

Expanded View Figures

Figure EV1.

Figure EV1. MeRIP analyses show that MYC down-regulates m⁶A levels of mRNA.

- A Pie chart depicting the fraction of m^6A peaks in four transcript segments in P493-6 cells treated with Tet for 0 h or 72 h.
- B Sequence motif identified within m⁶A peaks by HOMER database.
- C Distribution of m⁶A sites along the length of mRNA transcripts.
- D Scatter plots showing the m⁶A enrichment in mRNA of high MYC and low MYC samples. m⁶A-containing mRNA with significantly increased and decreased peak enrichment is highlighted in red and green, respectively (chi-square test, P < 0.05).
- E IGV graph showing location of m⁶A peaks on representative genes.

Figure EV2. MYC and m⁶A down-regulate protein expression but not mRNA expression of SPI1 and PHF12.

- A, B Western blot analysis for protein levels of MYC, SPI1, and PHF12 in P493-6 cells (A) or Raji cells (B) that treated with the cycloleucine for 0, 24, 48, and 72 h. HPRT1 and β-actin serve as negative control and loading control, respectively. Data are representative of at least three independent experiments.
- C RT–qPCR analysis of the mRNA level of SPI1 and PHF12 in P493-6 cells treated with cycloleucine for 0, 24, 48, and 72 h. Data were presented as mean (±SD), n = 3 biological replicates.
- D RT-qPCR analysis of the $m^{6}A$ levels of MRGs (SPI1 and PHF12) in P493-6 cells treated with cycloleucine for 0 h or 24 h. *HPRT1* serves as negative control. Data are mean (\pm SD), n = 3 biological replicates. ***P < 0.001 relative to corresponding 0 h group (Student's *t*-test).
- E RT–qPCR analysis of the mRNA level of SPI1 and PHF12 in P493-6 cells treated with Tet for 0 h or 24 h. Data were presented as mean (±SD), n = 3 biological replicates (Student's t-test).
- F Western blot analysis for protein levels of MYC and MRGs (SPI1 and PHF12) in P493-6 cells treated with Tet, cycloleucine, or both. HPRT1 and β-actin serve as negative and loading controls, respectively. Data are representative of at least three independent experiments.
- G IGV showing the locations of m⁶A peaks on CDKN1A and CDKN2B.
- H RT–qPCR analysis of the mRNA levels of CDKN1A and CDKN2B in P493-6 cells treated with Tet for 0 h or 24 h; data were presented as mean (\pm SD), n = 3 biological replicates, *P < 0.05 relative to corresponding -Tet group (Student's t-test).

Source data are available online for this figure.

F

PHF12 HPRT1

SPI1

н

Figure EV2.

Figure EV3.

Figure EV3. MYC regulates demethylases ALKBH5 and FTO, and ALKBH5 inhibits the protein expression of SPI1 and PHF12.

- A, B Analyses of the co-expression of MYC and ALKBH5 (A) or MYC and FTO (B) in 78 lymphocyte cell lines from CCLE. Linregress P value for (A) is 4.87E-3 and for (B) is 2.44E-5.
- C Western blot analysis for protein levels of MYC, ALKBH5, and FTO in ten different human cell lines. β-actin serves as loading controls. Western blot data are representative of at least three independent experiments.
- D Analyses of ALKBH5 and FTO promotor in ENCODE transcription factor (TF) ChIP datasets (Data ref: Furey et al, 2011; Data ref: Snyder et al, 2011).
- E IGV graph showing location of MYC-binding peaks on ALKBH5 and FTO from published ChIP-seq datasets (Data ref: Furey *et al*, 2011; Data ref: Snyder *et al*, 2011). Red triangle indicates the binding peak.
- F ChIP experiment was performed in P493-6 cells using IgG or anti-MYC antibody. The occupancy of potential E-Box in ALKBH5 and FTO genes by MYC was determined by RT–qPCR. Control (CTR) primer sets were also included. Data were presented as mean (\pm SD), n = 3 biological replicates. **P < 0.01 as compared to corresponding IgG group (Student's t-test).
- G RT–qPCR analysis of the mRNA level of SPI1 and PHF12 in P493-6 cells that overexpressed EV, ALKBH5, or FTO and were then treated with Tet or not. RT–qPCR data were presented as mean (±SD), n = 3 biological replicates.
- H RT–qPCR analysis of the mRNA level of SPI1 and PHF12 in P493-6 cells that expressed NTC or ALKBH5 shRNAs and were then treated with Tet or not. RT–qPCR data were presented as mean (±SD), n = 3 biological replicates.
- I Western blot analysis for protein levels of CDKN1A and CDKN2B in Fig 2I and J samples that P493-6 cells expressing NTC or ALKBH5 shRNAs and were then treated with or without Tet or in Raji cells expressing NTC or ALKBH5 shRNAs with or without MYC knockdown.

D

Source data are available online for this figure.

С

Figure EV4.

Figure EV4. YTHDF3 does not regulate mRNA expression but promotes mRNA translation.

- A RT-qPCR analysis of the mRNA level of SPI1 and PHF12 in P493-6 cells that expressed NTC or YTHDF3 shRNAs and were then treated with Tet or not. Data were presented as mean (±SD), n = 3 biological replicates.
- B, C RT-qPCR assay for mRNA levels of SPI1 and PHF12 in P493-6 cells that expressed NTC, ALKBH5 shRNA, or YTHDF3 shRNA, or co-expressed ALKBH5 as well as YTHDF3 shRNAs. Data were presented as mean (\pm SD), n = 3 biological replicates.
- D Western blot analysis for protein levels in P493-6 cells that expressed NTC, or ALKBH5 shRNA, or YTHDF3 shRNA. HPRT1 and β-actin serve as negative and loading controls, respectively. Western blot data are representative of at least three independent experiments.

Source data are available online for this figure.

Figure EV5.

Figure EV5. The MYC-ALKBH5-m⁶A-SPI1/PHF12 axis is critical for cancer progression.

- A, B Trypan blue counting was used to analyze growth curves for P493-6 cells overexpressing ALKBH5 (A) and ALKBH5 shRNAs (B). **P < 0.01 and ***P < 0.001 as compared between indicated groups (mean \pm SD, n = 4 biological replicates, Student's t-test).
- C Trypan blue counting was used to analyze growth curves for EV- or MYC-expressing Raji cells that further infected with shALKBH5. **P < 0.01 and ***P < 0.001 as compared between indicated groups (mean \pm SD, n = 3 biological replicates, Student's t-test).
- D Trypan blue counting was used to analyze growth curves for P493-6 cells overexpressing MRGs (SPI1 or PHF12). ***P < 0.001 as compared between indicated groups (mean \pm SD, n = 3 biological replicates, Student's t-test).
- E, F Weight of tumors collected at the end of the experiment in Fig 4G (E) or in Fig 4I (F). Data are presented as mean (\pm SEM), n = 5 for each group. **P < 0.01 or ****P < 0.0001 as compared between indicated groups (Student's *t*-test).
- G Western blot analysis for protein levels of ALKBH5, SPI1, and PHF12 from xenograft tumors. β-actin serves as loading controls.
- H Cell growth curves for P493-6 cells that treated with different doses of IOX3. ***P < 0.001 as compared to between indicated groups (mean \pm SD, n = 3 biological replicates, Student's t-test).
- I Western blot analysis for protein levels of ALKBH5, SPI1, and PHF12 in P493-6 cells treated with the ALKBH5 inhibitor IOX3 for 0, 24, 48, and 72 h. β-actin serves as loading control. The Western blot data are representative of at least three independent experiments.
- J, K P493-6 cells were injected subcutaneously into nude mice (n = 5 for each group). Mice were received every other day either IOX3 or DMSO (5% DMSO/H₂O) by intragastric administration from 12 days postinjection (J). Tumor weights were measured at the end of the experiment (day 25) (K). Data are presented as mean (±SEM). *P < 0.05 and ***P < 0.001 as compared between indicated groups (Student's *t*-test).

Source data are available online for this figure.