 95% confidence interval of LDL-C for age, gender, and
22	516	menopausal status
23 24	517	
25 26	518	Supplementary Material
27 28	519	Supplementary Figure 1. Mean of total cholesterol for age, gender, and
29	520	menopausal status
30 31	521	
32 33	522	Supplementary Figure 2. Mean of non-high-density lipoprotein cholesterol for age,
34	523	gender, and menopausal status
35 36	524	
37 38	525	Supplementary Figure 3. Mean of total cholesterol / high-density lipoprotein
39 40	526	cholesterol ratio for age, gender, and menopausal status
41	527	
42 43	528	
44 45	529	Supplementary Figure 4. Geometric mean of triglycerides for age, gender, and
46	530	menopausal status
47 48	531	
49 50	532	Supplementary Figure 5. Mean of high-density lipoprotein cholesterol for age,
51	533	gender, and menopausal status
52 53	534	
54 55	535	
56		
57 58		
59		
60		




nonHDL-C, mg/dL

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1, 3
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	1, 3, 6
		6	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	6
		(b) For matched studies, give matching criteria and number of exposed and unexposed	8
Variables	7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable		7
Data sources/ measurement8*For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe6, 7comparability of assessment methods if there is more than one groupcomparability of assessment methods if there is more than one groupcomparability of assessment methods if there is more than one group		6, 7	
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	6
		(d) If applicable, explain how loss to follow-up was addressed	-
		(e) Describe any sensitivity analyses	-

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	6, 8
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	-
		(c) Consider use of a flow diagram	-
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8-10
		(b) Indicate number of participants with missing data for each variable of interest	-
		(c) Summarise follow-up time (eg, average and total amount)	-
Outcome data	15*	Report numbers of outcome events or summary measures over time	-
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	8-16
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	8-16
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9-16
Discussion			
Key results	18	Summarise key results with reference to study objectives	12-16
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	16-18
Generalisability	21	Discuss the generalisability (external validity) of the study results	18
Other information			
Funding 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based 20-21		20-21	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

The Association between Age, Gender, Menopausal Status, and Small Dense Low-Density Lipoprotein Cholesterol; A Cross-Sectional Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-041613.R1
Article Type:	Original research
Date Submitted by the Author:	02-Sep-2020
Complete List of Authors:	Izumida, Toshihide; Kanazawa Medical University Himi Municipal Hospital; Nakamura, Yosikazu; Jichi Medical University, Public Health Sato, Yukihiro; Kamiichi General Hospital, Internal Medicine Ishikawa, Shizukiyo; Jichi Medical University, Division of Public Health, Center for Community Medicine
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health, Global health, Epidemiology, Cardiovascular medicine
Keywords:	CARDIOLOGY, Heart failure < CARDIOLOGY, Ischaemic heart disease < CARDIOLOGY, INTERNAL MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	[TITLE] The Association between Age, Gender, Menopausal Status, and Small
2	Dense Low-Density Lipoprotein Cholesterol; A Cross-Sectional Study
3	
4	Authors: Toshihide Izumida ¹ , Yosikazu Nakamura ² , Yukihiro Sato ³ , Shizukiyo
5	lshikawa²
6	
7	¹ Division of Community Medicine, Kanazawa Medical University Himi Municipal
8	Hospital, Himi, Toyama, Japan
9	1130 Kurakawa, Himi, Toyama 935-0025, Japan
10	² Division of Public Health, Center for Community Medicine, Jichi Medical University,
11	Shimotsuke, Tochigi, Japan
12	3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
13	³ Internal Medicine, Kamiichi General Hospital, Nakaniikawa-gun, Toyama, Japan
14	51 Hoonji, Kamiichi, Nakaniikawa-gun, Toyama 930-0391, Japan
15 16 17 18 19 20 21 22	Corresponding Author: Shizukiyo Ishikawa Division of Public Health, Center for Community Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan E-mail: <u>i-shizu@jichi.ac.jp</u>
23	E-mail address: Toshihide Izumida, m07011ti@jichi.ac.jp; Yosikazu Nakamura,
24	nakamuyk@jichi.ac.jp; Yukihiro Sato, <u>yukisato@fancy.ocn.ne.jp;</u> Shizukiyo Ishikawa,
$\frac{25}{26}$	i-shizu@jichi.ac.jp
27	Keywords: small dense low-density lipoprotein cholesterol, small dense low-density
28	lipoprotein cholesterol / low-density lipoprotein cholesterol ratio, age, gender,
29	menopause
$30 \\ 31 \\ 32 \\ 33$	Total word count: 3024 (abstract: 279, without keywords; main text: 2745, from the introduction until the conclusion)
$34 \\ 35 \\ 36 \\ 37$	Number of Tables: 3 Figures: 3 Supplementary materials: 7
38	AUTHOR CONTRIBUTIONS

BMJ Open

TI, YN, YS, and SI have participated in the research and designed the study; TI and SI
performed the statistics analysis; TI contributed to the drafting of the manuscript. YN,
YS, and SI provided feedback on the manuscript, and all authors read and approved the
final manuscript.

tor beer terien ont

43 ABSTRACT

Objectives: Small dense low-density lipoprotein cholesterol (sdLDL-C) might be a 45 better cardiovascular disease (CVD) indicator than low-density lipoprotein cholesterol 46 (LDL-C); however, details regarding its epidemiology remain elusive. The present study 47 aimed at evaluating the association between the demographic factors, such as age, 48 gender, and menopausal status, and sdLDL-C levels and sdLDL-C/LDL-C ratio in the 49 Japanese population.

Design: This was a cross-sectional study.

53 Setting: 13 rural districts in Japan, 2010-2017

Participants: This study included 5,208 participants (2,397 men and 2,811 women),
who underwent the health mass screening that was conducted in accordance with the
medical care system for the elderly and obtained informed consent for this study.

Results: In total, 517 premenopausal women (mean age ± SD, 45.1 ± 4.2 years), 2,294 postmenopausal women (66.5 ± 8.8 years) and 2,397 men (64.1 ± 11.2 years) were analyzed. In men, the sdLDL-C levels and sdLDL-C/LDL-C ratio increased during younger adulthood, peaked (36.4 mg/dL, 0.35) at 50-54 years, and then decreased. In women, relatively regular increasing trends of sdLDL-C level and sdLDL-C/LDL-C ratio until approximately 65 years (32.7 mg/dL, 0.28), followed by a downward or pleated trend. Given the beta value of age, body mass index, fasting glucose, and smoking and drinking status by multiple linear regression analysis, standardized sdLDL-C levels and sdLDL-C/LDL-C ratio in 50-year old men, premenopausal women, and postmenopausal women were 26.6, 22.7, and 27.4 mg/dL and 0.24, 0.15, and 0.23, respectively. The differences between premenopausal and postmenopausal women were significant (*P*<0.001).

Conclusions: SdLDL-C and sdLDL-C/LDL-C ratios showed different distributions by
 age, gender, and menopausal status. A subgroup-specific approach would be
 necessary to implement sdLDL-C for CVD prevention strategies, fully considering
 age-related trends, gender differences, and menopausal status.

1 2 3 4 5 6	76	(279 words / within 300 words)
7 8 9 10 11 12		· ·
13 14 15 16 17 18 19 20		
21 22 23 24 25 26 27		
28 29 30 31 32 33 34 35		
36 37 38 39 40 41 42		
43 44 45 46 47 48 49		
50 51 52 53 54 55 56		
57 58 59		

77 Strengths and limitations of this study

1. To the best of our knowledge, the present study is the first to demonstrate the
association between age, gender, and menopausal status on the sdLDL-C and
sdLDL-C/LDL-C ratio.

81 2. This study is based on a large representative sample from Japanese general82 population.

- 83 3. Serum lipid markers were measured by the standardized program proposed by the
 84 Clinical and Laboratory Standards Institute.
- 4. It is unclear whether our results of sdLDL-C would be valid for other populations.
- 5. This study did not control for several confounding factors, such as diet, life activity,

87 socioeconomic status, and genetic factors.

Although hypercholesterolemia is one of the leading causes of cardiovascular disease (CVD), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (nonHDL-C) have not been good enough to predict risk stratification and the novel target is needed.¹⁻³ Small dense low-density lipoprotein cholesterol (sdLDL-C) easily penetrates into the arterial wall, has a high susceptibility to oxidation, and may exacerbate and perpetuate atherosclerosis.⁴ In fact, patients with metabolic syndrome, which have been found as highly atherogenic hypercholesterolemia, conditions without have elevated sdLDL-C.⁵ The sdLDL-C/LDL-C ratio, reflecting the ability to generate sdLDL-C from LDL-C, might increase by the high activity of hepatic lipase, which was associated with higher risk of CVD. Current studies suggest that the sdLDL-C or sdLDL-C/LDL-C ratio might be the better factors for the prediction of CVD than total cholesterol (TC) or LDL-C in the general population or patients with CVD.6-9

30 104

However, almost all of the current analytical strategies might be not able to adjust accurately the interaction between age and sdLDL-C. Few studies have evaluated how age is associated with sdLDL-C and sdLDL-C/LDL-C ratio over a wide age range and distinguished the effects of menopause and gender on sdLDL-C and sdLDL-C fraction from those of aging.^{10,11}

Diet composition, which is affected by aging, is associated with blood cholesterol and the absorption, synthesis, and metabolism per se of fat and lipoproteins change with age.^{12,13} Another study showed Asian age-related trends of traditional lipid profiles displayed roughly an increasing trend, followed by a decreasing one at the middle-aged stage.^{14,15} Meanwhile, sdLDL-C has been regulated by more complex mechanisms than regulating traditional lipids and might be plateaued or increased even at the middle-aged by changed metabolic functions with aging influencing sdLDL-C synthesis.^{5,7,12,16,17} Furthermore, the detailed multiple mechanisms of metabolizing sdLDLs are unknown in the real-world, population-based setting and the age-related trend of sdLDL-C might be different from the sdLDL-C/LDL-C ratio. In other words, the ability to generate sdLDL-C from LDL-C might be different among each generation,

gender, and menopausal status. Therefore, we evaluated the association between the demographic factors, such as age, gender, and menopausal status, and sdLDL-C and sdLDL-C/LDL-C ratio in Japanese general population.

METHODS

Population

The present cross-sectional study was conducted as part of the Jichi Medical School (JMS)-II Cohort Study, a population-based cohort study of the risk factors of atherosclerosis and CVD in the Japanese general population. A total of 6,436 individuals participated in this study. Details of the methods of enrollment have been reported previously.^{18,19} In brief, from April 2010 through December 2017, this study evaluated Japanese individuals who were residents of 13 rural districts in Japan, Shimotsuke, Kakara, Sue, Omori, Kamiichi, Wara, Takasu, Onabi, Nakatsu, Yame, Miwa, Ueno, and Saji areas. Local government offices in each community issued invitations to eligible residents for the mass CVD screening, and personal invitations were also sent to all potential participants by mail. All the participants in the present study provided written informed consent prior to inclusion. The study protocol and data analysis plan were approved by the institutional review board of Jichi Medical School (Tochigi, Japan, IRB No. G09-39 [G17-64 revised]).

lipid-lowering We excluded individuals as follows: 1) taking agents or anti-hyperglycemia agents (n = 1,073); 2) the use of hormone replacement therapy (n =96); and 3) the data such as age, gender status, menopausal status, and sdLDL-C were not available (n = 73).

Measurements

A central committee, composed of the chief medical officers of all 13 participating districts, developed a detailed manual for data collection. Body weight was recorded with the subjects clothed. Height was measured with stockinged feet. Body mass index (BMI) was calculated as weight (kg) / height (m²). Blood samples were taken after overnight fasting. TC was measured via a cholesterol dehydrogenase-ultraviolet

method. Triglycerides (TG) was measured using an enzymatic method. LDL-C and high-density lipoprotein cholesterol (HDL-C) were measured by direct methods using a commercial kit (Cholestest from Sekisui Medical, Tokyo, Japan). SdLDL-C level was directly and selectively measured using a commercial kit (sdLDL-EX from Denka Seiken, Tokyo, Japan). An external laboratory (SRL, Tokyo, Japan) measured the serum lipid markers. The markers were measured by the standardized program proposed by the Clinical and Laboratory Standards Institute. The nonHDL-C was calculated by subtracting HDL-C from TC. Information about medical history, lifestyle, and menopausal status were obtained with a self-reported questionnaire. Smoking status was classified as smoking, former smoking, or never-smoking.

164 Statistical analysis

Baseline characteristics were summarized as mean \pm standard deviation (SD) for normally distributed continuous variables and numbers and percentages for categorical variables. SdLDL-C and TG were highly skewed; these data were expressed as the median and interquartile range and transformed into natural logarithms before statistical analysis. The participants were divided into three groups (men, premenopausal women, and postmenopausal women) according to gender and menopausal status.

The one-way analysis of variance (ANOVA) was used for comparison among three groups, and differences were tested via post hoc pairwise comparison (Bonferroni). To explore the age-related trend in sdLDL-C and sdLDL-C/LDL-C ratio with age, geometric means or means and 95 percent confidence intervals for each variable in 5-year age ranges were derived and plotted against age range in each of the three groups.

5176Among the three groups, correlations between age and each parameter were assessed67177using multiple linear regression analysis. Considering the beta value of age, body mass<math>178index, fasting glucose, and smoking and drinking status, we calculated the estimated

179 sdLDL-C and sdLDL-C/LDL-C ratio. The agreement between the estimated sdLDL-C

180 and sdLDL-C/LDL-C ratio and measured ones was assessed by Pearson's correlation

181 coefficient. To evaluate the effect of menopausal status on sdLDL-C and

sdLDL-C/LDL-C ratio, using the beta value of each variable from the analysis in the

premenopausal and postmenopausal group, data were standardized to a nominal 50

⁵⁸ ⁵⁹ 184 years of menopausal age, never smoking and zero alcohol for participants with normal

4 5	105	weight (DMI 40 C						
6 7	185	•	-22.0). All statistica	•	•		on 22	
8 9	186	(IBIVI, Chicago, IL	., USA), and statisti	ical significance wa	as defined as $P < 0$	0.05.		
9 10	187							
11 12	188	Patient and pub	lic involvement					
13 14	189	Participants of th	is study or memb	ers of the public v	were not directly a	and pers	onally	
15	190	involved with stud	dy design, data pro	vision, analysis and	d publication of the	study.		
16 17 18	191	RESULTS						
19 20	192	Baseline charac	teristics					
21 22	193	After exclusions,	517 premenopausa	al women (mean ag	ge ± SD, 45.1 ± 4.2	2 years),	2,294	
23 24	194	postmenopausal	women (66.5 ± 8.8	8 years) and 2,39	7 men (64.1 ± 11.	2 years)) were	
25	195	analyzed. Demog	raphic data for the	three groups are s	shown in Table 1. C	Compare	d with	
26 27	196	men, premenopa	usal women had	higher HDL-C an	d postmenopausa	l wome	n had	
28 29	197	higher TC, LDL-	C, HDL-C, and no	nHDL-C. Compare	ed with premenop	ausal w	omen,	
30	198	postmenopausal	women had high	er fasting glucose	e, TC, LDL-C, TO	G, nonH	DL-C,	
31 32	199	TC/LDL-C, sdLD	L-C, and sdLDL-C	/LDL-C. TC and L	DL-C didn't differ	betweer	n men	
33 34	200	and premenopau	sal women.					
35	201							
36 37	202							
38 39	203	Table 1 Baseline	characteristics					
40			Group 1 (G1)	Group2 (G2)	Group3 (G3)			
41 42			Men	Premenopausal	Postmenopausal	Р	Р	Р
43 44			(n=2,397)	Women (n=517)	Women (n=2,294)	G1 vs	G1 vs	G2 vs
45						G2	G3	G3
46 47								
48 49		Age, years	64.1 ± 11.2	45.1 ± 4.2	$66.5{\pm}8.8$	< 0.001	< 0.001	< 0.001
50								
51 52 53		BMI, kg/m2	23.3 ± 3.0	22.3 ± 3.6	22.5 ± 3.3	< 0.001	< 0.001	0.631
54 55 56 57 58		Smoking						

2							
3							
4							
5							
6	Current	600 (25.1%)	40 (7.7%)	67 (2.9%)	< 0.001	< 0.001	0.007
7							
8							
9	EX	1204 (50.3%)	73 (14.1%)	97 (4.2%)	< 0.001	< 0.001	< 0.001
10							
11							
12	Drinker	1869 (78.2%)	316 (61.1%)	866 (37.8%)	< 0.001	< 0.001	< 0.001
13	DIIIKI	1000 (10.270)	010 (01.170)	000 (01.070)	-0.001	-0.001	-0.001
14							
15	Glucose, mg/dL	100.7 ± 17.9	$90.9 {\pm} 9.4$	96.3 ± 12.3	< 0.001	< 0.001	< 0.001
16	Glucose, mg/aL	100.7 ± 17.8	90.9 ± 9.4	96.3 ± 12.3	<0.001	<0.001	<0.001
17							
18							
19	TC, mg/dL	198.7 ± 32.9	199.2 ± 31.2	215.4 ± 31.6	1.000	< 0.001	< 0.001
20							
21							
22	LDL-C, mg/dL	$115.2 {\pm} 29.6$	114.2 ± 28.5	126.7 ± 28.7	1.000	< 0.001	< 0.001
23							
23							
25	TGs, mg/dL	100 (71, 146)	68(50, 94)	89 (67, 123)	< 0.001	< 0.001	< 0.001
25							
20							
27 28	HDL-C, mg/dL	56.3 ± 13.8	67.8 ± 14.7	$62.8 {\pm} 14.9$	< 0.001	< 0.001	< 0.001
28 29	IIDE 0, ing/ul		0110-1111	0=10 - 1110	0.001	0.001	-0.001
30	Non HDL-C, mg/dL	142.4 ± 32.6	131.4 ± 31.2	152.5 ± 31.3	< 0.001	< 0.001	< 0.001
31	Non HDL C, mg/uL	142.4 ± 52.0	131.4 ± 31.2	102.0 ± 01.0	<0.001	<0.001	<0.001
32							
33		0 - 1 0	0.1.1.0.0		.0.001	.0.001	.0.001
34	TC/HDL-C	3.7 ± 1.0	3.1 ± 0.8	$3.6 {\pm} 0.9$	< 0.001	< 0.001	< 0.001
35							
36		,		,			
37	SdLDL-C. mg/dL	34.1 (24.8, 46.5)	23.0 (16.8, 30.5)	31.2 (23.5, 41.8)	< 0.001	< 0.001	< 0.001
38							
39							
40	SdLDL-C/LDL-C	$0.32 {\pm} 0.14$	$0.22 {\pm} 0.08$	$0.29 {\pm} 0.12$	< 0.001	< 0.001	< 0.001
41							
42							

Data are expressed as mean±standard deviation (SD), %, and median (25th percentile, 75th percentile). P-values were assessed in one-way analysis of variance (ANOVA) and post hoc pairwise comparison (Bonferroni). BMI=body mass index; TC= total cholesterol; LDL-C= low-density lipoprotein cholesterol; TGs= triglycerides; HDL-C=high-density lipoprotein cholesterol; non HDL-C= non high-density lipoprotein cholesterol; sdLDL-C=small dense low-density lipoprotein cholesterol.

sdLDL-C trends in 5-year age groups

To assess the age-related trend in sdLDL-C levels, a 5-year age stratification was applied, and geometric mean sdLDL-C levels for each age groups were calculated and

1 2	
3 4	
5 6	214
7	215
8 9	216
10 11	217
12	218
13 14	219
15 16	220
17	221
18 19	222
20 21	223
22	224
23 24	225
25 26	226
27 28	227
29	228
30 31	229
32 33	230
34	231
35 36	232
37 38	233
39	234
40 41	235
42 43	236
44	237
45 46	238
47 48	239
49	240
50 51	241
52 53	242
54	243
55 56	244
57 58	245

214 plotted against gender.

15For men, the level of sdLDL-C increased from 34.1 mg / dL in those < 39 years to a 16 maximum of 37.7 mg / dL in those of 50-54 years, followed by decreasing from 36.4 17mg / dL in those of 55-59 years to 27.4 mg / dL in those of 80 ≤ years (Figure 1). For 18 women, a relatively regular increasing trend of the sdLDL-C level was found up to 60-64 19 year-olds. After 65 years, a downward trend was fitted. The maximum of the sdLDL-C 20level of women was 32.7 mg / dL. Moreover, sdLDL-C levels in men were higher than 21those in women for all age groups younger than 70-74-year-olds but exceeded those in 22women after the age of 75-79 years.

226 sdLDL-C/LDL-C ratio trends in 5-year age groups

SdLDL-C/LDL-C ratio in men increased from 0.30 in 40-44-year-olds to a maximum of 0.35 in 50-54-year-olds, plateaued in those of 55-59 years, and then decreased from 0.34 in those of 60-64 years to 0.28 in those of 80 \leq years (Figure 2). For women, these values increased from 0.20 in those < 39 years to a maximum of 0.28 in those of 65-69 years and plateaued after 70 \leq years (with mean levels of 0.27). SdLDL-C/LDL-C ratio in men was higher than those in women for all age groups and the crossover of sdLDL-C/LDL-C ratio for the genders did not occur.

4237Trends in other lipoproteins (LDL-C, total cholesterol, TG, HDL-C, and total5238cholesterol/HDL-C ratio) in 5-year age groups

39 LDL-C level in men decreased almost linearly, while LDL-C level in women rapidly 40 increased from 100.3 mg / dL in those aged < 39 years to a maximum of 132.8 mg / dL 41 in 60-64-year-olds and decreased from 128.2 mg / dL in those aged 65-69 to 119.5 42mg / dL in those 80≤ years (Figure 3). The level of TC, nonHDL-C, and TC/HDL-C ratio 43revealed a pattern similar to the trend of LDL-C levels (Supplementary Figure 1-3). The 44TG levels in men decreased almost linearly, while the level in women increased linearly 45(Supplementary Figure 4). HDL-C in both men and women decreased almost linearly 59 246(Supplementary Figure 5). 60

247				
248				
249				
250	SdLDL-C and sdLDL	-C/LDL-C ratio in the	standardized analys	is among the th
251	groups			
252	To standardize sdLD	L-C and sdLDL-C/LDL	-C ratio among the	e three groups
253	validate the above-me	entioned turning points,	the participants were	e re-stratified by
254	ranges corresponding	to increasing, plateau a	nd decreasing phase	s for each marke
255	gender and multiple lin	near regression analysis	was then applied.	
256	As shown in Table 2,	among men, age was	positively and negati	ively associated v
257	log-transformed small	dense low-density lipo	orotein cholesterol (L	.NsdLDL-C) level
258	those ≤ 54 years and	d ≥ 55 years. Among p	premenopausal wom	en, postmenopai
259	women ≤ 64 years, a	and postmenopausal v	vomen 65 ≥ years,	age was positiv
260	nositively and negati	ively associated with	LNsdLDL-C levels.	But the associa
200	positivery, and negati			
260 261		and age was not signific	antly associated with	men ≤ 54 years.
			antly associated with	men ≤ 54 years.
261			antly associated with	men ≤ 54 years.
261 262	between LNsdLDL-C a		4.	
261 262 263	between LNsdLDL-C a	and age was not signific	4.	
261 262 263	between LNsdLDL-C a Table 2 Factors Assoc Variable	and age was not signific	C Level in Age Grou SE	ıps by Gender P
261 262 263	between LNsdLDL-C a Table 2 Factors Assoc Variable	and age was not signific ciated with LN sdLDL- β	C Level in Age Grou SE	ıps by Gender P
261 262 263	between LNsdLDL-C a Table 2 Factors Assoc Variable Men ≤54,	and age was not signific ciated with LN sdLDL- β , n=475; mean±SD, 46.7±4.9 y	C Level in Age Grou SE rears, Pearson's r= 0.320 (P-	ups by Gender <i>P</i> <0.001)
261 262 263	between LNsdLDL-C a Table 2 Factors Assoc Variable Men ≤54, Age	and age was not signific ciated with LN sdLDL- β , n=475; mean±SD, 46.7±4.9 y 0.006	C Level in Age Grou SE rears, Pearson's r= 0.320 (P- 0.004	ups by Gender <i>P</i> <0.001) 0.169
261 262 263	between LNsdLDL-C a Table 2 Factors Assoc Variable Men ≤54, Age BMI	and age was not signific ciated with LN sdLDL- β , n=475; mean±SD, 46.7±4.9 y 0.006 0.033	C Level in Age Grou SE rears, Pearson's r= 0.320 (P- 0.004 0.006	ups by Gender <i>P</i> <0.001) 0.169 <0.001
261 262 263	between LNsdLDL-C a Table 2 Factors Assoc Variable Men ≤54, Age BMI Fasting glucose	and age was not signific ciated with LN sdLDL- β , n=475; mean±SD, 46.7±4.9 y 0.006 0.033	C Level in Age Grou SE rears, Pearson's r= 0.320 (P- 0.004 0.006	ups by Gender <i>P</i> <0.001) 0.169 <0.001
261 262 263	between LNsdLDL-C a Table 2 Factors Assoc Variable Men ≤54, Age BMI Fasting glucose Smoker	and age was not signific ciated with LN sdLDL- β ,n=475; mean±SD, 46.7±4.9 y 0.006 0.033 0.004	C Level in Age Grou SE rears, Pearson's r= 0.320 (P- 0.004 0.006 0.002	ups by Gender <i>P</i> <0.001) 0.169 <0.001 0.003
261 262 263	between LNsdLDL-C a Table 2 Factors Assoc Variable Men ≤54, Age BMI Fasting glucose Smoker Current	and age was not signific eiated with LN sdLDL- β ,n=475; mean±SD, 46.7±4.9 x 0.006 0.033 0.004 0.018	C Level in Age Grou SE rears, Pearson's r= 0.320 (P- 0.004 0.006 0.002 0.054	ups by Gender <i>P</i> <0.001) 0.169 <0.001 0.003 0.747
261 262 263	between LNsdLDL-C a Table 2 Factors Assoc Variable Men ≤54, Age BMI Fasting glucose Smoker Current EX Drinker	and age was not signific eiated with LN sdLDL- β ,n=475; mean±SD, 46.7±4.9 x 0.006 0.033 0.004 0.018 0.050	C Level in Age Grou SE vears, Pearson's r= 0.320 (P- 0.004 0.006 0.002 0.054 0.053 0.059	ups by Gender <i>P</i> <0.001) 0.169 <0.001 0.003 0.747 0.342 0.015
261 262 263	between LNsdLDL-C a Table 2 Factors Assoc Variable Men ≤54, Age BMI Fasting glucose Smoker Current EX Drinker	and age was not signific eiated with LN sdLDL- β ,n=475; mean±SD, 46.7±4.9 x 0.006 0.033 0.004 0.018 0.050 0.144	C Level in Age Grou SE vears, Pearson's r= 0.320 (P- 0.004 0.006 0.002 0.054 0.053 0.059	ups by Gender <i>P</i> <0.001) 0.169 <0.001 0.003 0.747 0.342 0.015
261 262 263	between LNsdLDL-C a Table 2 Factors Assoc Variable Men ≤54, Age BMI Fasting glucose Smoker Current EX Drinker Men	and age was not signific ciated with LN sdLDL- β n=475; mean±SD, 46.7±4.9 y 0.006 0.033 0.004 0.018 0.050 0.144 ≥55, n=1,922; 68.4±7.6 years,	C Level in Age Grou SE vears, Pearson's r= 0.320 (P- 0.004 0.006 0.002 0.054 0.053 0.059 Pearson's r= 0.316 (P<0.00	ups by Gender <i>P</i> <0.001) 0.169 <0.001 0.003 0.747 0.342 0.015 01)
261 262 263	between LNsdLDL-C a Table 2 Factors Assoc Variable Men ≤54, Age BMI Fasting glucose Smoker Current EX Drinker Men Age	and age was not signific ciated with LN sdLDL- β ,n=475; mean±SD, 46.7±4.9 y 0.006 0.033 0.004 0.018 0.050 0.144 ≥55, n=1,922; 68.4±7.6 years, -0.010	C Level in Age Grou SE rears, Pearson's r= 0.320 (P- 0.004 0.006 0.002 0.054 0.053 0.059 Pearson's r= 0.316 (P<0.00 0.001	ups by Gender <i>P</i> <0.001) 0.169 <0.001 0.003 0.747 0.342 0.015 01) <0.001

1	
2	
3	
4 5 6 7	
5	
6	
7	
8	
9	
10	
11	
12	
12	
1.0	
14	
15	
10	
1/	
18	
19	
20	
21	
22	
23	
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	
25	
26	
27	
28	
29	
30	
31	
27	
32 33	
22 24	
34 25	
34 35 36 37 38	
36	
37	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
52	
53	
54	
55	
56	
57	
58	
59	
<u> </u>	

Current	0.025	0.030	0.402
EX	0.032	0.024	0.192
Drinker	0.076	0.024	0.001
Women (Pr	remenopausal), n=517; 45.1 \pm 4.2 ;	years, Pearson's r=0.330 (l	?<0.001)
Age	0.014	0.005	0.002
BMI	0.024	0.006	< 0.001
Fasting glucose	0.008	0.002	< 0.001
Smoker			
Current	0.021	0.072	0.775
EX	-0.005	0.056	0.934
Drinker	0.033	0.039	0.398
Women≤64 years	(Postmenopausal), n=978; 58.3	± 4.5 years, Pearson's r=0	.261 (P<0.001)
Age	0.014	0.003	< 0.001
BMI	0.019	0.004	< 0.001
Fasting glucose	0.004	0.001	< 0.001
Smoker			
Shloker			
Current	0.052	0.067	0.437
	0.052 0.036	0.067	0.437 0.479
Current EX			
Current EX Drinker	0.036	0.051 0.026	0.479 0.792
Current EX Drinker Women 65≥ years (F	0.036 0.007	0.051 0.026	0.479 0.792
Current EX Drinker Women 65≥ years (F Age	0.036 0.007 Postmenopausal), n=1,316; 72.6:	0.051 0.026 ± 5.7 year olds, Pearson's 1	0.479 0.792 =0.228 (P<0.001)
Current EX Drinker	0.036 0.007 Postmenopausal), n=1,316; 72.6: -0.004	0.051 0.026 ±5.7 year olds, Pearson's n 0.002	0.479 0.792 =0.228 (P<0.001) 0.045
Current EX Drinker Women 65≥ years (F Age BMI	0.036 0.007 Postmenopausal), n=1,316; 72.6: -0.004 0.022	0.051 0.026 ±5.7 year olds, Pearson's n 0.002 0.004	0.479 0.792 =0.228 (P<0.001) 0.045 <0.001
Current EX Drinker Women 65≥ years (F Age BMI Fasting glucose	0.036 0.007 Postmenopausal), n=1,316; 72.6: -0.004 0.022	0.051 0.026 ±5.7 year olds, Pearson's n 0.002 0.004	0.479 0.792 =0.228 (P<0.001) 0.045 <0.001
Current EX Drinker Women 65≥ years (F Age BMI Fasting glucose Smoker	0.036 0.007 Postmenopausal), n=1,316; 72.6 -0.004 0.022 0.003	0.051 0.026 ±5.7 year olds, Pearson's r 0.002 0.004 0.001	0.479 0.792 =0.228 (P<0.001) 0.045 <0.001 0.001

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

270	As shown in Table 3, age in men \leq 54 years, 55-59 years, and 60 \geq years, was
271	positively, positively, and negatively associated with sdLDL-C/LDL-C ratio. In women,
272	age in premenopausal women, postmenopausal women \leq 69 years was positively
273	associated with sdLDL-C/LDL-C ratio, whereas age in postmenopausal women 70 \geq
274	years was not significantly associated sdLDL-C/LDL-C ratio. The association between
275	sdLDL-C/LDL-C and age was not significantly associated with men 55-59 years,
276	premenopausal women, and postmenopausal women 70 \geq years.

278

279 Table 3 Factors Associated with SdLDL-C/LDL-C Ratio in Age Groups by Gender

Variable	β	SE	Р
Men ≤54 years	s, n=475; mean±SD, 46.7±4.9	9 year olds, Pearson's r= 0.32	20 (P<0.001)
Age	0.003	0.001	0.020
BMI	0.005	0.002	0.012
Fasting glucose	0.001	0.000	0.010
Smoker			
Current	0.029	0.016	0.081
EX	0.011	0.016	0.501
Drinker	0.049	0.018	0.007
Men 55-	59 years, n=245; 57.2±1.4 yea	ars, Pearson's r= 0.222 (P<	0.001)
Age	0.004	0.007	0.589
BMI	0.003	0.003	0.385
Fasting glucose	0.001	0.001	0.285
Smoker			
Current	0.049	0.032	0.125
EX	0.062	0.030	0.042
Drinker	0.055	0.027	0.041
Men 60≥	years, n=1,677; 70.0±6.8 ye	ears, Pearson's r= 0.272 (P<	:0.001)
	-0.002	0.000	< 0.001
Age			
Age BMI	0.005	0.001	< 0.001

1	
2	
3	
4	
5	
6	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 37 38 37 38 37 38 37 38 37 38 37 38 38 37 38 38 38 38 38 38 38 38 38 38	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50 51	
52	
52 53	
53 54	
54 55	
56 57	
57	
58	
59	

Current	0.029	0.009	0.001
EX	0.009	0.007	0.235
Drinker	0.055	0.007	< 0.001
Women (Pren	nenopausal), n=517; 45.1±4.2 ye	ars, Pearson's r=0.313 (I	?<0.001)
Age	0.001	0.001	0.147
BMI	0.003	0.001	0.002
Fasting glucose	0.001	0.000	< 0.001
Smoker			
Current	0.010	0.012	0.413
EX	0.000	0.010	0.988
Drinker	0.015	0.007	0.027
Women≤69 years (Pe	ostmenopausal), n=1,434; 61.0=	±5.5 years, Pearson's r=0).264 (P<0.001)
Age	0.002	0.000	< 0.001
BMI	0.004	0.001	< 0.001
Fasting glucose	0.001	0.000	< 0.001
Smoker			
Current	0.001	0.012	0.914
EX	0.013	0.010	0.201
	0.003	0.005	0.555
Drinker			
	stmenopausal), n=860; 75.6±4	.6 year olds, Pearson's r=	=0.167 (P<0.001)
	stmenopausal), n=860; 75.6±4 0.000	6 year olds, Pearson's r - 0.001	=0.167 (P<0.001) 0.704
Women 70≥ years (Po			
Women 70≥ years (Po Age	0.000	0.001	0.704
Women 70≥ years (Po Age BMI	0.000 0.004	0.001 0.001	0.704 <0.001
Women 70≥ years (Po Age BMI Fasting glucose	0.000 0.004	0.001 0.001	0.704 <0.001
Women 70≥ years (Po Age BMI Fasting glucose Smoker	0.000 0.004 0.001	0.001 0.001 0.000	0.704 <0.001 <0.001

283cholesterol; BMI=body mass index.

60

Considering the beta value of each variable, 50-year old standardized sdLDL-C levels in men, premenopausal women, and postmenopausal women were 26.6 mg / dL (95 % CI; 26.4-26.9 mg / dL), 22.7 mg / dL (95 % CI; 22.5-22.9 mg / dL), and 27.4 mg / dL (95 % CI; 27.3-27.5 mg/dL), respectively. Standardized sdLDL-C/LDL-C ratio in men, premenopausal women, and postmenopausal women were 0.24 (95 % CI; 0.24-0.24), 0.15 (95 % CI; 0.15-0.16), and 0.23 (95 % CI; 0.22-0.23), respectively. These differences between premenopausal women and postmenopausal women were significant (Bonferroni analysis, P < 0.001).

295 DISCUSSION

To the best of our knowledge, the present study is the first to demonstrate the association between age, gender, menopausal status, and sdLDL-C and sdLDL-C/LDL-C ratio. The age-related sdLDL-C trends showed roughly an increasing phase, followed by a decreasing phase in men and a plateaued phase in middle-aged women. The age-related sdLDL-C trend in men, but not in women, was similar to traditional lipid cholesterol profiles. The reason for this gender difference might be related to the mechanism of hypertriglyceridemia in postmenopausal women, which induced small LDL particles.²⁰⁻²² There were age or gender-related differences in sdLDL-C / LDL-C ratio, reflecting the ability to generate sdLDL-C from LDL-C. This ability in men was higher than that in women for all age groups or standardized groups, which is identical to the fact that atherosclerosis is more common in men than in women, considering sdLDL-C is a highly atherogenic factor.

Our study showed three important results. First, age showed partial correlation trends with sdLDL-C levels and sdLDL-C/LDL-C ratio and non-linear trends between age and sdLDL-C and sdLDL-C/LDL-C ratio were found in both men and women. Therefore, using the sdLDL-C and sdLDL-C/LDL-C ratio, the definition of CVD risk assessment and the adaption of the lipid-lowering therapy should fully consider age-related trends and gender differences.

Second, menopausal status was an additional determinant of increasing sdLDL-C and
 sdLDL-C/LDL-C ratio. Many factors such as excess adiposity, free fatty acids,

apo-lipoproteins, and action of lipoprotein lipase activity and cholesterol ester transfer protein affected multiple and complex mechanisms regulating sdLDL.^{12,16,17} In postmenopausal women, the decrease of plasma estrogen levels plays a significant role in reducing the clearance of LDL particles via LDL receptor and increasing TG and the number of smaller LDL particles.²³ This hormone change was related to the process of regulating sdLDL-C but there was little evidence available on the association between menopausal status and sdLDL-C or sdLDL-C/LDL-C ratio in a real-world, population setting.²⁴ Our results showed that sdLDL-C in postmenopausal women was 0.8 or 3.9 mg / dL higher than men or premenopausal women in the standardized analysis.

Finally, the relationships between age-related trends in sdLDL-C and sdLDL-C/LDL-C ratio and gender were different from traditional lipid factors, such as LDL-C. The crossover of LDL-C for the genders occurred in middle-aged patients. On the contrary, the crossover of sdLDL-C occurred between 70-74 years and the sdLDL-C/LDL-C ratio did not occur. Rather than LDL-C, the results of the sdLDL-C and sdLDL-C/LDL-C ratio might reflect the fact that, for all age groups, men have more susceptible to CVD than women, even with the narrowing gap of risk for CVD in postmenopausal women.²⁵

Our findings suggest that a subgroup-specific approach is required to develop efficient
 CVD prevention strategies using the sdLDL-C and sdLDL-C/LDL-C ratio.

41 338

339 Limitations

Our study has several limitations. First, age-related trends and levels of traditional lipid factors were almost similar to National Health and Nutrition Survey in Japan and our age-related trends of these factors were also similar to the trends of the Korean and Chinese Singaporeans population.^{14,15} But the trends of the US population or healthy Caucasian^{26,27} were not similar. Especially in healthy Caucasian patients aged \geq 70 years, the trends for TC, LDL-C, and nonHDL-C differed from our observed trends and continuously increased. Although our results could not identify the mechanism, there might be racial differences. Therefore, it is unclear whether our results of sdLDL-C would be valid for these populations. Second, compared with mean lipid levels of the

BMJ Open

Korean population from KNHANES, Japanese men showed higher mean TC, LDL-C, and HDL levels (TC 199 mg / dL; LDL-C 115 mg / dL; HDL-C 56 mg / dL) compared to Korean men (TC 183 mg/dL; LDL-C 106 mg/dL; HDL 50 mg/dL), and Japanese women also showed higher mean levels (TC 212 mg / dL; LDL-C 124 mg / dL; HDL-C 64 mg / dL) than Korean women (TC 188 mg / dL; LDL-C 111 mg / dL; HDL-C 55 mg / dL). The reason for the difference in the lipoprotein profile between Japanese and Korean populations might be due to genetics and environmental factors. It is also unknown whether these factors might affect sdLDL-C levels and sdLDL-C/LDL-C ratio because sdLDLs are regulated through complex mechanisms. Third, we did not control for the effects of diet, life activity, socioeconomic status, and genetic factors, which might be associated with changes in lipid metabolism.^{28,29,30} Fourth, there might be several biases. Selection bias might from potential come non-representativeness of the study population, which was rural dwelling. There might be information bias and data misclassification due to error in measurement of the lipid parameters. Fifth, as shown in the supplementary figure 6 and 7, the results regarding the association between demographic factors and sdLDL-C and sdLDL-C/LDL-C ratio remained the same in 6,282 participants including patients taking lipid-lowering therapy. SdLDL-C/LDL-C ratio in men including patients taking lipid-lowering therapy was higher than in men excluding these patients (0.45 vs 0.35). Our assessment was limited in terms of this difference, because data regarding type and dose of medications for dyslipidemia were not available. We need to validate the association in patients taking lipid-lowering therapy in another cohort. Finally, our study could not evaluate the association between the demographic factors and other lipid markers, such as Lp(a) and oxidized LDL-C. Lp(a) was a significant risk factor for cardiovascular disorders and to be in the spotlight due to a novel therapy using antisense oligonucleotides. These lipid markers should be discussed in further study.³¹

CONCLUSION

SdLDL-C and sdLDL-C/LDL-C ratio are differently distributed by age, gender, and menopausal status. Our findings suggest that a subgroup-specific approach is required

4		
5 6	381	to develop efficient CVD prevention strategies using the sdLDL-C and sdLDL-C/LDL-C
7 8	382	ratio.
9	383	
10 11	384	List of abbreviations
12 13	385	sdLDL-C: small dense low-density lipoprotein cholesterol; CVD: cardiovascular disease;
14	386	LDL-C: low-density lipoprotein cholesterol; TC: total cholesterol; LDL-C: low-density
15 16	387	lipoprotein cholesterol; TGs :triglycerides; HDL-C :high-density lipoprotein cholesterol:
17 18	388	nonHDL-C: non-high-density lipoprotein cholesterol; LNsdLDL-C: log-transformed small
19	389	dense low-density lipoprotein cholesterol; JMS: Jichi Medical School; ANOVA; analysis
20 21	390	of variance
22 23	391	of variance
24	392	
25 26		
27 28		
29		
30 31		
32 33		
34		
35 36		
37 38		
39		
40 41		
42 43		
44		
45 46		
47		
48 49		
50 51		
52		
53 54		
55		
56 57		
58 59		
59 60		

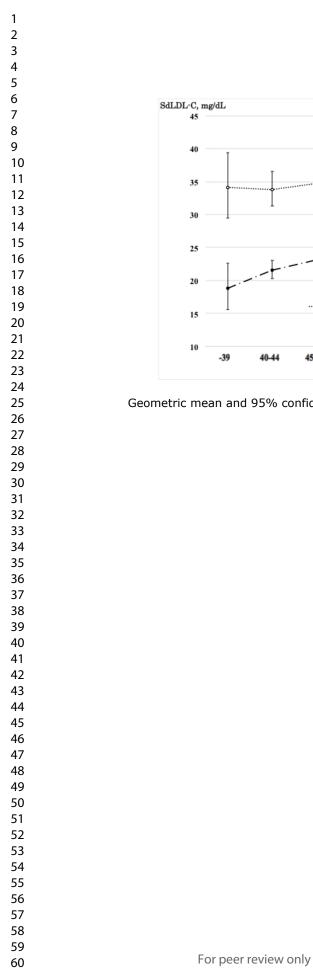
1		
2		
3 4		
5 6	393	DECLARATIONS
7	394	Acknowledgements
8 9	395	The authors thank the public health doctors, nurses, and officers in Shimotsuke,
10 11	396	Kakara, Sue, Omori, Kamiichi, Wara, Takasu, Onabi, Nakatsu, Yame, Miwa, Ueno, and
12	397	Saji areas, Japan, for their help, support, and contributions.
13 14	398	
15 16	399	Ethics approval and consent to participate
17	400	All procedures performed in studies involving human participants were in accordance
18 19	401	with the ethical standards of the institutional and/or national research committee and
20 21	402	with the 1964 Helsinki declaration and its later amendments or comparable ethical
22	403	standards. All the participants included in the present study provided written informed
23 24	404	consent prior to inclusion, and this study was approved by the Institutional Review
25 26	405	Board of Jichi Medical School (Tochigi, Japan, IRB No. G09-39 [G17-64 revised]).
27 28	406	
29	407	Data sharing statement
30 31		
32 33	408	Data are available upon reasonable request.
34	409	
35 36	410	Author contributions
37 38	411	TI, YN, YS, and SI have participated in the research and designed the study; TI and SI
39	412	performed the statistics analysis; TI contributed to the drafting of the manuscript. YN,
40 41	413	YS, and SI provided feedback on the manuscript, and all authors read and approved the
42 43	414	final manuscript.
44	415	
45 46	416	Consent for publication
47 48	417	All the participants included in the present study provided written informed consent for
49 50	418	publication.
51	419	
52 53	420	Competing interests
54	421	The authors declare they have no conflict of interest with respect to this research study
55 56	422	and paper.
57 58	423	
59	424	Funding
60		

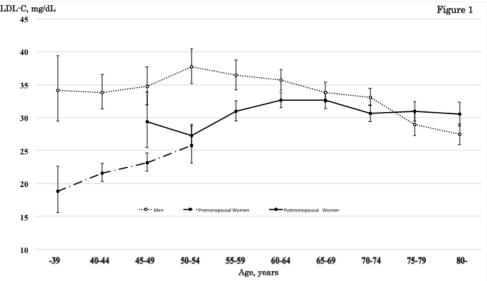
This research was supported by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities (S0901032); a Japanese Society for the Promotion of Science KAKENHI grant (No. 16K09141); a Grant-In-Aid from the Ministry of Health, Labour, and Welfare; Health and Labor Sciences and Japan Comprehensive Research Cardiovascular on and Lifestyle-Related Diseases grants (H26-Junkankitou-[Seisaku]-Ippan-001 and H29-Junkankitou-Ippan-003; IRB No. G09-39 [G17-64 revised]); and Jichi Medical University Almuni Association Project Grant 2020 (5-3).

1							
2 3							
4 5							
6 7	435	REFERENCES					
8	436	1. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS,					
9 10	437	Braun LT, de Ferranti S, Faiella-Tomma- sino J, Forman DE, Goldberg R,					
11	438	Heidenreich PA, Hlatky MA, Jones DW, Lloyd-Jones D, Lopez-Pajares N, Ndu-					
12 13	439	mele CE, Orringer CE, Peralta CA, Saseen JJ, Smith SC Jr, Sperling L, Virani					
14 15	440	SS, Yeboah J. 2018AHA/ACC/					
16	441	AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/ NLA/PCNA Guideline on					
17 18	442	the Management of Blood Cholesterol. Circulation, 2019; 139: e1082-e1143					
19 20	443	2. Lawler PR, Akinkuolie AO, Harada P, Glynn RJ, Chasman DI, Ridker PM,					
21	444	Mora S. Residual Risk of Athero- sclerotic Cardiovascular Events in Relation to					
22 23	445	Reductions in Very-Low-Density Lipoproteins. J Am Heart Assoc, 2017; 6: 1-11					
24 25	446	3. Varbo A, Nordestgaard BG. Remnant Cholesterol and Triglyceride-Rich					
26	447	Lipoproteins in Atherosclerosis Progres- sion and Cardiovascular Disease.					
27 28	448	Arterioscler Thromb Vasc Biol, 2016; 36: 2133-2135					
29 30	449	4. Ivanova EA, Myasoedova VA, Melnichenko AA, Grechko AV, Orekhov AN.					
30	450	Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic					
32 33 34 35 36	451	Diseases. Oxidative Medicine and Cellular Longevity, 2017; 2017: 1273042					
	452	5. Kathiresan S, Otvos JD, Sullivan LM, Keyes MJ, Schaefer EJ, Wilson PWF,					
	453	D'Agostino RB, Vasan RS, Robins SJ. Increased Small Low-Density Lipoprotein					
37 38	454	Particle Number. Circulation, 2006; 113: 20-29					
39	455	6. Arai H, Kokubo Y, Watanabe M, Sawamura T, Ito Y, Minagawa A, Okamura T,					
40 41	456	Miyamato Y. Small dense low-density lipoproteins cholesterol can predict					
42 43	457	incident car- diovascular disease in an urban Japanese cohort: the Suita study. J					
44	458	Atheroscler Thromb, 2013; 20: 195-203					
45 46	459	7. Hoogeveen RC, Gaubatz JW, Sun W, Dodge RC, Crosby JR, Jiang J, Couper					
47 48	460	D, Virani SS, Kathiresan S, Boerwin- kle E, Ballantyne CM. Small Dense					
49	461	Low-Density Lipo- protein-Cholesterol Concentrations Predict Risk for Cor-					
50 51	462	onary Heart Disease. Arterioscler Thromb Vasc Biol, 2014; 34: 1069-1077					
52 53	463	8. St-Pierre AC, Cantin B, Dagenais GR, Mauriège P, Ber- nard P-M, Després					
54	464	J-P, Lamarche B. Low-Density Lipoprotein Subfractions and the Long-Term Risk					
55 56	465	of Ischemic Heart Disease in Men. Arterioscler Thromb Vasc Biol, 2005; 25:					
57 58	466	553-559					
59 60	467	9. Nishikura T, Koba S, Yokota Y, Hirano T, Tsunoda F, Shoji M, Hamazaki Y,					

Suzuki H, Itoh Y, Katagiri T, Kobayashi Y. Elevated small dense low-density lipoprotein cholesterol as a predictor for future cardiovascular events in patients with stable coronary artery disease. J Atheroscler Thromb. 2014;21(8):755-67.

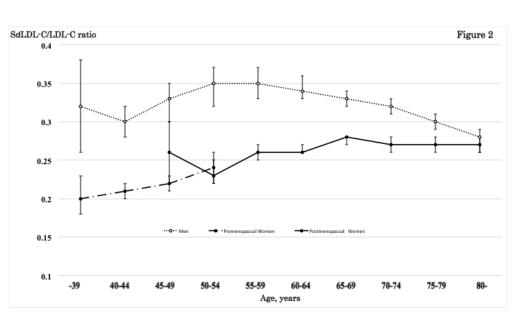
- 10. Mogarekar MR, Kulkarni SK. Small Dense Low Density Lipoprotein Cholesterol, Paraoxonase 1 and Lipid Profile in Postmenopausal Women: Quality or Quantity? Arch Med Res. 2015 Oct;46(7):534-8.
- 11. Gentile M, Panico S, Mattiello A, Ubaldi S, Iannuzzo G, De Michele M, Iannuzzi A, Rubba P. Association between small dense LDL and early atherosclerosis in a sample of menopausal women. Clin Chim Acta. 2013;426:1-5.
- 12. Johnson AA, Stolzing A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell. 2019;18(6):e13048.
- 13. Toth MJ, Tchernof A. Lipid metabolism in the elderly. Eur J Clin Nutr. 2000 ;54 Suppl 3:S121-5.
- 14. Park JH, Lee MH, Shim JS, Choi DP, Song BM, Lee SW, Choi H, Kim HC. Effects of age, sex, and menopausal status on blood cholesterol profile in the korean population. Korean Circ J. 2015 Mar;45(2):141-8.
- 15. Goh VH, Tong TY, Mok HP, Said B. Differential impact of aging and gender on lipid and lipoprotein profiles in a cohort of healthy Chinese Singaporeans. Asian J Androl. 2007;9(6):787-94.
- 16. Qamar A, Khetarpal SA, Khera AV, Qasim A, Rader DJ, Reilly MP. Plasma apolipoprotein C-III levels, triglycer- ides, and coronary artery calcification in type 2 diabetics. Arterioscler Thromb Vasc Biol, 2015; 35: 1880-1888
- 17. Pechlaner R, Tsimikas S, Yin X, Willeit P, Baig F, Santer P, Oberhollenzer F, Egger G, Witztum JL, Alexander VJ, Willeit J, Kiechl S, Mayr M. Very-Low-Density Lipoprotein-Associated Apolipoproteins Predict Cardiovascular Events and Are Lowered by Inhibition of APOC-III. Journal of the American College of Cardiology, 2017; 69: 789-800
- 18. Ishikawa S, Gotoh T, Nago N, Kayaba K; Jichi Medical School (JMS) Cohort Study Group. The Jichi Medical School (JMS) Cohort Study: design, baseline data and standardized mortality ratios. J Epidemiol. 2002;12:408-17.
- 19. Izumida T, Nakamura Y, Hino Y, Ishikawa S. Combined Effect of Small Dense Low-Density Lipoprotein Cholesterol (sdLDL-C) and Remnant-Like

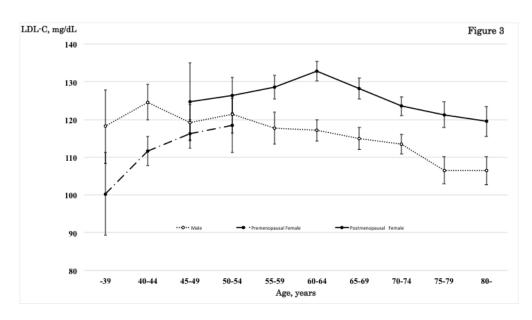

BMJ Open


2 3		
4 5	X 01	
6 7	501	Particle Cholesterol (RLP-C) on Low-Grade Inflammation. J Atheroscler Thromb.
8	502	2020;27:319-330.
9 10	503	20. Cho Y, Lee SG, Jee SH, Kim JH. Hypertriglyceridemia is a major factor
11	504	associated with elevated levels of small dense LDL cholesterol in patients with
12 13	505	metabolic syndrome. Ann Lab Med. 2015;35(6):586-94.
14 15	506	21. Hayashi T, Koba S, Ito Y, Hirano T. Method for estimating high sdLDL-C by
16	507	measuring triglyceride and apolipoprotein B levels. Lipids Health Dis. 2017 Jan
17 18	508	26;16(1):21.
19	509	22. Dayspring TD. Understanding hypertriglyceridemia in women: clinical impact
20 21	510	and management with prescription omega-3-acid ethyl esters. Int J Womens
22 23	511	Health. 2011 Mar 9;3:87-97.
24	512	23. Campos H, Walsh BW, Judge H, Sacks FM. Effect of estrogen on very low
25 26	513	density lipoprotein and low density lipoprotein subclass metabolism in
27 28	514	postmenopausal women. J Clin Endocrinol Metab. 1997 Dec;82(12):3955-63.
29	515	24. Carr MC, Kim KH, Zambon A, Mitchell ES, Woods NF, Casazza CP, Purnell
30 31	516	JQ, Hokanson JE, Brunzell JD, Schwartz RS. Changes in LDL density across
32 33	517	the menopausal transition. J Investig Med. 2000 Jul;48(4):245-50.
34	518	25. Bhatnagar P, Wickramasinghe K, Williams J, Rayner M, Townsend N.The
35 36	519	epidemiology of cardiovascular disease in the UK 2014. Heart.;101(15):1182-9.
37 38	520	26. Anagnostis P, Stevenson JC, Crook D, Johnston DG, Godsland IF. Effects of
39	521	menopause, gender and age on lipids and high-density lipoprotein cholesterol
40 41	522	subfractions. Maturitas. 2015;81(1):62-8.
42 43	523	27. Schaefer EJ, Lamon-Fava S, Cohn SD, Schaefer MM, Ordovas JM, Castelli
44	524	WP, Wilson PW.Effects of age, gender, and menopausal status on plasma low
45 46	525	density lipoprotein cholesterol and apolipoprotein B levels in the Framingham
47 48	526	Offspring Study. J Lipid Res.;35(5):779-92.
49	527	28. Tenk J, Mátrai P, Hegyi P, et al. Perceived stress correlates with visceral
50 51	528	obesity and lipid parameters of the metabolic syndrome: a systematic review
52 53	529	and meta-analysis. Psychoneuroendocrinology 2018;95:63–73.
54	530	29. Slopen N, Goodman E, Koenen KC, Kubzansky LD. Socioeconomic and
55 56	531	other social stressors and biomarkers of cardiometabolic risk in youth: a
57 58	532	systematic review of less studied risk factors. PLoS One. 2013;8(5):e64418.
59	533	30. Garcia CK, Mues G, Liao Y, Hyatt T, Patil N, Cohen JC, Hobbs HH.
60		

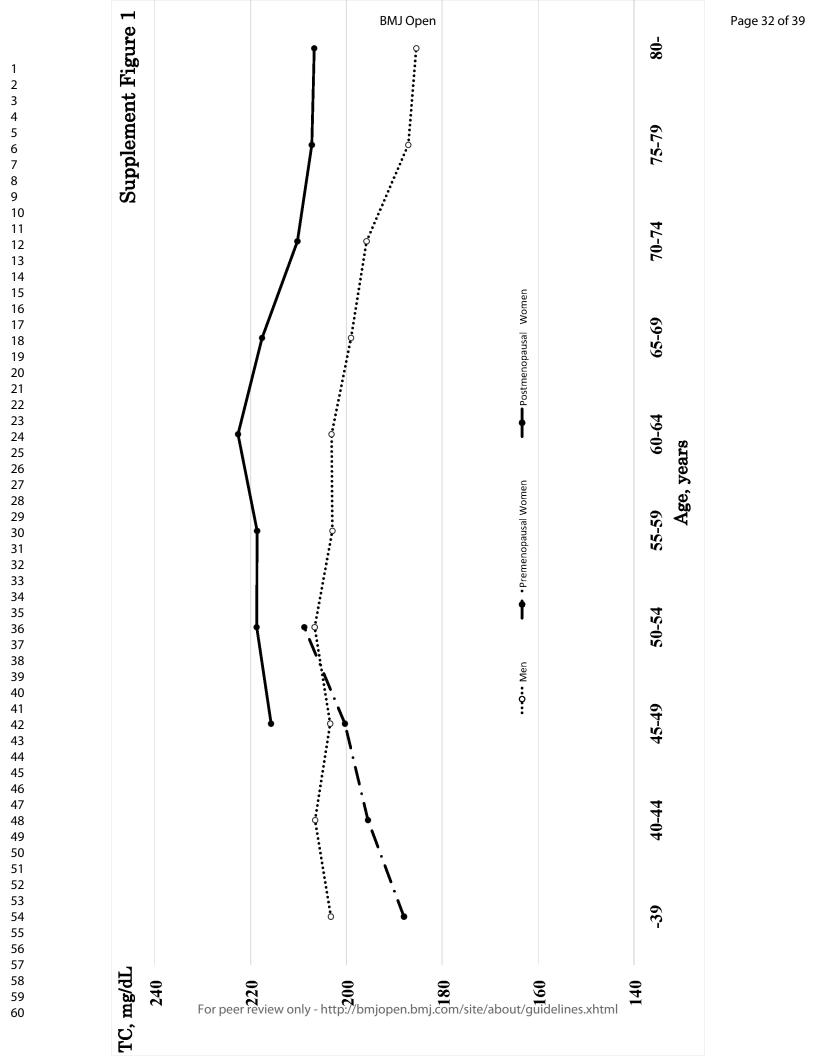
1 2 3 4		
5 6	534	Sequence diversity in genes of lipid metabolism. Genome Res.
7 8	535	2001;11(6):1043-52.
9 10	536	31. Viney NJ, van Capelleveen JC, Geary RS, et al. Antisense oligonucleotides
11	537	targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised,
12 13	538	double-blind, placebo-controlled, dose-ranging trials. Lancet.
14 15	539	2016;388(10057):2239-2253
16 17	540	
18		
19 20		
21 22		
23 24		
25		
26 27		
28 29		
30 31		
32		
33 34		
35 36		
37 38		
39		
40 41		
42 43		
44 45		
46		
47 48		
49 50		
51		
52 53		
54 55		
56 57		
58		
59 60		

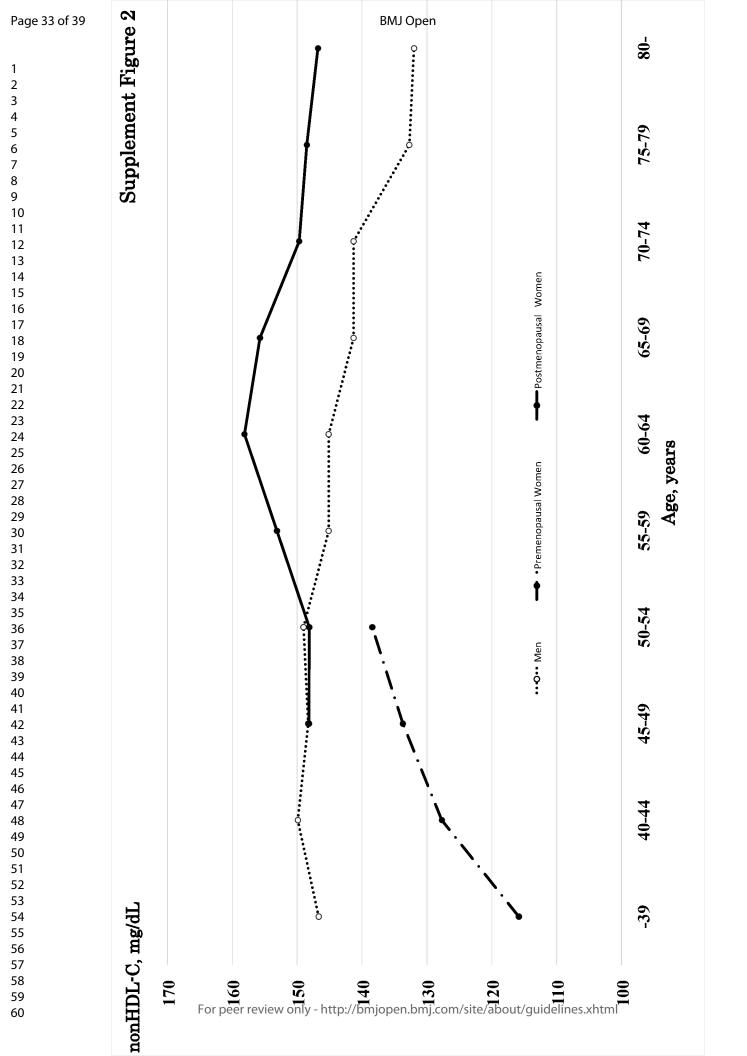
1 2		
3		
4 5		
6 7	541	FIGURE LEGENDS
8 9 10	542	Figure 1. Geometric mean and 95% confidence interval of sdLDL-C for age,
11 12	543	gender, and menopausal status
13 14 15	544	
15 16	545	Figure 2. Mean and 95% confidence interval of sdLDL-C/LDL-C ratio for age,
17 18	546	gender, and menopausal status
19	547	
20 21	548	Figure 3. Mean and 95% confidence interval of LDL-C for age, gender, and
22 23	549	menopausal status
24	550	
25 26	551	Supplementary Material
27 28	552	Supplementary Figure 1. Mean of total cholesterol for age, gender, and
29	553	menopausal status
30 31	554	
32 33	555	Supplementary Figure 2. Mean of non-high-density lipoprotein cholesterol for age,
34	556	gender, and menopausal status
35 36	557	
37 38	558	Supplementary Figure 3. Mean of total cholesterol / high-density lipoprotein
39	559	cholesterol ratio for age, gender, and menopausal status
40 41	560	
42 43	561	
44	562	Supplementary Figure 4. Geometric mean of triglycerides for age, gender, and
45 46	563	menopausal status
47 48	564	
49	565	Supplementary Figure 5. Mean of high-density lipoprotein cholesterol for age,
50 51	566	gender, and menopausal status
52 53	567	
54 55	568	Supplementary Figure 6. Geometric mean and 95% confidence interval of
56 57 58 59 60	569	sdLDL-C for age, gender, and menopausal status

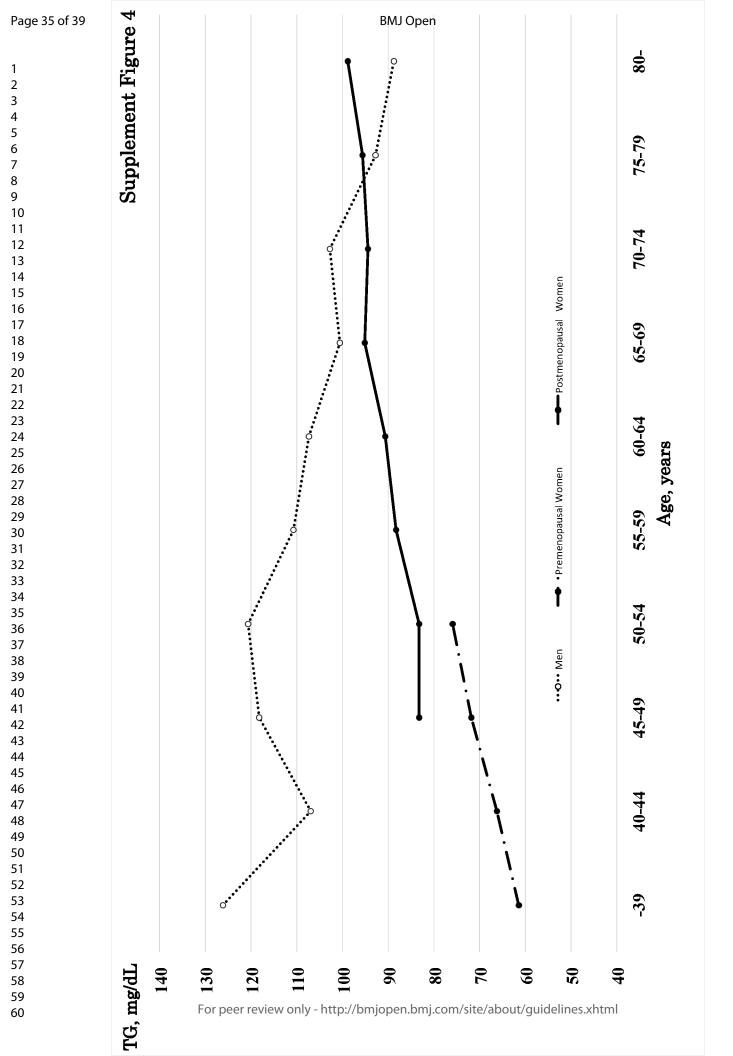

3 4		
5		
6 7	570	
8 9	571	Supplementary Figure 7. Mean and 95% confidence interval of sdLDL-C/LDL-C
10 11	572	ratio for age, gender, and menopausal status
12		
13 14		
15 16		
17 18		
19 20		
21 22		
23 24		
25 26		
27 28		
29		
30 31		
32 33		
34 35		
36 37		
38 39		
40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52		
53 54		
55 56		
57 58		
59 60		

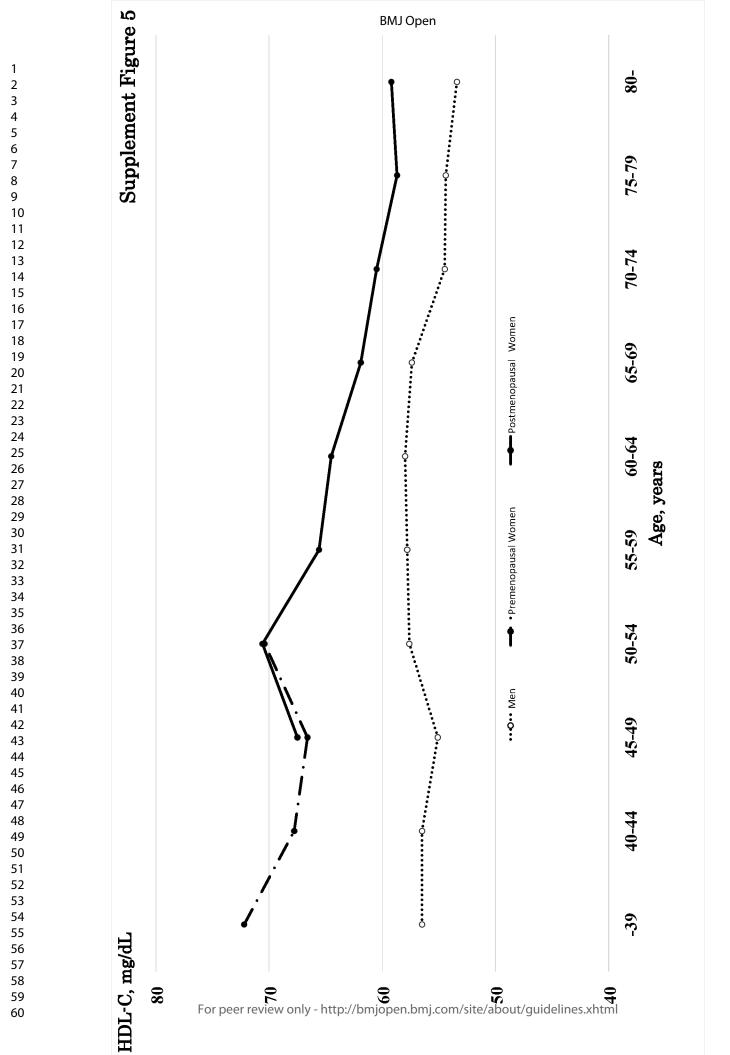

Geometric mean and 95% confidence interval of sdLDL-C for age, gender, and menopausal status

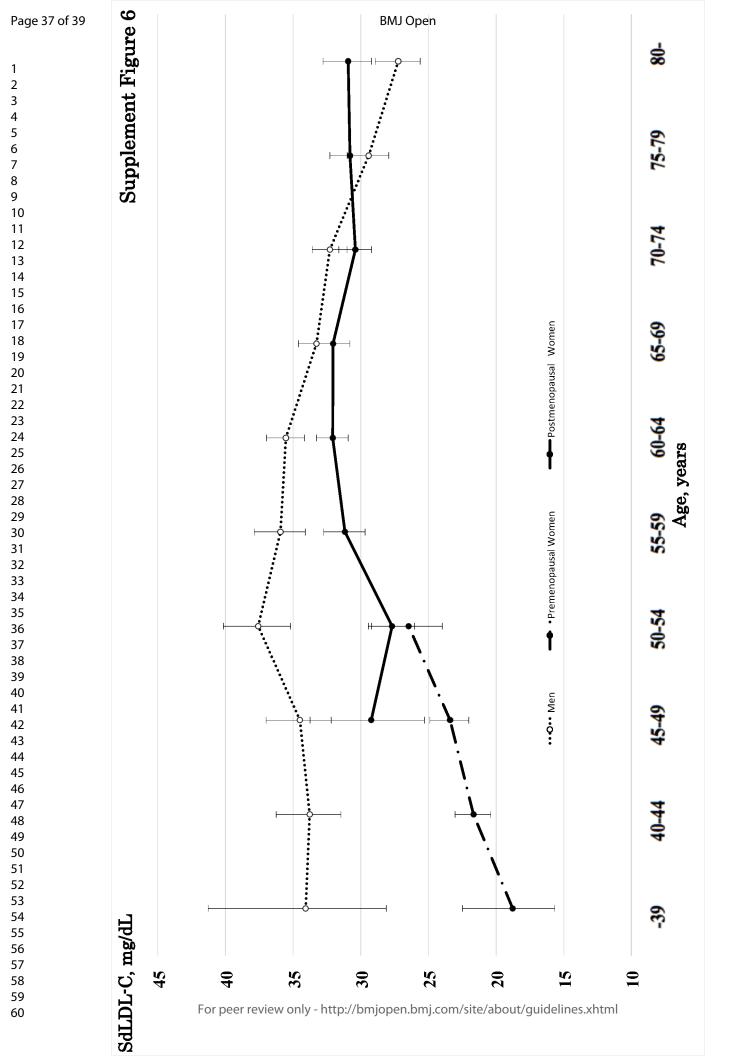
254x142mm (72 x 72 DPI)

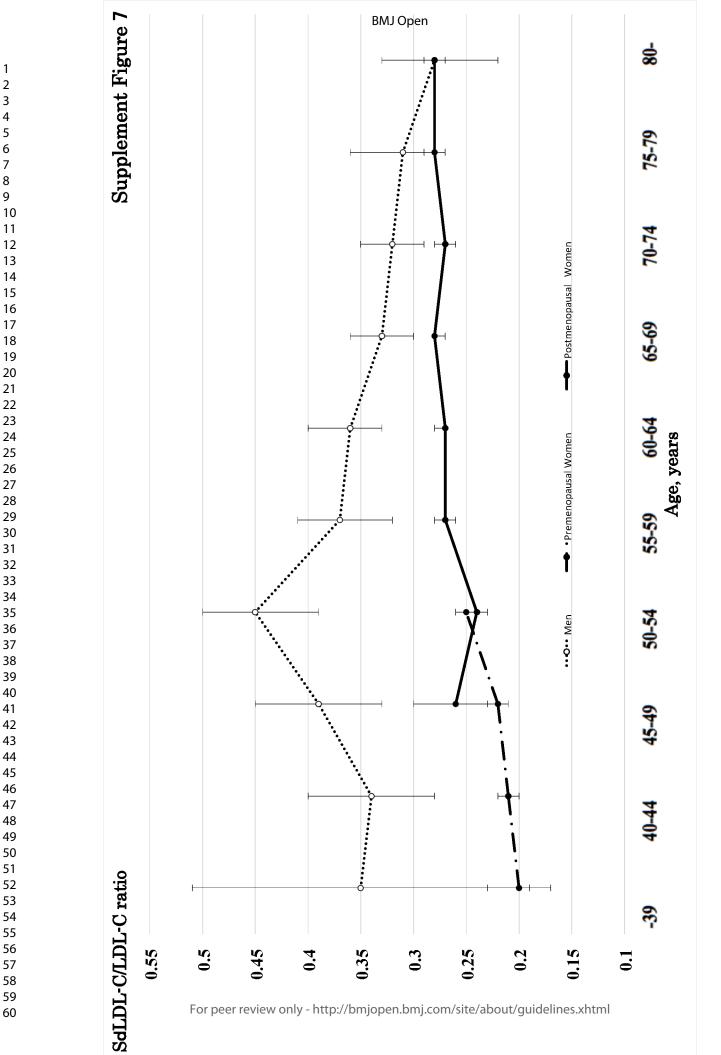

Mean and 95% confidence interval of sdLDL-C/LDL-C ratio for age, gender, and menopausal status


254x142mm (72 x 72 DPI)


Mean and 95% confidence interval of LDL-C for age, gender, and menopausal status


254x142mm (72 x 72 DPI)





Page 36 of 39

Page 38 of 39

 BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1, 3
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods		6	
Study design	4	Present key elements of study design early in the paper	1, 3, 6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	6
		(b) For matched studies, give matching criteria and number of exposed and unexposed	8
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6, 7
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	6
		(d) If applicable, explain how loss to follow-up was addressed	-
		(e) Describe any sensitivity analyses	-

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	6, 8
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	-
		(c) Consider use of a flow diagram	-
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8-10
		(b) Indicate number of participants with missing data for each variable of interest	-
		(c) Summarise follow-up time (eg, average and total amount)	-
Outcome data	15*	Report numbers of outcome events or summary measures over time	-
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	8-16
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	8-16
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9-16
Discussion			
Key results	18	Summarise key results with reference to study objectives	12-16
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	16-18
Generalisability	21	Discuss the generalisability (external validity) of the study results	18
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	20-21
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.