Supplementary Material

2	Viability of SARS-CoV-2 in river water and wastewater at different					
3	temperatures and solids content					
4	Leonardo Oliveira ^a , Andrés Felipe Torres-Franco ^b , Bruna Coelho Lopes ^b , Beatriz Senra Álvares da					
5	Silva Santos ^c , Erica Azevedo Costa ^c , Michelle S. Costa ^d , Marcus Tulius P. Reis ^e , Marília C. Melo ^f ,					
6	Rodrigo Bicalho ^g , Mauro Martins Teixeira ^{a*} , César R. Mota ^{b*}					
7						
8	^a Biochemistry and Immunology Department, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais Brazil					
5	initias Octais, Draza					
10	^b Sanitary and Environmental Engineering Department, Federal University of Minas Gerais (UFMG), Belo					
11	Horizonte, Minas Gerais, Brazil					
12	^c Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.					
13	^d Minas Gerais State Health Authority (SES)					
14	^e Sanitation Company for Minas Gerais (COPASA)					
15	^f Minas Gerais Institute for Water Management (IGAM)					
16	⁸ Regulatory Agency for Water Supply and Sewage Services of the State of Minas Gerais (ARSAE)					
17						
18	*Corresponding authors' email addresses: cesar@desa.ufmg.br and mmtex.ufmg@gmail.com					
19						

21	Supplementary Material						
22	1. Parameters of log-linear and nonlinear regressions for decay of SARS-CoV-2 in water						
23	matrices						
24	Table S.1 Model parameters estimated for the linear and nonlinear regressions for River Water (RW-						
25	24°C), Filtered River Water (RWF-24°C), River Water at 4°C (RW-4°C), Wastewater (WW-24°C),						
26	Filtered Wastewater (WWF-24°C) and Wastewater at 4°C (WW4°C)						

Model	Parameters		BIC	T90 (d)	T99 (d)		
River Water (RW-24°C)							
Log-linear	0- 10 d; m = -0.0153*; b= -0.3591	0.8017	67.0	2.17	4.02		
	$R^2 = 0.649$; F-value= 43.56*			(1.37-3.05)	(3.19-4.85)		
	Shapiro-wilk p<0.05; Skew.ratio -2.04						
Exp-nls	a= 0.9744*; b= 0.0646*	0.0559	-69.14	1.46	2.95		
Exp-biphasic	$a_1 = 0.6564^*; b_1 = 0.1177^*;$	0.0478	71.09	1.87	5.33		
	$a_2 = 0.3444; b_2 = 0.02765*$						
Weibull	Asym= 0.999; Drop= 1.0311*	0.0486	70.19	1.91	6.41		
	Lrc= 1.7577*; Pwr= -0.9808*						
Gompertz	Asym= 0.0122*; b ₂ = -4.39*; b ₃ = 0.981*	0.0490	-72.83	1.66	>360		
Filtered River Water (RWF-24°C)							
Log-linear	0- 10 d; m = -0.0135*; b= -0.0755	0.4525	39.58	2.89	5.45		
	$R^2 = 0.821$; F-value= 106.8*			(2.33-3.46)	(4.72-6.17)		
	Shapiro-wilk p<0.05; Skew.ratio -3.82						
Exp-nls	a= 0.9287*; b= 0.041*	0.0795	-50.15	2.22	4.56		
Exp-biphasic	a ₁ = 0.3837*; b ₁ = 0.2255*	0.0633	-55.9	2.87	6.36		
	$a_2 = 0.6163^*; b_2 = 0.0266^*$						
Weibull	Asym= 0.998; Drop= 1.102*	0.0665	-53.22	3.25	8.48		
	Lrc= 1.295*; Pwr= -0.6601*						
Gompertz	*No start parameters found						

- 28 Table S.1 Model parameters estimated for the linear and nonlinear regressions for River Water (RW-
- 29 24°C), Filtered River Water (RWF-24°C), River Water at 4°C (RW-4°C), Wastewater (WW-24°C),

Model	Parameters		BIC	T90 (d)	T99 (d)	
River Water at 4°C (RW-4°C)						
Log-linear	0- 36 d; m = -0.0065*; b= -0.0191 0.4049		37.69	5.83	10.72	
	R ² = 0.761; F-value= 83.91*			(4.89-9.03)	(9.03-12.41)	
	Shapiro-wilk p<0.05; Skew.ratio -5.73					
Exp-nls	a= 1.001*; b= 0.018*	0.0827	-48.02	5.25	10.41	
Exp-biphasic	$a_1 = 0.640^*; b_1 = 0.0399^*$		-56.80	7.83	20.7	
	$a_2 = 0.406^*$; $b_2 = 0.007^*$					
Weibull	Asym= 1.013; Drop= 1.105*	0.0636	-55.65	7.7	18.7	
	Lrc= 2.3969*; Pwr= -0.779*					
Gompertz	Gompertz Asym= 0.0387^* ; $b_2 = -3.28^*$; $b_3 = 0.992^*$		-51.66	6.95	>360	
Wastewater (WW-24°C)					
Log-linear	0- 5 d; m = -0.0348*; b= -0.0399		55.8	1.35	2.31	
	$R^2 = 0.791$; F-value= 76.72*			(0.92-1.77)	(1.93-2.69)	
	Shapiro-wilk p<0.05; Skew.ratio -1.00					
Exp-nls	a= 0.995*; b= 0.0825*	0.0767	-118	1.13	2.31	
Exp-biphasic	$a_1 = 0.8627^*; b_1 = 0.096^*$		-114.7	1.21	3.12	
	$a_2 = 0.138; b_2 = 0.0354*$					
Weibull	Asym= 0.997; Drop= 1.015*	0.0224	-111.8	1.17	4	
	Lrc= 2.258*; Pwr= -1.300*					
Gompertz	Gompertz Asym= 7.65E-05*; b ₂ = -9.47E00*; b ₃ = 9.90E-01*		-117.7	1.21	2.91	

30 Filtered Wastewater (WWF-24°C) and Wastewater at 4°C (WW4°C)

31

- 33 Table S.1 Model parameters estimated for the linear and nonlinear regressions for River Water (RW-
- 34 24°C), Filtered River Water (RWF-24°C), River Water at 4°C (RW-4°C), Wastewater (WW-24°C),

Parameters		BIC	T90 (d)	T99 (d)		
Filtered Wastewater (WWF-24°C)						
0- 5 d; m = -0.0334*; b= 0.1503	0.6959	53.5	1.57	2.57		
$R^2 = 0.796$; F-value= 79.43*			(1.17-1.97)	(2.19-2.95)		
Shapiro-wilk p<0.05; Skew.ratio -1.51						
a= 1.071*; b= 0.054*	0.0827	-52.1	1.46	2.95		
*No start parameters found	-	-	-	-		
Asym= 0.999; Drop= 1.010*	0.052	-66.52	1.54	4.5		
Lrc= 3.796*; Pwr= -1.636*						
*No start parameters found	-	-	-	-		
2 4°C (WW-4°C)						
0- 36 d; m = -0.008*; b= -0.08	0.5094	50.08	4.67	8.6		
$R^2 = 0.752$; F-value= 80.77*			(3.72-5.61)	(7.26-9.93)		
Shapiro-wilk p<0.05; Skew.ratio -5.05						
a= 0.9344*; b= 0.027*	0.0867	-49.37	3.33	6.71		
$a_{l}{=}\;0.6792^{*};b_{l}{=}\;0.0712^{*}$	0.0622	-56.79	5.79	17.1		
$a_2 = 0.3237*; b_2 = 0.0084*$						
Asym= 1.001; Drop= 1.071*	0.0619	-57.11	5.5	17.5		
Lrc= 1.618*; Pwr= -0.6911*						
Asym= 0.058*; b ₂ = -2.815*;	0.0679	-55.42	4.54	>360		
b ₃ = 0.9848*						
	Parameters ewater (WWF-24°C) $0-5 d; m = -0.0334^*; b= 0.1503$ $R^2 = 0.796; F-value = 79.43^*$ Shapiro-wilk p<0.05; Skew.ratio -1.51	ParametersRMSEewater (WWF-24°C) $0.5 d; m = -0.0334^*; b = 0.1503$ 0.6959 $R^2 = 0.796; F-value = 79.43^*$ 0.6959 $R^2 = 0.796; F-value = 79.43^*$ 0.6959 Shapiro-wilk p< $0.05;$ Skew.ratio -1.51 $a = 1.071^*; b = 0.054^*$ 0.0827 *No start parameters found $-$ Asyme 0.999; Drop= 1.010^* 0.052 Lrc= $3.796^*; Pwr = -1.636^*$ $*$ *No start parameters found $ e^{4}$ C (WW-4°C) 0.5094 $0.36 d; m = -0.008^*; b = -0.08$ 0.5094 $R^2 = 0.752; F-value = 80.77^*$ 0.0867 Shapiro-wilk p< $0.05;$ Skew.ratio -5.05 $a = 0.9344^*; b = 0.027^*$ $a_2 = 0.3237^*; b_2 = 0.0084^*$ 0.0619 Lrc= $1.618^*; Pwr = -0.6911^*$ 0.0679 $b_3 = 0.9848^*$ 0.0679	ParametersRMSEBICewater (WWF-24°C) 0.6959 53.5 $0.5 d; m = -0.0334^*; b= 0.1503$ 0.6959 53.5 $R^2 = 0.796; F-value = 79.43^*$ 0.6959 53.5 Shapiro-wilk p<0.05; Skew.ratio -1.51	ParametersRMSEBIC T_{90} (d)ewater (WWF-24°C)0.695953.51.57 $R^2 = 0.796;$ F-value= 79.43*0.695953.51.57 $R^2 = 0.796;$ F-value= 79.43*0.0827-52.11.46*No start parameters foundAsyme 0.999; Drop= 1.010*0.052-66.521.54Lrc= 3.796*; Pwr= -1.636**No start parameters found4°C (WW-4°C)0 - 36 d; m = -0.008*; b= -0.080.509450.084.67 $R^2 = 0.752;$ F-value= 80.77*(3.72-5.61)Shapiro-wilk p<0.05; Skew.ratio -5.05		

35 Filtered Wastewater (WWF-24°C) and Wastewater at 4°C (WW4°C)

- 36
- 37

2. Parameters of log-linear and nonlinear regressions for decay of SARS-CoV-2 in water 40 matrices

Figure S1 Linear model fit on Log-transformed data of virus survival in River Water (RW-24°C) 42 assessed by graphs of (a) Residuals Vs Fitted values (b) Normal Q-Q plot; (c) Scale Location and 43 (d) Outliers identification by Leverage and Cook Distance 44

Figure S2. Linear model fit on Log-transformed data of virus survival in Filtered River Water
(RWF-24°C) assessed by graphs of (a) Residuals Vs Fitted values (b) Normal Q-Q plot; (c) Scale
Location and (d) Outliers identification by Leverage and Cook Distance

Figure S3. Linear model fit on Log-transformed data of virus survival in River Water at 4°C (RW4°C) assessed by graphs of (a) Residuals Vs Fitted values (b) Normal Q-Q plot; (c) Scale Location
and (d) Outliers identification by Leverage and Cook Distance

Figure S4. Linear model fit on Log-transformed data of virus survival in Wastewater (WW-24°C)
assessed by graphs of (a) Residuals Vs Fitted values (b) Normal Q-Q plot; (c) Scale Location and
(d) Outliers identification by Leverage and Cook Distance

62 Figure S5. Linear model fit on Log-transformed data of virus survival in Filtered Wastewater

63 (WWF-24°C) assessed by graphs of (a) Residuals Vs Fitted values (b) Normal Q-Q plot; (c) Scale

64 Location and (d) Outliers identification by Leverage and Cook Distance

66

Figure S6. Linear model fit on Log-transformed data of virus survival in Wastewater at 4°C (WW4°C) assessed by graphs of (a) Residuals Vs Fitted values (b) Normal Q-Q plot; (c) Scale Location
and (d) Outliers identification by Leverage and Cook Distance

70

71 **3.** Estimation of Arrhenius equation's parameters o

72 Arrhenius equation: The effect of temperature on the inactivation rate was modelled using the

73 Arrhenius equation as presented in eq S.1

74
$$\operatorname{Ln}(\mathbf{k}) = \left(\frac{E_a}{R}\right) \left(\frac{1}{T}\right) + \ln(\mathbf{A})$$

75 Where k is the first-order decay constant (1/min), E_a in the energy of activation of the decay

- reaction, T is the temperature in Kelvin, R is the gas constant (8.31J/(mol k)) and ln(A) is the
- intercept in 1/min. E_a was determined from the slopes in Figure S.7

79 Figure S7. Arrhenius equation solutions for river water (RW) and wastewater (WW) calculated

- 80 from first-decay constants at 24 $^{\circ}$ C and 4 $^{\circ}$ C.
- 81

Spearman correlations between physicochemical composition and Weibull-estimated T₉₀ and T₉₉ values

- 84
- **Table S.2** Spearman correlations between physicochemical composition and Weibull-estimated T₉₀

86 and T₉₉ values

	рН	Turbidity	Ammonia-N	COD	T ₉₀	T99
рН		0.33333	0.5	0.16667	0.16667	0.16667
Turbidity	0.94281		0.66667	0.33333	0.33333	0.33333
Ammonia-N	0.63246	0.44721		0.33333	0.33333	0.33333
COD	0.94868	0.89443	0.8		0.083333	0.083333
T ₉₀	-0.94868	-0.89443	-0.8	-1		0.083333
T ₉₉	-0.94868	-0.89443	-0.8	-1	1	