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How do fluctuations in ongoing brain

activity interact with cognitive functions?

In this study, van Kempen et al. show that

fluctuations in neural excitability are

coordinated between visual areas with

retinotopic precision. Top-down

attention drives interareal coordination

along the reverse cortical hierarchy,

predicting better behavioral performance

with increased coordination.
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SUMMARY
Spontaneous fluctuations in cortical excitability influence sensory processing and behavior. These fluctua-
tions, long thought to reflect global changes in cortical state, were recently found to be modulated locally
within a retinotopic map during spatially selective attention. We report that periods of vigorous (On) and faint
(Off) spiking activity, the signature of cortical state fluctuations, are coordinated across brain areas with ret-
inotopic precision. Top-down attention enhanced interareal local state coordination, traversing along the
reverse cortical hierarchy. The extent of local state coordination between areas was predictive of behavioral
performance. Our results show that cortical state dynamics are shared across brain regions, modulated by
cognitive demands and relevant for behavior.
INTRODUCTION

Cortical activity is not solely determined by external inputs but

reflects ongoing fluctuations in neural excitability referred to as

cortical state (Harris and Thiele, 2011; Kohn et al., 2009). Endog-

enous variability in cortical state shapes sensory responses and

influences behavioral performance (Arieli et al., 1996; Gutnisky

et al., 2017; McGinley et al., 2015a; Renart and Machens,

2014; Schölvinck et al., 2015). Although these fluctuations

were long thought to be a global phenomenon that influences ac-

tivity throughout the cortex (Harris and Thiele, 2011; Lee and

Dan, 2012), recent evidence has revealed that signatures of

cortical state are modulated locally within the retinotopic map

in macaque mid-level visuo-cortical area V4 during selective

attention (Engel et al., 2016).

Cortical state fluctuations manifest in periods of vigorous (On)

and faint (Off) spiking activity occurring synchronously across

cortical laminae. Spatially selective attention directed toward

the receptive fields (RFs) of the neural population modulates

On-Off dynamics by increasing the duration of On episodes

(Engel et al., 2016). Thus, cognitive demands that selectively

affect targeted retinotopic locations can modulate local signa-

tures of global cortical state fluctuations. However, perception

and cognition depend on the activity of many areas spanning

the cortical hierarchy, which begs the question of whether

cortical-state dynamics are coordinated across different brain

regions during attention, whether this coordination progresses

in a top-down or bottom-up manner, and whether it is relevant

for behavior.
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To investigate this, we recorded simultaneous activity from

multiple brain regions spanning the cortical hierarchy. We

discovered that the coordination of cortical state is retinotopi-

cally precise and progresses in a reverse hierarchical manner

during selective attention. Enhanced interareal coordination of

cortical state was moreover predictive of improved behavioral

performance. These results show that temporally and spatially

precise fluctuations in excitability are coordinated across net-

works of distributed areas across the cortical mantle and modu-

lated by cognitive demands to serve behavioral goals.

RESULTS

We recorded simultaneously from V1 and V4 using 16-contact

laminar electrodes while 3 rhesus macaques performed a

feature-based spatial attention task (Figure 1A). Electrodes

were inserted perpendicular to the cortical surface on a daily ba-

sis such that the RFs overlapped both across all channels within

each area and between the two areas (Figures 1B and 1C). We

characterized On-Off dynamics in each area individually by

fitting a Hidden Markov Model (HMM) to the spike counts (10-

ms bins) of multiunit activity (MUA) across included channels

(Figure 1D; STAR methods). In line with previous reports for V4

(Engel et al., 2016), we found that a 2-phase model was the

most parsimonious model for the majority of recordings (V1: 63

of 76 recordings [82.9%], V4: 72 of 78 recordings [92.3%], V1

and V4: 55 of 71 recordings [77.5%]; Figures S1A–S1D).

During these recordings, On-Off dynamics explained on

average approximately half of the maximal explainable variance
lished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. On-Off dynamics in V1 and V4 are modulated during selective attention

(A) Behavioral paradigm. The monkey held a lever to initiate the trial. Thereafter a central fixation spot was turned on. Upon fixation, 3 colored gratings appeared;

onewas presented inside the receptive fields (RFs) of the V1 neurons. After a variable delay, a cuematching one of the grating colors surrounded the fixation spot,

indicating which grating was behaviorally relevant (target). In pseudorandom order, the stimuli decreased in luminance (dimmed). Upon dimming of the target, the

monkey had to release the lever.

(B) Average RF center locations (across channels) for each recording, separately for each subject (M1–M3) and area.

(C) RF separation between V1 and V4 plotted against their overlap, expressed as the proportion of the V1 RF. The histograms along the top (right) indicate the

distribution of RF separation (overlap) across all of the recordings.

(D) Raster plot of HMM fit to population activity (MUA) in V1 and V4. Simultaneously recordedmultiunit spiking activity on 16-contact laminar electrodes in V1 and

V4 for 15 example trials, aligned to stimulus (left) and cue onset (center and right). Each trial shows across laminar activity in V1 (bottom) and V4 (top), as raster

plots (left 2 columns) color coded according to HMM estimation of On and Off phases (right). Center and right columns depict the same activity. The HMMwas fit

from 400 ms after cue onset to 30 ms after the first dimming event. Cue onset and first dimming are indicated for each trial by blue and red vertical bars,

respectively.

(E) Attention increases firing rates during Off and On phases, both in V1 and V4.

(F) Attention increases the duration of On episodes, both in V1 and V4, whereas it increases the duration of Off episodes only in V1.

Statistics: two-sided Wilcoxon signed rank test.

See also Figures S1–S6.
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(R2
max; STAR methods) for both MUA as well as single-unit (SU)

activity and both during fixation without visual stimulation as

well as stimulus presentation, although R2 was slightly higher

during stimulus presentation (Figure S3). On-Off dynamics

occurred without any obvious periodicity (Figure S1E), support-

ing the notion that On-Off dynamics are not the product of oscil-

latory activity but occur stochastically. In addition, On-Off transi-

tions were phase locked to low-frequency fluctuations in local

field potentials (LFPs), and the On-Off transitions in spike rate

preceded changes in the LFP polarity (Figure S2). Furthermore,

although the characterization of cortical-state dynamics with

HMMs was better using population activity with high firing rates,

it was not dependent on the specific MUA extraction parame-

ters. We found highly similar results using a different MUA defini-

tion (20 Hz spontaneous activity) that resulted in much lower

firing rates (Figure S4). Thus, in addition to V4 (Engel et al.,

2016), On-Off dynamics also occur in V1, demonstrating that

these dynamics are a general feature across multiple regions

along the visuo-cortical hierarchy.

On-Off dynamics are modulated during selective
attention
When attention was directed toward the RFs under study, firing

rates were higher during both Off and On epochs in both areas

(two-sided Wilcoxon signed rank test; V1: Off p = 10�156, On

p = 10�83, V4: Off p = 10�175, On p = 10�96) (Figure 1E). In addi-

tion, On epoch durations increased in both V1 and V4 (two-sided

Wilcoxon signed rank test; V1 p = 10�10, V4 p = 10�8) and Off

epoch durations increased in V1 but not V4 (two-sided Wilcoxon

signed rank test; V1: p = 10�6, V4 p = 0.93) (Figure 1F). Critically,

when attention was directed toward the RFs, more time was

spent in an On phase (Figure S5A). Also, in line with the increased

On epoch duration (and consistent with the HMM assumptions),

transitions to an On phase were more likely during attention (Fig-

ure S5B). The attentional modulation of On-Off dynamics could

not be explained by firing rate differences across attention con-

ditions (Figures S5C–S5F) or microsaccades (Figure S6) andwas

furthermore independent of task timings (e.g., a non-flat hazard

rate for stimulus dimming) as the probability of phase transitions

over time did not systematically differ across attention condi-

tions (Figure S5G). Thus, spatially selective attention modulated

On-Off dynamics in a retinotopically precise manner in both V1

and V4 by increasing the duration of On epochs as well as the

probability of being in an On phase.

Interareal coordination of On-Off dynamics
We next examined whether these spontaneous transitions were

coordinated across visual areas. We computed cross-correla-

tions between the V1 and V4 time series of On-Off phases (as

estimated by the HMMs) during fixation (before stimulus and

attention cue onset) and during directed attention (after cue

onset, across attention conditions). During fixation, V1 and V4

transitions were coordinated but without either area leading/lag-

ging behind the other (two-sided Wilcoxon signed rank test; p =

0.12) (Figure 2A). During attention, the coordination between V1

and V4 was enhanced, whereby On-Off transitions more often

occurred in V4 first, before they were followed in V1, as evident

from the skew toward negative values of the V4 relative to V1
896 Neuron 109, 894–904, March 3, 2021
transition times (two-sided Wilcoxon signed rank test; p <

10�5) (Figure 2A). The cross-correlation strength and skew

were independent of microsaccades (Figure S6). The strength

was inversely related to both the overlap (Pearson correlation,

r = 0.28, p = 0.041) and the separation between V1 and V4 RFs

(Pearson correlation, r = �0.36, p = 0.008) (Figure 2B). Thus,

the strength of On-Off dynamics coordination between visual

areas is coupled to their retinotopic alignment.

To further characterize this interareal coordination, we

computed average firing rates in V1 aligned to On-Off transition

times in V4 and vice versa. In linewith transitions being driven in a

top-down manner, V1 firing rate changes followed V4 transitions

whereas V4 firing rate changes preceded V1 transitions (Fig-

ure 2C). Differences in transition characteristics across V1 and

V4 were not due to rate disparities across these areas, as neither

single-unit firing rates (two-sided Wilcoxon rank-sum test, p =

0.38) nor variance explained by the HMM (two-sided Wilcoxon

rank-sum test, p = 0.25) differed between V1 and V4.

We also analyzed spiking activity simultaneously recorded

with 16-contact linear electrodes inserted perpendicular to

layers in V4 and tangential to layers in the frontal eye field

(FEF) (or with single electrodes in FEF in some sessions) from

two monkeys performing a selective attention task (V4 data re-

ported previously; Engel et al., 2016). This analysis revealed

that changes in FEF firing rates precede On-Off transitions in

V4 (Figure 2D). These results suggest that On-Off transitions tra-

verse from higher to lower areas along the visual hierarchy during

selective attention.

To investigate the relationship between V1 and V4On-Off tran-

sitions more closely, we fit a 4-state HMM to V1 and V4 data

simultaneously (HMMV1–V4), with the 4 HMM states defined as

(state 1) V1off–V4off, (state 2) V1on–V4off, (state 3) V1off–V4on
and (state 4) V1on–V4on (Figure 3A). This model allowed us to

investigate two specific scenarios (Figure 3B). In the first sce-

nario (yellow), we asked: from a situation in which both areas

are in an Off phase (state 1), is it more likely for V1 (state 2) or

V4 (state 3) to transition to an On phase first? The second sce-

nario (purple) addresses a related question: from a situation in

which both areas are in an On phase (state 4), is it more likely

for V1 (state 3) or V4 (state 2) to transition to an Off state first?

The transition probabilities (Figures 3C and 3D) revealed that

when both areas were in an Off phase, it was more likely for V4

to transition to an On phase first (two-sided Wilcoxon signed

rank test; p < 10�3). Likewise, if both areas were in an On phase,

it was more likely for V4 to transition to an Off phase first (two-

sided Wilcoxon signed rank test; p < 10�3). Thus, when both

areas are in the same phase, it is more likely for V4 to transition

away from this phase first. This finding was, however, not spe-

cific to the attend RF condition, as we found similar results for

each individual attention condition (attend RF and attend

away), as well as during fixation (data not shown). Selective

attention directed toward the RF, however, modulated the tran-

sition probabilities from the yellow scenario. Specifically, it

decreased the probability of transitioning from state 1 to state

2, and increased the probability of transitioning from state 1 to

state 3 (two-sided Wilcoxon signed rank test; p < 10�3) (Figures

3E and 3F). Selective attention directed toward the RF thus spe-

cifically increases the retinotopically precise, top-down drive of



Figure 2. Interareal coordination of cortical state

(A) Cross-correlation between time series of On-Off phases in V1 and V4 relative to V1 phase during fixation (left) and after cue onset (right). Insets show the area

under the cross-correlation curve for times smaller and larger than zero. The dashed gray line depicts the shuffle predictor.

(B) RF separation plotted against the area under the cross-correlation curve during attention (from the right panel of A). The line indicates the standardized major

axis regression fit.

(C) Spiking activity in one area aligned to state transitions in the other area, averaged across channels and recordings. Only epochs without transitions preceding

or following the alignment transition within 100mswere included. Thick green and pink lines indicate the times the firing ratewas higher (green) or lower (pink) than

the average rate (false discovery rate [FDR] corrected, one-sided Wilcoxon signed rank test). Along the bottom are the histograms of the crossing point of 2

straight lines fit (least-squares) to the transition-aligned multiunit firing rate.

(D) Conventions as in (C), but from a different dataset in which activity was recorded simultaneously from V4 and FEF.

Statistics: two-sided Wilcoxon signed rank test (A, C, and D), Pearson correlation (B). Data are represented as means ± SEMs across channels.

See also Figure S6.
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transitions from an Off to an On phase and coordinates these

transitions between areas.

Finally, this model revealed that, althoughOn-Off phases/tran-

sitions are correlated, each area spends a substantial fraction of

time in opposite phases (Figure 3G). Selective attention

decreased the time spent in state 1 whereas it increased the

time spent in state 3 and state 4, i.e., the states where V4 was

in an On phase (two-sided Wilcoxon signed rank test; state

1 p < 10�4, state 2 p = 0.61, state 3 p < 10�2, state 4 p < 10�3)

(Figure 3H). The increased On episode duration with attention to-

ward the RF found for V1 (Figure 1F) was thus driven by the

increased fraction of time spent in state 4, where V1 and V4

were coordinated, whereas the increased On episode duration

within V4 was due to an increase in time spent across state 3

and state 4.

Spectral signatures of On-Off dynamics
We next investigated the relationship between On-Off dynamics

andmeasures of cortical (de)synchronization using the bipolar re-

referenced LFP. During On phases in either V1 or V4, low-fre-
quency (<~20 Hz) LFP power was suppressed and high-fre-

quency (>~20 Hz) power was increased, both in V1 and V4 (Fig-

ures 4A–4D). However, this desynchronization was not restricted

to coordination within areas, but is sensitive to state transitions

across areas. Specifically, LFP power spectra in both areas var-

ied across the four states of HMMV1–V4 (Figures 4E and 4F). To

demonstrate this, we investigated the difference in power

spectra across states in which the On-Off phase within an area

remained constant but differed in the other area. For example,

we investigated the V1 LFP power spectra across states 1 and

3, wherein V1 was in an Off phase during both states, but V4

was either Off or On. This analysis revealed that the LFP power

in V1 is modulated by V4 On-Off phase bidirectionally. If V1

was in either an On or an Off phase, a transition to an On phase

in V4 increased V1 high-frequency power. A transition to an On

phase in V1, however, only affected V4 high-frequency power

when V4 was in an Off phase. When V4 was in an On phase,

V1 phase did not affect high-frequency dynamics in V4. Thus,

V4 phase influenced V1 LFP regardless of V1 phase, whereas

V1 phase affected high-frequency dynamics in V4 only during
Neuron 109, 894–904, March 3, 2021 897



Figure 3. HMM with 4 states fit simultaneously to V1 and V4 data

(A) Example trial with the HMM state-trajectory (bottom) and across-laminar MUA raster plot for V1 (center) and V4 (top).

(B) Schematic describing scenarios for testing 2 questions: (1, left yellow box) from a state in which both V1 and V4 are Off, is it more likely for V1 or V4 to transition

to the On phase first? (2, right purple box) From a state in which both V1 and V4 are On, is it more likely for V1 or V4 to transition to the Off phase first?

(C) HMM transition probability matrix, indicating the probability of staying in a state (diagonal) or transitioning from one state to another. Highlighted are scenarios

set out in (B).

(D) Transition probabilities indicated in (B) and (C).

(E) Attentional influence on state-transition probabilities: the difference transition matrix (attend RF–attend away) is shown.

(F) Attentional influence (attend RF–attend away) on the difference between state transition probabilities (state 3–state 2) for each of the 2 scenarios indicated in

(B)–(D). Selective attention increases the difference between the transition probabilities for states 2 and 3 for the yellow, but not the purple scenario.

(G) The fraction of time spent in each of the 4 states.

(H) The difference in time spent in each of the 4 states when attention is directed toward or away from the RF (attend RF–attend away).

Statistics: two-sided Wilcoxon signed rank test (FDR corrected); data are represented as means ± SEMs across recordings; significance levels *p < 0.05, **p <

0.01, and ***p < 0.001.
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Off phases in V4. As firing rates of single units do not differ be-

tween V1 and V4 (two-sided Wilcoxon signed rank test; p =

0.38), these results cannot be explained by rate disparities across

areas.

Thus, On phases are accompanied by a more desynchronized

state, even if the area showing the desynchronization is itself not

in an On (spiking) phase. Furthermore, in addition to state transi-

tions and rate changes, as V1 LFP power is driven more by V4

state than vice versa, On-Off dynamics related high-frequency

spectral changes also seem to be driven in a top-down manner

during attention.

On-Off dynamics relate to global network state
In addition to selective attention, On-Off dynamics were linked to

global arousal levels, as measured by pupil diameter (Aston-
898 Neuron 109, 894–904, March 3, 2021
Jones and Cohen, 2005; McGinley et al., 2015a, 2015b; Reimer

et al., 2014; Vinck et al., 2015). For each area individually, On

epoch durations were longer on trials with larger baseline pupil

diameter (Figures 5A–5C), in line with previous results (Engel

et al., 2016). Furthermore, pupil diameter was predictive of On-

Off dynamics coordination. Larger baseline pupil diameter was

predictive of shorter epoch durations for HMMV1–V4 state 1 (in

which both areas were Off) and longer state 4 epoch durations

(in which both areaswereOn) (Figure 5D). Central arousal, in addi-

tion to focused attention, thus specifically influenced epoch dura-

tions for states in which V1 and V4 phases were aligned. This is in

line with pupil diameter being a proxy for central arousal, driving

global network states that coordinate activity across distant brain

areas. Importantly, as every trial is an attention trial, central arousal

(unlike cortical state dynamics) should not differ across attention



Figure 4. Bipolar re-referenced LFP power spectrum across HMM states

(A) Power in V1 during On and Off phases in V1.

(B) Power in V4 during On and Off phases in V1.

(C) Power in V1 during On and Off phases in V4.

(D) Power in V4 during On and Off phases in V4. Right y axis indicates the percentage of change in power during On versus Off phases (On-Off).

(E and F) Power spectrum in V1 (E) and V4 (F) for the 4-state HMM fit across V1 and V4 and the within-area power difference between On phases (red, V1: state 4-

2; V4: state 4-3), or Off phases (blue, V1: state 3-1; V4: state 2-1). Only On/Off episodes of at least 250 ms were included. The thick percentage change lines

indicate significantly modulated frequencies (p < 0.05, two-sided Wilcoxon signed rank test, FDR corrected).

Data are represented as means ± SEMs across recordings.
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conditions. We verified this by showing that pupil diameter did not

differ between attention conditions (Figure 5E). Furthermore, none

of the effects of pupil diameter on epoch durations were depen-

dent on RF separation (Pearson correlation [95% confidence in-

terval, CI]; state 1: �0.48 < r < 0.03, p = 0.08; state 2: �0.39 <

r < 0.13, p = 0.32; state 3: �0.003 < r < 0.49, p = 0.053; state 4:

�0.05 < r < 0.46, p = 0.11). This shows that the effects of arousal

and attention on On-Off dynamics are separable and indepen-

dently controlled.

On phase coordination predicts better behavioral
performance
Wehave demonstrated that the coordination of On-Off dynamics

is retinotopically organized and driven in a top-down manner

during selective attention. Is this organization also relevant for

behavior? For both V1 and V4 individually, the On/Off phase at

the time of target dimming was predictive of reaction time (RT)

when the target was presented inside the RFs. We found an

interaction between attention and On/Off phase (linear mixed ef-

fects model; V1 b = 0.16 ± 0.06, p = 0.006; V4 b = 0.12 ± 0.06, p =

0.045) with a main effect for phase (V1 b = �0.27 ± 0.09, p =

0.002; V4 b = �0.24 ± 0.09, p = 0.009), but no main effect of

attention (V1 b = �0.15 ± 0.09, p = 0.11; V4 b = �0.06 ± 0.09,

p = 0.48). Specifically, when either area was in an On phase

when the target grating dimmed, RT was faster (two-sided Wil-

coxon signed rank test; V1 p = 0.001, V4 p < 10�3) (Figure 6A).
We furthermore found that On-Off phase coordination between

V1 and V4, as assessed using HMMV1–V4, was also predictive

of behavioral performance. Again, we found an interaction be-

tween attention and On/Off phase (linear mixed effects model;

b = 0.07 ± 0.02, p < 10�2), with a main effect of phase (b =

�0.14 ± 0.04, p < 10�3) but not of attention (b = �0.06 ± 0.07,

p = 0.36). Performance was worst when at the time of target

dimming both V1 and V4 were in an Off phase (state 1). Perfor-

mance improved when either area was in an On phase, and it

improved even further when both areas were in an On phase at

the time of target dimming (Figure 6B). The coordination of On

phases across visual areas is thus more beneficial for behavioral

performance than the phase in either area alone.

DISCUSSION

We show that On-Off dynamics and their modulation by spatially

selective attention are general features across multiple regions

along the visuo-cortical hierarchy, occurring both in primary vi-

sual cortex (V1) and V4. The interareal coordination of On-Off

dynamics occurs at a local retinotopic scale, which reflects the

precision of anatomical connections, and is driven in a top-

down manner across areas FEF, V4, and V1 during selective

attention. Attention specifically facilitated top-down-driven tran-

sitions fromOff to On states. Spectral analyses revealed that On-

Off dynamics were associated with cortical (de)synchronization.
Neuron 109, 894–904, March 3, 2021 899



Figure 5. The relationship between baseline pupil diameter and On/Off episode durations

(A) Example recording showing that baseline pupil diameter is positively correlated to the average On episode duration in V1. Each dot represents a single trial; r is

the Pearson correlation coefficient. The purple and red dots indicate the example trials used in (C).

(B) Across recordings, the average duration of On epochs in both V1 and V4 is positively correlated with the size of the baseline pupil diameter.

(C) MUA raster plot of 2 example trials in which the average On epoch duration is longer on the trial with larger (bottom) compared to the trial with smaller (top)

baseline pupil diameter.

(D) Across recordings, baseline pupil diameter is negatively (positively) correlated with the average epoch duration when both V1 and V4 are in an Off (On) phase.

(E) The average baseline pupil diameter during attend RF conditions plotted against attend away conditions. There is no difference between attention conditions.

Each dot represents a recording session.

Statistics: two-sided Wilcoxon signed rank test (FDR corrected) (B, D, and E) and Pearson correlation (A). Data are represented as means ± SEMs across re-

cordings; significance levels *p < 0.05, **p < 0.01, and ***p < 0.001.
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While central arousal also predicted the extent of interareal

On-Off dynamics coordination, this occurred independently of

attention-induced state coordination. Finally, we show that the

coordination of On phases across visual areas is beneficial for

behavioral performance.

On-Off dynamics rely on neuromodulatory drive and
feedback projections
What drives the state coordination? Fluctuations in cortical state

have previously been ascribed to neuromodulatory influences

(Buzsaki et al., 1988; Constantinople and Bruno, 2011; Lee and

Dan, 2012) and feedback projections (Rabinowitz et al., 2015;

Zagha et al., 2013). The arousal linked state coordination in our

data, inferred through pupil diameter analysis, is probably

induced by changes in neuromodulatory tone (Aston-Jones

and Cohen, 2005; Eldar et al., 2013; de Gee et al., 2017; Joshi

et al., 2016; Murphy et al., 2014; Reimer et al., 2016; Varazzani

et al., 2015). Changes in arousal level are linked to altered norad-

renergic and cholinergic tone, which cause changes in cortical

state (Harris and Thiele, 2011; Reimer et al., 2016). Direct stimu-

lation (inhibition) of noradrenergic (Berridge and Foote, 1991;
900 Neuron 109, 894–904, March 3, 2021
Berridge et al., 1993) or cholinergic nuclei (Metherate et al.,

1992; Steriade et al., 1993) induce cortical depolarization (hyper-

polarization) and desynchronization (synchronization). Stimula-

tion-induced effects (as well as locomotion-induced effects) on

cortical state are reversed by the local application of noradren-

ergic or cholinergic antagonists (Goard and Dan, 2009; Methe-

rate et al., 1992; Pinto et al., 2013; Polack et al., 2013). Moreover,

dopaminergic influences equally play a role, as ventral tegmental

area (VTA) stimulation increased the duration of up states in the

rat prefrontal cortex, an effect prevented by the systemic injec-

tion of a D1 receptor antagonist (Lewis and O’Donnell, 2000).

Neuromodulators are, however, not solely involved in chang-

ing levels of arousal, but are critically involved in attention-

related signals in sensory and prefrontal areas (Dasilva et al.,

2019; Herrero et al., 2008; Noudoost and Moore, 2011). The

arousal- and attention-related actions of neuromodulators differ-

entiate along tonic and phasic activities of the signaling neurons,

whereby phasic signaling is associated with attention (Aston-

Jones andCohen, 2005; Parikh et al., 2007; Thiele and Bellgrove,

2018). Through this action, these neurons could in principle influ-

ence the attention-dependent coordination of the cortical state



Figure 6. Across-area coordination of On-

Off dynamics predicts behavioral perfor-

mance

(A) On versus Off phase of population activity at

the time of target dimming, determined individu-

ally for V1 and V4, predicts behavioral perfor-

mance. RT decreases when attention is directed

toward the RFs and either V1 or V4 is in an On

phase.

(B) RT decreased from when both areas were Off,

through V1 On–V4 Off, through V1 Off–V4 On, to

V1 and V4 On when attention was directed toward

the RFs.

Statistics: two-sided Wilcoxon signed rank test

(A), and multilevel linear mixed-effects model (B).

Data are represented as means ± SEMs across

recordings; FDR corrected significance levels *p <

0.05,** p < 0.01, and ***p < 0.001.
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that manifests in our data. However, the attention-induced coor-

dination of the cortical state occurs in a reverse hierarchical

manner, suggesting that it is mediated through feedback origi-

nating in the frontal cortex, not through global changes in neuro-

modulatory tone. It is thus more likely that attention-linked

changes to neuromodulatory tone prepare areas to bemore sus-

ceptible to top-down coordination of the cortical state. It may

allow prefrontal circuits to be more effective in representing

cognitive variables and affect sensory areas through feedback.

For example, prefrontal acetylcholine and dopamine influence

attentional signaling (Dasilva et al., 2019; Noudoost and Moore,

2011; Parikh et al., 2007). Adequate dopamine levels in FEF are

critical to affect activity in V4 neurons in a similar manner to

attention (Noudoost and Moore, 2011). Thus, neuromodulators

interact with feedback signals, but the latter take a leading role

in the fine tuning and task dependency of state coordination.

The role of feedback in the coordination of synchronized versus

desynchronized states has recently been shown through the

activation and inactivation of vM1 in mice (Zagha et al., 2013).

Critically, these feedback effects were pathway specific, they

did not result in general (brain-wide) cortical state changes,

they were rapid (~10 ms), and they were beneficial to sensory in-

formation coding in the affected sensory areas (Zagha et al.,

2013). These results, in conjunction with ours, illustrate that feed-

back projections selectively influence the cortical state in sen-

sory areas and that these network dynamics affect sensory

stimulus processing.
Cognitive modulation of interareal activity coordination
The interareal coordination of On-Off dynamics and its relevance

to behavioral performance suggests that trial-by-trial coordina-

tion of activity across brain regions is beneficial for information

transfer and selectively modulated according to task demands.

Stimulus-induced as well as spontaneously fluctuating oscilla-

tory activities are correlated across areas according to both ret-

inotopy and stimulus selectivity (Lewis et al., 2016). Neural excit-

ability fluctuations thus follow the functional organization of the

cortex. Selective attention modulates this interareal coherence

(Bosman et al., 2012; Buschman and Miller, 2007; Gregoriou

et al., 2009), potentially facilitating communication between hier-
archically linked areas (Fries, 2005). Although attention can

reduce within-area spike count correlations (Cohen and Maun-

sell, 2009; Herrero et al., 2013; Mitchell et al., 2009), depending

on the signal correlation between neuronal pairs (Rabinowitz

et al., 2015; Ruff and Cohen, 2014) and (in part) driven by On-

Off dynamics (Engel et al., 2016; Shi et al., 2020), it increases

correlated variability across functionally related areas (Oemisch

et al., 2015; Ruff and Cohen, 2016). This increased coordination

may be a prerequisite for successful interareal information trans-

fer (Harris and Mrsic-Flogel, 2013) and may allow the propaga-

tion of sensory information to other brain regions (Luczak et al.,

2013). It is tempting to speculate that this affects the organization

of communication subspaces (Semedo et al., 2019), linking spe-

cific task-relevant neural ensembles in task-dependent

manners.

Our results show that local cortical states are more synchro-

nous across brain regions during attention (e.g., by better

matched On epochs), and that attention directed toward the

RF increases the top-down drive to transition to an On phase.

When hierarchically linked areas are simultaneously active,

potentially driven by the frontal cortex, global representation of

information through recurrent processing could be facilitated,

thereby aiding conscious stimulus processing (Baars, 2002; De-

haene and Changeux, 2011). The cognitive modulation of

cortical state coordination could be a key component of this.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Electrophysiological data Thiele lab G-Node: https://doi.gin.g-node.org/10.

12751/g-node.b0mnn2

Experimental models: organisms/strains

Rhesus Macaque (Macaca mulatta) Medical Research Council Centre for

Macaques (MRC CFM)

N/A

Software and algorithms

Analysis code Thiele lab, Engel lab https://gitlab.com/JvK/cortical-state-

coordination

MATLAB MathWorks https://www.mathworks.com

Stimulus presentation and experimental

control

NIH Remote Cortex 5.95

Data acquisition Neuralynx Cheetah 5.6.3

Offline spike sorting Neuralynx SpikeSort3D

Other

Laminar probe Thiele lab: ATLAS neuro E16R+R-150-S1-L10

Acquisition system Neuralynx Digital Lynx

Eye tracker Arrington Research Viewpoint MCU02
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Jochem van Kempen

(Jochem.van-Kempen@newcastle.ac.uk) .

Materials availability
This study did not generate new unique reagents.

Data and code availability
Preprocessed data necessary to replicate these results have been deposited to G-Node: https://doi.gin.g-node.org/10.12751/g-

node.b0mnn2 (van Kempen et al., 2020). The MATLAB analysis code necessary to replicate these results is available at https://

gitlab.com/JvK/cortical-state-coordination.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals and procedures
Subjects in our study were 3 male rhesus macaque monkeys (Macaca mulatta, age 10-12 years, weight 8.5-12.5 kg), housed un-

der conditions described in detail previously (Gray et al., 2016). All animal procedures were performed in accordance with the

European Communities Council Directive RL 2010/63/EC, the National Institute of Health’s Guidelines for the Care and Use of

Animals for Experimental Procedures, and the UK Animals Scientific Procedures Act. Animals were motivated to engage in the

task through fluid control at levels that do not affect animal physiology and have minimal impact on psychological wellbeing

(Gray et al., 2016).

Surgical preparation
The animals were implantedwith a head post and recording chambers over area V1 and V4 under sterile conditions and general anes-

thesia. Surgical procedures and postoperative care conditions have been described in detail previously (Thiele et al., 2006).
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METHOD DETAILS

Behavioral paradigm
Stimulus presentation and behavioral control was regulated by Remote Cortex 5.95 (Laboratory of Neuropsychology, National Insti-

tute for Mental Health, Bethesda, MD). Stimuli were presented on a cathode ray tube (CRT) monitor at 120 Hz, 12803 1024 pixels, at

a distance of 54 cm. The location and size of receptive field (RF) were measured as described previously (Gieselmann and Thiele,

2008), using a reverse correlation method. Briefly, during fixation, a series of black squares (0.5-2� size, 100% contrast) were pre-

sented for 100 ms at pseudorandom locations on a 9 3 12 grid (5-25 repetitions for each location) on a bright background. RF ec-

centricity ranged from 3.4 to 7.5� in V1, and from 2.5 to 8.9� in V4.

During the main task (Figure 1A), the monkeys initiated a trial by holding a lever and fixating on a central white fixation spot (0.1�)
displayed on a gray background (1.41 cd/m2). After a fixed delay (614, 424, 674 ms, for monkeys 1, 2 and 3), three colored (for color

values see Table S1) squarewave gratings appeared equidistant from the fixation spot, onewas centered on the RF of the V1 neurons

under study. The locations of colored gratings were fixed for each recording session but were pseudorandomly assigned across ses-

sions. Stimulus size varied between 2 and 4� diameter, depending on RF eccentricity and size. For most recordings we used drifting

gratings but presented one monkey with stationary gratings during 22 out of 34 recording days. The drifting gratings moved perpen-

dicular to the grating orientation, with the motion direction pseudorandomly assigned on every trial. After a random delay (618-

1131 ms for monkey 1, 618-948 ms for monkeys 2 and 3; uniformly distributed), a central cue appeared that matched the color of

one of the gratings, indicating that this grating would be behaviorally relevant on the current trial. After a variable delay (1162-

2133 ms for monkey 1, 1162-1822 ms for monkeys 2 and 3; uniformly distributed), one of the pseudorandomly selected gratings

changed luminance (for color values see Table S1), referred to as dimming. If the cued grating (target) dimmed, the monkey had

to release the lever in order to obtain a reward. If, however, a non-cued grating (distractor) dimmed, the monkey had to ignore

this and keep hold of the lever until the target dimmed on the second or third dimming event (each after another 792-1331 ms for

monkey 1; 792-1164 ms for monkeys 2 and 3; uniformly distributed).

Data acquisition and analysis
We recorded from all cortical layers of visual areas V1 and V4 using 16-contact laminar electrodes (150 mm contact spacing, Atlas

silicon probes). Out of a total of 76 V1 and 78 V4 recording sessions, 71 recordings were conducted simultaneously in both areas. The

electrodes were inserted perpendicular to the cortex on a daily basis.

Raw data were collected using Remote Cortex 5.95 and by Cheetah data acquisition interlinked with Remote Cortex 5.95.

Neuronal data were acquired with Neuralynx preamplifiers and a Neuralynx Digital Lynx amplifier. Unfiltered data were sampled

with 24 bit at 32.7 kHz and stored to disc. Data were replayed offline, sampled with 16-bit and band-pass filtered at 0.5-300 Hz

and down sampled to 1 kHz for local field potential (LFP) data, and filtered at 0.6-9 kHz for spike extraction. Eye position and pupil

diameter was recorded at 220 Hz (ViewPoint, Arrington Research). Pupil diameter was recorded for 75 (90.4%) of recordings.

Simultaneous recordings from V4 and FEF were conducted using 16-channel U-Probes (Plexon) in both areas, or U-Probes in V4

and single electrodes in FEF. Probes were inserted perpendicular to layers in V4 and tangential to layers in the frontal eye field (FEF)

from two monkeys performing a selective attention task. Details on data acquisition and processing have been described in detail

previously (Engel et al., 2016). All data analyses were performed using custom written MATLAB (the Mathworks) scripts.

Data preprocessing
We corrected for any noise common to all channels via common average reference, in which the average of all channels is subtracted

from each individual channel. We extracted population activity by progressively lowering spike extraction thresholds until approxi-

mately 100 Hz spiking activity was detected on each channel between fixation onset and the first dimming event. Well-isolated single

units were obtained through manual spike sorting using SpikeSort3D (Neuralynx).

In order to determine signal-to-noise (SNR) ratios, recording stability and the visual response latency aswell as for the computation

of receptive fields (i.e., for preprocessing purposes only), we computed the envelope of MUA (MUAe) by low-pass filtering (< 300 Hz,

fifth order Butterworth) the rectified 0.6-9 kHz filtered signal. Because we noticed that during some recording sessions the electrode

seemed to have moved (e.g., due to movement of the monkey), we visually inspected the stability of each recording by investigating

the stimulus aligned firing rates, MUAe and their baseline (�500 to �50 ms) energy across all trials and channels. With energy ðEÞ
defined as:

E =

Z t

i

VðiÞ2

where t is the number of time points in the vector ðVÞ representing the single-trial histogram or MUAe.We selected the largest contin-

uous time window that showed stable activity across all V1 & V4 channels.

In addition to selecting trials from stable periods, we selected channels for further processing that were determined to be in gray

matter. Using current source density (CSD), we investigated on which channels currents were entering (sinks) and exiting (sources)

cortical tissue, which allowed us to determine the relative recording depth compared to the known cortical anatomy (Schroeder et al.,
e2 Neuron 109, 894–904.e1–e8, March 3, 2021
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1991, 1998). The CSD profile can be calculated according to the finite difference approximation, taking the inverse of the second

spatial derivative of the stimulus-evoked voltage potential 4, defined by:

CSDðxÞ = 4ðx + hÞ � 24ðxÞ+4ðx � hÞ
h2

;

where x is the depth at which the CSD is calculated and h the electrode spacing (150 mm).We used the iCSD toolbox (Pettersen et al.,

2006) to compute the CSD. With this toolbox we used a spline fitting method to interpolate 4 smoothly between electrode contacts.

We used a diameter of cortical columns of 500 mm (Mountcastle, 1957), and tissue conductance of 0.4 Sm-1 (Logothetis et al., 2007).

To aid determination of recording depth, we computed the signal-to-noise ratio (SNR), the response latencies to stimulus onset for

each channel and the receptive field (RF) estimation (see below). SNR was computed as:

SNR =
Signal � Noise

snoise

with Signal defined as the average MUAe amplitude in one of eight 50 ms time windows, from 30 to 80 ms, in 10 ms steps, to 100 to

150 ms after stimulus onset, and Noise as the average MUAe amplitude during the baseline period (200 to 50 ms) before stimulus

onset. SNR in at least one of these eight estimates was required to be higher than 3 for a channel to be included for further analyses.

We computed the response latency to stimulus onset for each channel according to the method described by Roelfsema et al.

(2007). We fitted the visual response as a combination of an exponentially modified Gaussian and a cumulative Gaussian using a

non-linear least-squares fitting procedure (function lsqcurvefit) to the averageMUAe time course. There are two assumptions implicit

in this method. First, the onset latency has a Gaussian distribution across trials and across neurons that contribute to the MUAe, and

second, that (part of) the response dissipates exponentially. The visual response y across time t was modeled as:

yðtÞ = d$Exp
�
ma + 0:5s2a2 �at

�
$G

�
t;u + s2a;s

�
+ c$Gðt;m;sÞ;

where m is the mean, s is the standard deviation, a�1 is the time constant of the dissipation,Gðt;m;sÞ is a cumulative Gaussian, and c

and d are the factors scaling the non-dissipating and dissipating modulation of the visual response. The response latency was

defined as the time point where yðtÞ reached 33% of the maximum of the earliest peak, the first Gaussian (Roelfsema et al., 2007;

Self et al., 2013). Data were aligned to the earliest current sink, the presumed thalamic input layer (L4); channels were excluded if

they were > 1 mm more superficial or > 0.75 mm deeper than this layer.

Receptive field estimation
Offline RFs were determined for each channel via reverse correlation of theMUAe signal (see above for MUAe computation) to stimuli

(0.5 – 2� black squares) presented on a 93 12 grid (Gieselmann and Thiele, 2008). The stimulus-response map was converted to z-

scores, after which the RF for each channel was indicated by a contour (thresholded at a z-score of 3) surrounding the peak activity.

These z-scored maps were averaged across all channels for each area (the population average z-score was computed using

Stouffer’s Z-score method according to Z =
Pk
i = 1

Zi=
ffiffiffi
k

p
, with k as the number of channels, after which we determined the overlap

and separation between the V1 and V4 RFs (Figures 1B and 1C).

Bipolar re-referencing
To ensure that global signals, common to multiple channels, did not affect our LFP and spectral analyses (see below), we re-refer-

enced our LFP signals according to the bipolar derivation. Bipolar re-referenced LFP signals (LFPb) were computed by taking the

difference between two neighboring channels.

Attentional modulation
The effect of selective attention on neural activity was computed via an attention modulation index ðattMIÞ, defined as:

attMI =
ARF � Aout

ARF +Aout

withARF as the neural activity when attentionwas directed toward the RF, andAout the activity when attentionwas directed away from

the RF. This index ranges from �1 to 1, with zero indicating no attentional modulation and with positive (negative) values indicating

higher (lower) activity when attention was directed toward the RF.

Hidden Markov Model
To quantify On-Off dynamics in V1 and V4, we fit a Hidden Markov Model (HMM) to the population activity (MUA) across all laminae.

We fit the HMM both to activity from each individual area, following the procedures described by Engel et al. (2016), as well as to the

activity from both areas simultaneously.

Our HMMassumes that spike counts on the recorded channels can bewell characterized as a doubly-stochastic process, of which

the parameters can be accurately estimated (Rabiner, 1989). In this study, spike counts on each channel are assumed to be produced
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by a Poisson process with different (constant) mean rates during On or Off phases of the underlying ‘hidden’ (latent) process s com-

mon to all channels that we need to infer (Engel et al., 2016). The mean firing rate on each channel j in phase s is defined by entry lsj in

the emission matrix L. The transition matrix P gives the probabilities of transitioning between these latent phases. In the transition

matrix P, each entry indicates the probability of transitioning between two specific phases. For instance, P11 indicates the probability

of transitioning from s= 0 to s= 0 (remaining in the Off phase), whereas P12 indicates the probability of transitioning from s = 0 to s =

1, more formally: P11 = Poff =Pðst + 1 = 0jst = 0Þ; P11 = Poff =P st + 1 = 0jst = 0ð Þ; P12 = 1� Poff =Pðst +1 = 1jst = 0Þ. These probabilities

do not depend on time: at any time step t, the probability of transitioning between phases depends only on the value of s at time

t ðstÞ. The latent dynamics estimated by the HMM thus follow a discrete time series in which st summarizes all information before

time t. For each channel, MUA was discretized by determining spike counts in 10 ms bins following each time t, with the probability

of observing spike count n on channel j during phase s defined as

PðnjsÞ =
�
lsj

�n

n!
e�ls

j

The full description of an HMM is given by the emission matrix L, transition matrix P and the probabilities p0 that indicate the initial

values s0, in which p0
i hPðs0 = iÞ. These parameters were estimated using the Expectation Maximization (EM) algorithm (Bishop,

2006), maximizing the probability of observing the data given the model according to the Baum-Welch algorithm (Rabiner, 1989).

Because the EM procedure can converge to a local maximum, rather than the global maximum, we repeated the EM procedure

ten times with random parameter initializations and chose the model with the highest likelihood. Random values were drawn from

Dirichlet distributions for p0 and P, and from a uniform distribution between zero and twice the channel’s mean firing rate for L.

The EM procedure was terminated if the relative change, computed as jnew � originalj=joriginalj, in the log-likelihood was smaller

than 10�3 and the change in the transition and emission matrix was smaller than 10�5, or if it reached the maximum number of iter-

ations (n = 500).

Once the optimal parameters were estimated, we used the Viterbi algorithm to determine the most likely latent trajectory for each

individual trial. We applied the HMM separately to each attention condition. For every trial, we applied the HMM during multiple time

periods of the task, during fixation and during the time window from 400ms after cue onset to 30ms after the first dimming event. For

the behavioral analysis, we additionally analyzed the period up to 30 ms after the second dimming event for trials in which target

dimming did not occur on the first dimming event, and for which the first distractor dimming was not inside the RFs.

To determine what number of latent phases best described the data, we fit HMMs with the number of phases ranging from 1 to 8,

and used a four-fold cross-validation procedure to compute the leave-one-channel-out cross-validation error for each HMM (Engel

et al., 2016). We fit the HMM to a randomly selected subset of 3/4 of the trials and computed the cross-validation error on the remain-

ing 1/4 of trials. This procedure was repeated 4 times using a different 3/4 of trials for training and 1/4 of trials for testing the HMM.We

computed the cross-validation error CVvar for each channel j across all trials K and time bins T as the difference between the actual

and expected spike count according to:

CVvar ½nj� =
XK
k = 1

XT
t = 1

�
nj
t � l

st
j

�2

We normalized CVvar to the error in the 1-phase HMM, averaged across channels, cross-validations and conditions, and determined

the difference in CVvar with each additional phase in the HMM. The normalized mean cross-validation error across each of the eight

HMMmodels for all recordings is depicted in Figure S1. For most recordings, and for both V1 and V4,CVvar decreased with the addi-

tion of a second phase but did not decrease much further with additional phases. This allowed the identification of the elbow (kink) in

this error plot as the model with two phases. We included areas/recordings for further analysis that revealed a reduction in cross-

validation error of at least 10% with the addition of a second phase but did not decrease by more than 10% with additional phases.

For a small subset of recordings, a three or a four-phasemodel fit the data best [V1: n = 7; V4: n = 1], suggesting that these recordings

could contain states with systematically occurring nested fluctuations; these recordings were excluded from further analysis. In total,

we found a reduction of > 10% in cross-validation error when fitting a 2-phase versus 1-phase model in 63 V1 (82.9%), and 72 V4

(92.3%) recordings; in 55 (77.5%) recordings we found evidence for a 2-phasemodel in both V1 and V4 (Figures S1A–S1D). For these

recordings, epoch duration distributions closely followed an exponentially decaying function (Figure S1E), consistent with HMM as-

sumptions, indicating that short epoch durations were most prevalent.

While the two-state HMM segments the data into discrete On and Off phases, our results do not depend on the assumption of

discrete phases. Previous work showed that the On-Off dynamics can be also modeled with a continuous latent variable, in which

case the inferred firing rates showed bimodality and dynamics consistent with that inferred by the HMM (Engel et al., 2016).

To investigate the across-area coordination of On-Off dynamics, we fit a 4-state HMM to V1 and V4 data simultaneously. Across

these four states, both V1 and V4 could be in either an Off or On phase, with the states defined as: V1off � V4off (state 1), V1on� V4off
(state 2), V1off � V4on (state 3) and V1on � V4on (state 4). This model was fit according to the same steps as the HMM applied to in-

dividual areas, with one exception. For each channel j, the emission rate lwas constrained to be the same across states for which this

channel (area) was in the same phase. For example, rates were constrained for a V1 channel across state 1 and state 3, during which

V1 was in an Off phase (ls=1
j = ls= 3

j ; j ˛V1).
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Variance explained by the HMM
The amount of spiking variability captured by the HMM was determined using a two-fold cross-validation procedure in which we

computed the fraction of variance explained ðR2Þ on a subset of data not used to fit the model (Engel et al., 2016). The HMM param-

eters were estimated on a random half of the trials (training trials) and used to decode the most likely On-Off state sequence on the

remaining half of the trials (testing trials) not used for fitting the model.

For each channel j, the fraction of variance explained ðR2Þ in the MUA was computed over the total number of time bins N as

R2 = 1� Varres nj½ �
Vartot nj½ � = 1�

PN
t = 1 nj

t � lstj

� �2

PN
t = 1 nj

t � Cnj
tD

� �2
WhereVartot nj

� �
= 1

N

PN
t =1

njt � CnjtD
� �2

is the total variance of the spike-count data andVarres½nj�= 1
N

PN
t = 1

ðnjt � l
st
j Þ

2
is the residual variance

unaccounted for by the HMM.

As the HMMwas fitted to MUA, we slightly altered the cross-validation procedure for SUA. Instead of fitted as a model parameter,

SU firing rates were estimated as the mean rate during On and Off phases of the most likely latent state sequence on training trials,

decoded from the MUA. These estimated On and Off firing rates were used in the above formula instead of lstj to compute R2 on test

trials.

We computed R2 across different timescales (Figure S3B) by computing MUA and SUA spike-counts for 10 different window sizes

(integration times) ranging from 50 to 500 ms in 50ms steps. We followed the procedures described above except that the predicted

spike-count was the average of the firing rates predicted by the HMM within each integration time bin.

In order to interpret the results from the cross-validation analysis, we computed the maximal explainable variance R2
max given that

the HMM assumptions hold true; that spikes are produced by a Poisson process where the mean rate switches between two levels

corresponding to the On and Off phases, and that the latent sequence of On and Off epochs (and their corresponding firing rates) in

each phase are known precisely (Engel et al., 2016). Under these assumptions, all variance due to rate fluctuations is eliminated by

the precise knowledge of the mean firing rate in each time bin. Any residual variance of spike-count Varres½n� is therefore just the vari-

ance of the Poisson point-process, which is equal to its mean En. The maximal explainable variance R2
max therefore directly relates to

the Fano factor ðFFÞ, a measure of firing rate variability defined as the variance over the mean of the spike count, and can be

computed as

R2
max = 1� E½n�

Vartot½n�= 1� 1

FF

The R2
max curves in Figure S3A depict the evaluation of this equation. In order to compute the average maximal explainable variance

curves depicted in Figure S3C, we first computed FF for each unit and the accompanying R2
max value using the specified integration

window, and then we averaged across the population.

Dependence of On-Off dynamics on firing rates
Investigating cortical state requires the analysis of population activity, i.e., the pooled activity of many individual neurons. If one

would record using probes with a high density and number of channels (e.g., Neuropixel, Jun et al., 2017), allowing recording of

large numbers of single units, it would be feasible to determine the state of the population activity using only single unit activity.

However, given the recording density of this dataset (16 electrode contacts with 150 mm spacing) accurately estimating network

state based solely on single units is not feasible. We therefore opted to estimate population activity by progressively lowering

thresholds until each channel had a firing rate of approximately 100 Hz (MUA100). To test whether the latent state estimation

(the HMM fit) was contingent on this specific definition of population activity we also extracted MUA according to a different

definition. We extracted MUA by progressively lowering spike extraction thresholds until approximately 20 Hz spiking activity

was detected on each channel during fixation (spontaneous activity), in the 400 ms preceding stimulus onset (MUA20). We

then fit the same HMM as described above and compared the cross-validation error and variance explained ðR2Þ between these

two MUA definitions.

We found that MUA20 had a mean trial-averaged firing rate of approximately 33 Hz in the time period between 400 ms after cue

onset until first dimming (Figure S4A). The correlation between R2 values for MUA100 and MUA20 was highly significant for both V1

[r = 0.81, p = 10�146] and V4 [r = 0.88, p = 10�224] (Figure S4B). Despite this high correlation, we did find that R2 was higher for

MUA100 compared to MUA20, both for V1 and V4 [two-sided Wilcoxon signed rank test; V1: p < 10�82; V4: p < 10�95]. Together,

these results show that the HMM fit is not contingent on the specific definition of population activity, but that the fit is better with

higher firing rates.

We additionally investigated cross-validation error to determine for how many recordings a 2-phase model was most parsimo-

nious. We found a reduction of > 10% in cross-validation error when fitting a 2-phase versus 1-phase model in 53 V1 (instead of

63), and 61 V4 (instead of 72) recordings (Figures S4C and S4D). Thus in addition to slightly lower R2 values for MUA20 compared

to MUA100, we also found that fewer recordings met our criteria to determine whether a 2-phase model fits the data best.
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Figures S4E and S4F depict one example trial that reveals the difference in activity levels and HMM fit between MUA20 and

MUA100. Although the overall estimated latent state sequence is highly similar, the HMM based on MUA20 missed shorter On or

Off epochs that were found using MUA100. Thus, although estimating latent phases based on population activity with low firing rates

is possible, using higher rates provides a better overall fit and might allow better classification of shorter state epochs.

Dependence of On-Off dynamics on task timings
As the task timings are drawn from uniform distributions, it is possible that On-Off dynamics are, in part, driven by a non-flat hazard

function. To investigate this possibility, we computed the probability density function (PDF) of On-Off and Off-On transitions for

attend RF and attend away conditions according to

vt =
ct

wt

with probability v of having transition count c for each time bin t with width w (100 ms bin width). Next, we computed an attention

modulation index (attMI, see above) and tested whether it differed from zero for each time bin (Figure S5G).

Rate-matching control
We investigated whether the attentional modulation of On-Off dynamics could be confounded by higher trial-averaged firing rates in

the attend RF condition. As longer On episode durations bring about higher trial-averaged firing rates, the HMM fit might account for

higher trial-averaged firing rates by estimating longer On episodes. This possibility is unlikely, however, as the free parameters con-

trolling episode durations (emission rates and transition possibilities) are fit for each condition independently. An additional possibility

is that the ability to detect transitions may be impaired with lower spike counts, reducing sensitivity to transitions and thereby regis-

tering longer On episode durations during attend RF trials. We performed a rate-matching analysis to control for any potential con-

founding effects due to rate differences across attention conditions.

We equated the trial-averaged firing rates across the three attention conditions by randomly deleting subsets of spikes from con-

ditions with higher rates (Figures S5C and S5D). We then fit the HMM to the rate-matched data and estimated the durations of On and

Off episodes as well as the fraction of time spent in either phase (Figure S5E). In the rate-matched data, the increased On-phase

duration in V1 and V4 and the increased Off phase duration in V1 in the attend RF condition were preserved. However, after rate-

matching, we additionally found increased Off phase durations in V4. As the increased fraction of time spent in an On phase in

the attend RF condition was also preserved in the rate-matched data (Figure S5F), this change in Off phase duration in V4 did not

alter the time spent in either phase. These results show that the attentional modulation of On episode durations and the time spent

in an On phase are not artifacts of higher mean firing rates during attention conditions.

On-Off dynamics and behavioral performance
To determine the effect of On-Off dynamics and their across-area coordination on behavioral performance, we investigated whether

the On/Off phase of population activity at the time of target dimming influenced reaction times (RT). To this end, we averaged, for

each recording, the RT across all trials that ended in the same phase. We subsequently tested for a relationship between On/Off

phase and RT across recordings.

Cross correlation
The temporal relationship between On-Off time series and transitions, microsaccade onset times and activity in V1, V4 and FEF were

investigated using cross-correlations. The cross-correlations based on HMM time series ðCCHMMÞwere calculated using the function

xcorr in MATLAB, according to:

CCHMMðtÞ = 1

M

XM
m=1

PT
t = 1xðtÞyðt + tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t = 1

			xðtÞj2$PT
t = 1

			yðtÞj2r

whereM is the number of trials, T is the number of discrete time bins, x and y the mean-subtracted On-Off time series in V1 and V4 as

determined by the HMM, and t the time lag. Here, the numerator indicates the cross-covariance, which is normalized (the denom-

inator) such that the autocorrelation for each time series at zero lag is 1. This procedure normalized CCHMM such that correlation co-

efficients were obtained. We furthermore subtracted the shuffle predictor CCshuffle from CCHMM to remove any task-related (event-

locked) correlations between x and y. CCshuffle was computed by shuffling y trials.

Cross-correlations ðCCÞ between state transitions and microsaccade onset times were computed in the same way but for a

different normalization (denominator) factor. Here we normalized by the number of microsaccades, resulting CC to be of the order

of coincidences of state transitions per microsaccade.

To investigate the neural activity around the time of On-Off transitions, we computed the transition-triggered average (TTA). The

TTA was estimated by computing the cross covariance (the numerator), divided by the number of transitions for each channel (de-

nominator). Again, we subtracted the shuffle predictor to remove any task-related correlations.
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Power estimation
We estimated the power spectra of the bipolar re-referenced LFP using a custommultitaper approach based on the Chronux toolbox

(Bokil et al., 2010). We estimated the power separately for On and Off states determined by the HMM using only epochs that lasted

longer than 250ms. Because epoch durationswere variable, we zero-padded each segment to the next highest power of 2 (1024 time

points), ensuring we could extract the same frequencies for each segment. This approach gave us a half bandwidth ðWÞ of approx-
imately 3.97 Hz, according toW = ðK + 1Þ=2T, with K being the number of data tapers (K = 7) and T the length of the time window in

seconds. Frequencies were estimated from 4 to 200 Hz.

Microsaccades and their relation to On-Off dynamics
Neural activity in visual cortex is influenced by the small fixational eye movements termed microsaccades (Bair and O’Keefe, 1998;

Leopold and Logothetis, 1998). Attentional modulation of neural activity in areas V4 and IT has furthermore been found to depend on

whether microsaccades were directed toward the attended stimulus, as indicated by a spatial cue (Lowet et al., 2018). It is therefore

likely that On-Off dynamics are also influenced by microsaccades. We investigated the relationship between On-Off dynamics and

microsaccades in order to determine whether microsaccades could account for themodulation of On-Off dynamics during attention.

We detected microsaccades by using the algorithm developed by Engbert and Kliegl (2003). We converted eye position to velocity

and low-pass filtered the velocity traces (Goettker et al., 2018; Lowet et al., 2018) at 20 Hz using a 2nd order Butterworth filter. An eye

movement was classified as a microsaccade if the velocity is larger than a threshold for at least three consecutive time points. The

threshold is set to six times the median estimator, given by:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
medianðx2Þ �medianðxÞ2

q
, where x is the eye position channel. Thus,

the threshold is determined for each single trial. The use of the median estimator ensured that microsaccade detection is relatively

robust to different levels of noise.

We detected microsaccades with an average amplitude of 0.50 ± 0.28� (mean ± standard deviation) and velocity of 18.55 ± 8.44

(Figure S6A). In line with previous studies (Engbert and Kliegl, 2003; Martinez-Conde et al., 2009, 2013), 94.6% of detected micro-

saccades were smaller than 1� and they occurred on approximately 57 ± 3% (mean ± SE) of trials (Figure S6B) with a rate of approx-

imately 0.9 ± 0.08Hz (Figure S6C). Therewas no difference in the proportion of trials onwhichwe detectedmicrosaccades [repeated-

measures ANOVA; F(2) = 2.75, p = 0.07] or in the microsaccade rate [repeated-measures ANOVA; F(2) = 1.29, p = 0.28] across the

three attention conditions. On trials where we detected multiple microsaccades, the inter-microsaccade interval was 307 ± 219 ms

(mean ± standard deviation) (Figure S6D).

To control for the possibility that we did not detect all microsaccades, we tested whether the direction of gaze differed across

attention conditions on trials without microsaccades. We computed average gaze positions between 400 ms after cue onset until

first-dimming and rotated these gaze positions such that the attended stimulus location aligned with the horizontal axis. We then

fit a 2D Gaussian to the gaze positions across trials for each recording and tested the horizontal offset from zero (Figure S6E).

Although there was a small tendency to direct gaze away from the attended stimulus on attend RF trials and toward the attended

stimulus on attend away 2 trials [two-sided Wilcoxon signed rank test, attend RF: p = 0.02; attend away 1: p = 0.97; attend away

2: p = 0.04], neither of these effects survived FDR correction for multiple comparisons. Thus, gaze effectively did not deviate from

fixation on trials without microsaccades for any of the attention conditions.

We investigated the relationship between microsaccades and On-Off dynamics by computing cross-correlations (see above) be-

tween microsaccade times and the times of On-Off and Off-On transitions (Figure S6F). The cross-correlation between the times of

microsaccades and Off-to-On transitions exhibited a positive peak at approximately 60 ms and 140 ms time-lag for V1 and V4,

respectively, indicating that the probability of transition from Off to On phase was enhanced following a microsaccade. In V4, the

cross-correlation between the times of microsaccades and On-to-Off transitions exhibited a negative peak at approximately

140 ms time-lag, indicating that transitions from On to Off phase were less likely to occur following a microsaccade.

We next investigated the possibility that attentional modulation of On-Off dynamics could result from changes in the direction of

microsaccades between attention and control conditions.We compared themicrosaccade frequency between attend RF and attend

away conditions across microsaccade directions aligned to the RF location, corresponding to 0� in Figure S6G. Although the relative

frequency of microsaccades between attention and control conditions differed across directions for each subject [chi-square test,

p < 10�9], the pattern of this effect was markedly different across subjects. Whereas microsaccades were more frequently directed

toward the location of the RF for monkey T, they were more frequently directed in the opposite direction for monkey W, and for mon-

key J they were more frequently directed toward the stimulus at 240�, corresponding to the attend away 2 condition (chi-squared

residuals test at 0.05 significance level with Bonferroni correction).

Next we tested whether the direction of microsaccades influenced On-Off dynamics. As the microsaccade rate during attend RF

conditions was not increased compared to control conditions (Figure S6C), directional biases inmicrosaccade frequency should only

contribute to the observed increased On-episode durations if those biases coincide with increases in the Off-to-On transition rate

following microsaccades in the bias directions, or with decreases in the On-to-Off transition rate following microsaccades in the

bias directions. However, the fraction of microsaccades followed by Off-to-On transitions was not significantly different across mi-

crosaccade directions for either V1 or V4 [Figure S6H, chi-square test, V1: p = 0.99; V4: p = 0.35]. The fraction of microsaccades

followed by On-to-Off transitions was also not significantly different across microsaccade directions [chi-square test, V1: p =

0.99; V4: p = 0.22]. Thus the rate of On-Off transitions was independent of microsaccade directions and changes in themicrosaccade

rate and direction cannot explain the increase of On-episode durations during attention.
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Finally, we further ruled out whether microsaccades brought about the increased On-epoch duration or the top-down state coor-

dination between V1 and V4 by repeating all analyses for the trials in which no microsaccades occurred during the analyzed time

period. Although this procedure left us with fewer trials, the pattern of the results was unchanged. On-episode durations were

increased when attention was directed toward the RF for both V1 and V4 [two-sided Wilcoxon signed rank test, V1: p < 10�7; V4:

p < 10�7] and Off-episode durations were increased in V1 but not V4 [two-sided Wilcoxon signed rank test, V1: p < 10�6; V4: p =

0.95] (Figure S6). Similarly, the exclusion of trials in which microsaccades occurred did not alter the pattern of phase coordination

between V1 and V4. In the time period between 400 ms after cue onset and first-dimming, the cross-correlation between V1 and

V4 latent state was skewed toward negative values [two-sided Wilcoxon signed rank test, p = 0.002], indicating that V4 state tran-

sitions occur before those in V1. Thus, neither the increase in On-episode durations during attention nor the top-down coordination of

latent states across V1 and V4 were due to microsaccades.

QUANTIFICATION AND STATISTICAL ANALYSIS

To determine whether there were significant differences between attention conditions or HMM states (e.g., in firing rate or epoch

duration) we made use of multiple statistical methods. We used (paired sample) Wilcoxon signed rank tests whenever a comparison

was made between two conditions (e.g., attend RF versus attend away), or to test whether a distribution was significantly different

from zero. When a comparison involvedmultiple conditions, or multiple factors (e.g., attention and state), we used linear mixed effect

models to test for main effects of each condition/factor and interaction effects between factors. These factors were defined as fixed

effects and we included random intercepts for each recording as random effects, accounting for the repeated-measurements within

each recording. Specifically, we modeled RT as a linear combination of attention condition ðAttÞ and HMM state coefficients, as well

as their interaction:

RTeb0 + b1Att + b2HMM+ b3Att$HMM

We used false discovery rate (FDR) to correct for multiple comparisons (Benjamini and Yekutieli, 2001). Error bars in all figures indi-

cate the standard error of the mean (SEM).
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Figure S1. Determining the number of HMM phases and their epoch durations in V1 and V4 MUA, related to 

STAR Methods. (A) Cross validation (CV) error plotted against the number of phases in each HMM for V1. (B) 

The difference in cross validation error between the 1-phase and 2-phase model, plotted against the difference 

between the 2-phase and 3-phase model for V1. Most recordings show a large reduction in cross-validation error 

with the addition of a second phase and only marginal changes with additional phases. Green (red) lines and 

markers indicate the recordings included (excluded) for further analysis. (C-D) Same conventions as (A-B) but 

for V4. (E) Distributions of Off and On episode durations overlaid by the exponential distributions with the decay 

constant set by the HMM transition probabilities (red, 𝑁(𝑡) = 𝑁!𝑒"#/%, where 𝑁! is the normalisation constant, 

and 𝜏 is the decay time-constant computed for each recording and phase). A good match for these models indicates 

that On-Off dynamics were not driven by an oscillatory phenomenon. Grey and thick black lines indicate 

individual recordings and their mean, respectively. Data are represented as mean ± SEM across recordings. 



 

Figure S2. Relationship between local field potentials (LFPs) and On-Off transitions, related to STAR Methods. 

Bipolar re-referenced LFP activity aligned to state transitions for V1 (A) and V4 (B), averaged across channels 

and recordings. Only epochs without transitions preceding or following the alignment transition within 100 ms 

were included. Thick green and pink lines indicate the times the activity was higher (green) or lower (pink) than 

the average activity (FDR-corrected, one-sided Wilcoxon signed rank test). Data are represented as mean ± SEM 

across recordings.  



 

Figure S3. Variance explained by On-Off transitions, related to STAR Methods. (A) Scatter plot of the variance 

explained by the HMM versus the spike-count variability measured by the Fano factor for single- (SU, red dots) 

and multi-units (MU, blue dots). Each dot represents the average across all trials of one recording. Solid black 

line depicts the maximal explainable variance for each Fano factor value. (B) Population-average of the variance 

explained by the HMM as a function of the integration time window for single- (SU, red line) and multi-units 

(MU, blue line). Dashed lines depict the corresponding maximal explainable variance. White circles indicate 200 

ms integration time window that was used in panel A. Error bars are ±SEM. (C) Distribution of the On/Off firing 

rate modulation index ([ron − roff]/[ron + roff]) for single- (SU, red) and multi-units (MU, blue). From left to 

right is plotted V1 during attention, V4 during attention, V1 during fixation (spontaneous activity) and V4 during 

fixation. (D) Variance explained in spontaneous activity plotted against that during attention for V1 (left) and V4 

(right). Statistics: two-sided Wilcoxon signed rank tests.  



 

Figure S4. MUA definition control analysis, related to STAR Methods. (A) Trial-averaged firing rate in the period 

between 400 ms after cue onset until first dimming for MUA extracted based on a 20 Hz firing rate during the 

spontaneous period. (B) Variance explained (𝑅&) by the HMM for the original 100 Hz data (MUA100) plotted 

against 𝑅& for MUA extracted based on spontaneous activity (MUA20) for V1 (blue) and V4 (red). Each marker 

depicts one channel. The HMM fit is highly similar, as shown by their strong correlation indicated by the blue 

and red line. Statistics: Pearson correlation. As most markers fall below the black unity line, 𝑅& is higher for 

MUA100. (C-D) Cross validation (CV) error for MUA extracted based on spontaneous activity plotted against 

the number of phases in each HMM for V1 (C) and V4 (D). Compare to Figure S1A & C. (E-F) Example trial 

across-laminar raster plot and the corresponding latent state (blue) for MUA100 (E) and for MUA20 (F).  



 

Figure S5. Attentional modulation of HMM parameters and rate-matching control, related to Figure 1 and STAR 

Methods. (A) The fraction of time spent in an On phase is increased when attention is directed towards the RFs. 

(B) Attentional influence on HMM transition probabilities. Shown is the difference between transition matrices 

(attend RF – attend Away). (C-F) Rate-matching control analysis. (C) Distribution of attention modulation index 

of the mean firing rate of multi-units for V1 (blue) and V4 (red). Trial-averaged mean firing rate was higher in 

attend RF conditions compared to attend away conditions. (D) As in C, but after rate-matching across attention 

conditions. (E) Distribution of the difference (𝜏'##()*	,- − 𝜏'##()*	./.0) in average duration of the On (right 

panel) and Off (left panel) episodes between attend RF and attend away conditions after rate matching. The 

increase in On episode durations is preserved in the rate-matched data, thus this effect was not an artifact of higher 

mean firing rates during attention conditions. (F) The increased fraction of time spent in an On phase when 

attention is directed towards the RFs is preserved in the rate-matched data. (G) Transition probability density 

function (PDF) for phase transitions aligned to the first-dimming event (top) and its attentional modulation index 



(MI, bottom; 𝑀𝐼 = (𝐴𝑡𝑡𝑒𝑛𝑑,- − 𝐴𝑡𝑡𝑒𝑛𝑑'/.0)/(𝐴𝑡𝑡𝑒𝑛𝑑,- + 𝐴𝑡𝑡𝑒𝑛𝑑'/.0)). From left to right: V1 On-Off 

transitions, V1 Off-On transitions, V4 On-Off transitions and V4 Off-On transitions. Data are represented as mean 

± SEM across recordings. As no attention MI time bin deviated from zero, transition PDFs did not differ across 

attention conditions. Statistics: two-sided Wilcoxon signed rank tests; *, **, ***, indicate FDR corrected 

significance levels of p < 0.05, p < 0.01 and p < 0.001, respectively.  



 

Figure S6. Relationship between microsaccades and On-Off transitions, related to Figure 1, Figure 2 and STAR 

Methods. (A) Microsaccade amplitude versus velocity plot. The histograms along the top (right) indicate the 

distribution of velocities (amplitudes). (B) Proportion of trials with microsaccades across attention conditions. (C) 

Microsaccade rate across attention conditions. (D) Distribution of inter-microsaccade-intervals. (E) Average gaze 

on trials without microsaccades relative to the location of the attended stimulus. Raw gaze locations were rotated 

such that the attended stimulus location was aligned to 0°, the x-direction therefore indicates gaze towards or 

away from the stimulus. (F) Cross-correlation of On-Off transitions in V1 (left) and V4 (right) triggered to 

microsaccade onset. (G) Relative microsaccade frequency between attention and control conditions across 

microsaccade directions, aligned to the RF location for each subject. The relative frequency is computed for each 

direction (in 20° bins) as the ratio of the number of microsaccades towards that direction in attention over control 

conditions. 0° corresponds to the RF location, which aligns with the attended stimulus in the attend RF condition. 

120 and 240° correspond to the attend away stimulus locations. Directions with significantly higher relative 

microsaccade frequency are highlighted with darker color-fill (chi-squared residuals test at 0.05 significance level 

with Bonferroni correction). Microsaccades were not systematically directed towards or away from the RF 

location across subjects. (H) Fraction of microsaccades that were followed by Off-On transitions across 



microsaccade directions, aligned to the RF location. The fraction of microsaccades followed by transitions did not 

significantly vary across microsaccade directions (chi-squared test, V1: P=0.99; V4: P=0.38). (I) The increase of 

On-episode durations in V1 (blue) and V4 (red), and the increase in Off-episode durations in V1 is preserved after 

exclusion of trials in which microsaccades occurred. (J) Cross-correlation between time series of On-Off dynamics 

in V1 and V4 after exclusion of trials in which microsaccades occurred. Statistics: two-sided Wilcoxon signed 

rank test (panel E, I and J) and a repeated measures ANOVA (panel B and C). Data are represented as mean ± 

SEM across recordings; *, ** and *** indicate significance levels of p < 0.05, p < 0.01 and p < 0.001 respectively.  



 

 Red Green Blue 

Monkey 2 & 3, and 

monkey 1 (n=4) 

a. [220 0 0] – 12.8 

b. [140 0 0] – 4.2 

a. [0 135 0] – 12.9 

b. [0 90  0] – 4.6 

a. [60 60 255] – 12.2  

b. [30 30 180] – 4.6 

Monkey 1 (n=1) b. [170 0 0] –6.7 b. [0 105  0] – 6.4 b. [37 37 210] – 6.6 

Monkey 1 (n=1) b. [175 0 0] –7.2 b. [0 105  0] – 6.4 b. [40 40 220] – 7.7 

Monkey 1 (n=8) b. [180 0 0] –7.7 b. [0 110  0] – 7.3 b. [40 40 220] – 7.7 

Table S1. Color values used for the three colored gratings across recording sessions and subjects, related to STAR 

Methods. Color values are indicated as [RGB] – luminance (cd/m2). a = Undimmed values, b = Dimmed values. 

For monkey 1, we used a variety of dimmed values across recordings.  
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