
Supplement 1. Methods 

Subjects, Inclusion criteria: Inclusion criteria for patients were: RR or SP disease course, age 

18–65 years, and Expanded Disability Status Scale (EDSS) between 0 and 6.5. Patients with 

relapse or steroid treatment within 30 days before MRI were excluded. Participants were 

excluded if they were pregnant or had pre-existing medical conditions known to be associated 

with brain pathology. NCs were volunteers with a normal neurological examination and no 

history of neurologic disorders or psychiatric disorders. 

Segmentation, volumetry: As was described previously  [Hagemeier et al., 2018], anatomical DGM 

regions were segmented with FSL FIRST [Patenaude et al., 2011] on 3D T1-weighted images that 

were first inpainted to avoid T1-hypointensity misclassification [Gelineau-Morel et al., 2012]. 

DGM volumes were normalized using FMRIB’s cross-sectional software tool SIENAX-derived 

scaling factor [Smith et al., 2002]. Longitudinal whole-brain volume changes were assessed using 

SIENA [Smith et al., 2001], while specific tissue volume changes were calculated with SIENAX-

MTP [Dwyer et al., 2014]. T2-lesions were identified on T2-weighted/FLAIR images using a semi-

automated edge detection contouring and thresholding technique, as described previously 

[Zivadinov et al., 2001].  

QSM: We used the same reconstructed susceptibility maps as in our previous study [Hagemeier et 

al., 2018].  In brief, phase images were unwrapped with a best-path algorithm [Abdul-Rahman et 

al., 2007], background-field corrected with V-SHARP [Schweser et al., 2011; Wu et al., 2012], 

converted to magnetic susceptibility maps using the HEIDI algorithm [Schweser et al., 2012], and 

referenced to the whole brain.   



Conversion to iron concentration: We assumed the following linear tissue model for magnetic 

susceptibility that was used previously for relating iron concentrations to magnetic susceptibility 

[Langkammer et al., 2012]: 

𝜒 = 𝜒̂୊ୣ ∙ 𝑐୊ୣ + 𝜒୭୲୦ୣ୰, 

where cFe is the local tissue non-heme iron mass concentration (in mg/ml), 𝜒̂୊ୣ is a proportionality 

constant that depends on the effective magnetic moment of the iron complexes in the tissue (in 

ppm∙ml/mg) [Langkammer et al., 2012], and 𝜒୭୲୦ୣ୰ comprises all susceptibility contributions from 

the tissue matrix, including the shift-invariance of susceptibility maps obtained with QSM. Using 

this model, we converted magnetic susceptibility values to iron concentrations according to: 

𝑐୊ୣ =
𝜒 − 𝜒୭୲୦ୣ୰

𝜒̂୊ୣ
. 

The coefficients 𝜒̂୊ୣ and χother were determined from linear regression of the region and age-

dependent histochemical iron concentrations in the thalamus, caudate, putamen, and globus 

pallidus as reported by [Hallgren and Sourander, 1958] to the corresponding susceptibility values 

measured in our NCs (n=40). Hallgren and Sourander reported iron concentrations in mass 

fractions (mg per 100g tissue wet weight; mg/100g-ww). Here, we assumed a tissue density of 

1g/ml for the conversion from tissue wet-weight to volume. We emphasize that the conversion 

factor 𝜒̂୊ୣ serves only to arrive at a physically meaningful unit of the “iron content” metric (see 

below) but does not affect the statistical analyses and results.  

 

 

  



Supplement 2. Cross-sectional iron content of normal controls and patients with MS.  

Table 1 and Supplement Figure 1a summarize the calculated values of iron content in each DGM 

region studied cross-sectionally for NCs and MS patients. Table 2 and Supplement Figure 1b 

summarize the calculated values of iron content in each DGM region when comparing RR- and 

SPMS patients. Again, cross-sectional differences were found in the thalamus, with a significantly 

lower iron content observed in SPMS compared to RRMS patients, both at baseline (-23.7%, 

p=0.003) and follow-up (-20.9%, q=0.013). All other DGM structures, at either baseline or follow-

up, were highly similar between RRMS and SPMS, differing less than 4.9% (Figure 1b). 

In both healthy individuals and patients with MS, the highest iron concentration is typically 

found in the globus pallidus, with other regions showing substantially lower concentrations 

(putamen: 50% lower; caudate: 65% lower) [Hagemeier et al., 2018]. In contrast, iron content was 

the highest in the putamen, and all other regions showed substantially lower iron content. This 

observation is a result of the different volumes of the structures.  

Comparing the cross-sectional iron concentration results to iron content (Supplement 

Figure 2) reveals that DGM iron concentrations depend on disease status, with higher values in 

more advanced disease stages (MS > NC, SP > RR) in the caudate, putamen and globus pallidus. 

In these structures, volume reductions (atrophy) followed a similar trajectory [Hagemeier et al., 

2018]. When investigating iron content, however, a disease progression dependency could not be 

observed in caudate, putamen, and globus pallidus (Fig. 1). In the thalamus, MS patients had both 

lower iron concentration and content (Supplement Table 2), cementing the thalamus as a structure 

with substantial decreases in overall iron, as previously suggested [Bergsland et al., 2018; 

Burgetova et al., 2017; Hagemeier et al., 2018; Schweser et al., 2018; Zivadinov et al., 2018]. 

Furthermore, Hernández-Torres et al. recently studied iron content in MS patients with a similar 



methodology as employed in the present work (but based on R2* instead of QSM and using a cross-

sectional study design) and also reported lower iron content in the thalamus [Hernández‐Torres et 

al., 2019]. In terms of iron concentration, several other studies did not find differences in the 

thalamus [Al-Radaideh et al., 2013; Langkammer et al., 2013], or found higher thalamic magnetic 

susceptibility in MS [Rudko et al., 2014]. Discrepant results may be due to technical differences 

in the employed QSM techniques or due to demographic and clinical differences of the cohorts (as 

discussed in [Schweser et al., 2018]). In particular, the latter may lead to different findings because 

thalamic iron follows a peculiar non-linear aging trajectory in controls [Hallgren and Sourander, 

1958] with a reduction in iron concentration starting around 30-40 years of age.  

Taken together, our cross-sectional results support the theory of iron depletion in the 

thalamus. Considering that in MS the thalamus is one of the regions that is most affected by atrophy 

[Azevedo et al., 2018; Zivadinov et al., 2013], the fact that substantial reductions in iron content 

are still observed, suggests that the thalamus is especially susceptible to iron loss in middle-aged 

MS patients.  

 

  



Supplement Figure 1. 

 

Cross-sectional percent group difference of regional iron content at both baseline (black) and 

two-year follow-up (gray). (a) Difference between patients with multiple sclerosis (MS) and 

normal controls (NC) relative to the iron content in NCs (negative values mean less iron in 

patients). (b) Difference between secondary progressive (SP) MS and relapsing-remitting (RR) 

MS relative to RR (negative means less iron in SP). * unadjusted p<0.05. ** false discovery rate 

adjusted q<0.05. Error bars represent the 95% confidence interval of the change.  

 

  



Supplement Figure 2. 

 

Comparison of (a) baseline iron concentration (ppb) in multiple sclerosis patients (MS; gray) and 

normal controls (NC; black) see [Hagemeier et al., 2018], and (b) baseline iron content (mg) in 

patients (gray) and NC (black). 

 

  



Supplement Table 1. Clinical, demographic, and volumetric MRI data at baseline and change over follow-up. This table is mostly 

identical to Table 1 in our previous work [Hagemeier et al., 2018]. 

 Controls Multiple Sclerosis Relapsing MS Progressive 
MS 

p-value 
(NC v 
MS) 

p-value 
(RR v SP) 

N 40 120 98 22 NA NA 
Female, n (%) 24 (60%) 81 (67.5%) 69 (70.4%)  12 (54.5%) 0.387b 0.151b 
Age, years 43.7 ± 12.3 44.2 ± 10.2 42.0 ± 9.6 53.7 ± 7.2 0.819c <0.001c 
Baseline EDSS, median ± IQR NA 2.5 ± 1.5 – 4.0 2.5 ± 1.5 – 3.5 6.0 ± 3.5 – 6.5 NA <0.001d 
Follow-up EDSS, median ± IQR NA 3.0 ± 1.5 – 4.0 2.5 ± 1.5 – 3.5 6.0 ± 4.0 – 6.5 NA <0.001d 
Disease duration in years NA 12.8 ± 9.4 11.2 ± 8.4 19.7 ± 10.6 NA 0.002c 
Baseline relapses in the last year, median 
± IQR 

NA 0 ± 0 – 1 0 ± 0 – 1 0 ± 0 – 0 NA 0.041d 

Follow-up relapses in the last year, 
median ± IQR (sum) 

NA 0 ± 0 – 0 (29) 0 ± 0 – 0 0 ± 0 – 0 NA 0.310d 

Treated with DMT, n (%)† NA 103 (85.3%)   NA  
Follow-up time, years 1.9 ± 1.2 2.1 ± 1.11 2.0 ± 1.1 2.2 ± 1.1 0.516c 0.579c 
Baseline T2 lesion volume, ml 0.3 ± 0.7 13.9 ± 18.1 12.6 ± 17.9 19.4 ± 18.1 <0.001c* 0.157c* 
Follow-up T2 lesion volume, ml 0.7 ± 1.7 12.6 ± 14.8 11.6 ±14.6 17.4 ± 15.2 <0.001c* 0.157c* 
Whole brain volume, ml 1,532.0 ± 76.2 1,457.8 ± 91.4 1,471.8 ± 87.6 1,395.8 ± 83.2 <0.001c* <0.001c* 
Gray matter volume, ml 768.0 ± 49.2 743.6 ± 54.6 751.4 ± 52.5 708.9 ± 51.3 0.048c* <0.001c* 
White matter volume, ml 770.1 ± 43.8 723.7 ± 52.5 720.4 ± 50.2 686.9 ± 47.8 <0.001c* 0.017c* 
Lateral ventricle volume, ml 33.6 ± 16.2 48.1 ± 20.9 46.4 ± 22.1 55.7 ± 12.5 <0.001c* 0.145c* 
PBVC -0.71 (.82) -1.12 (1.16) -1.19 ±1.22 -0.80 ± 0.78 0.139c* 0.152c* 
PGMVC -1.29 (2.04) -1.45 (1.66) -1.54 ± 1.69 -1.00 ± 1.43 0.807c* 0.293c* 
PWMVC 0.29 (1.54) 0.50 (2.07) 0.46 ± 2.11 0.73 ± 1.89 0.764c* 0.703c* 
PVVC 3.74 (6.11) 5.12 (7.40) 1.95 ± 8.68 1.54 ± 4.48 0.535c* 0.784c* 

 

Abbreviations: NA; not applicable; NC = normal control; RR = relapsing-remitting; SP = secondary progressive; EDSS = Expanded 
Disability Status Scale; IQR = inter-quartile range; DMT = disease modifying therapy; PBVC = percent brain volume change, PVVC 
= percent ventricle volume change; PGMVC = percent gray matter volume change; PWMVC = percent white matter volume change. 
Results are based on baseline and percent change data and are presented as mean ± SD unless otherwise noted. Brain volumes were 
corrected for head size.  



† Patients were taking the following disease-modifying treatments: interferon beta: 40, natalizumab: 21, glatiramer acetate: 34, 
combination: 3, other: 5, no therapy: 17. 11 (9.2%) had a change in DMT from baseline to follow-up.  
a Patients not identified as RRMS were secondary progressive (SP). 
b Chi-squared test. 
c Independent student t-test. 
d Mann-Whitney U test 
* p-values were corrected using false discovery rate (q-values). 

 

 

  



Supplement Table 2. Comparison of significant main findings between our current work (iron content) and previous work 
(susceptibility and volume) [Hagemeier et al., 2018]. 

 

† [Hagemeier et al., 2018], Table 2 and Supplement Table 2 
‡ [Hagemeier et al., 2018], Supplement Table 1. Not investigated between RR and SPMS. 

 

 

  

 Cross-sectional Longitudinal 
 Iron 

Content 
Susceptibility† Volume‡ Iron Content Susceptibility† Volume‡ 

Thalamus MS < NC 
SP < RR 

MS < NC MS < NC MS: ↓ 
RR: ↓ 

 MS: ↓ 

Caudate  MS > NC MS < NC MS: ↓ 
 RR: ↓ 

 

NC: ↑ 
MS: ↑ 
RR: ↑ 

MS: ↓ 

Putamen  SP > RR MS < NC MS: ↓ RR: ↑ MS: ↓ 
Globus Pallidus  MS > NC  

 SP > RR 
MS < NC MS: ↓ 

 RR: ↓ 
 SP: ↓ 

 MS: ↓ 



Supplement Table 3. Associations of iron concentration, normalized structural volume, and iron content at baseline with baseline 
EDSS, change in EDSS over two years, and disease duration, respectively, within patients with MS. 

 

Note: Regression analysis models were adjusted for age and sex. β = standardized beta. Entries with p<0.05 printed in boldface. 

 

  

  Baseline iron concentration Baseline normalized volume Baseline iron content 

  Baseline  
EDSS 

Change in 
EDSS  

Disease 
 duration 

 

Baseline 
 EDSS 

Change in 
EDSS 

Disease 
 duration 

 

Baseline 
 EDSS 

Change in 
EDSS  

 

Disease  
duration 

 
  β p β p β p β p β p β p β p β p β p 

Thalamus -0.043 0.658 -0.257 0.006 -0.131 0.237 -0.330 0.001 -0.075 0.397 -0.379 0.001 -0.175 0.064 -0.197 0.025 -0.302 0.005 

Caudate 0.004 0.963 0.081 0.373 -0.161 0.142 -0.092 0.337 -0.185 0.045 -0.164 0.138 -0.103 0.287 0.022 0.802 -0.349 0.002 

Putamen -0.002 0.986 0.023 0.798 -0.236 0.032 -0.132 0.174 -0.185 0.046 -0.201 0.072 -0.098 0.321 -0.022 0.808 -0.39 0.0001 

Pallidus 0.035 0.721 0.208 0.027 -0.022 0.845 -0.203 0.039 -0.108 0.263 -0.153 0.189 -0.145 0.139 0.108 0.252 -0.177 0.123 



Supplement Table 4. Associations of changes over two years in iron concentration, normalized structural volume, and iron content 
with EDSS change and disease duration, respectively, within patients with MS. 

 

Note: Regression analysis models were adjusted for age and sex. β = standardized beta. Entries with p<0.05 printed in boldface. 

 

 

  

  Change in iron concentration Change in normalized volume Change in iron content 

  Baseline 
EDSS 

Change in 
EDSS  

Disease 
duration 

Baseline 
EDSS  

Change in 
EDSS  

Disease  
duration  

Baseline  
EDSS  

Change in 
EDSS  

Disease  
duration 

  β p β p β p β β Β p β p β p Β p β p 

Thalamus 
change 

-0.009 0.931 0.172 0.077 0.155 0.185 0.017 0.870 -0.209 0.032 0.105 0.369 -0.004 0.969 0.132 0.18 0.149 0.204 

Caudate 
change 

-0.074 0.462 0.038 0.695 -0.206 0.082 -0.75 0.457 0.016 0.871 0.012 0.919 -0.115 0.258 0.067 0.494 -0.19 0.11 

Putamen 
change 

-0.093 0.361 0.102 0.301 0.02 0.866 -0.073 0.462 -0.045 0.642 -0.063 0.581 -0.088 0.384 0.07 0.482 -0.043 0.718 

Pallidus 
change 

-0.027 0.794 0.027 0.786 -0.118 0.319 -0.142 0.161 0.064 0.515 0.126 0.288 -0.063 0.532 0.05 0.617 -0.031 0.794 
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