
  
The anti-vaccination infodemic on social media: a 

behavioural analysis 
 

Materials and Methods 
 

Definition of pro-, anti-vaccination and control users 
Profiles belonging to the pro-, anti-vaccination or control group were initially automatically 

identified for their use of hashtags associated with the respective groups, and then manually 

screened to ensure users truly expressed opinions in line with expectations for any given group. 

Control individuals were identified for their use of #control hashtags, which were selected via 

an online Random Word Generator tool (available at https://randomwordgenerator.com). Each 

control profile was selected with a different randomly generated word. Pro-vaccination 

individuals were identified for their use of the #vaccineswork hashtag, whereas anti-

vaccination profiles were identified for their use of either the #vaccineskill or the 

#vaccinesharm hashtag.  

 

Scoring the number of tweets, replies and retweets 
We manually calculated the number of tweets, replies and retweets published in the previous 

24 hours for all the 50 profiles we analysed in each group. This included the number of science-

, vaccines-, conspiracy theory- and children-related tweets, as well as ‘emotional’ tweets. In 

order to determine the overall number of tweets, replies and retweets, we used the freely 

available tool online TweetStats (www.tweetstats.com). After feeding a Twitter username, the 

software returns the number of contents generated on average in a month since the profile was 

initially set up, as well as the percentage of replies and retweets. In order to calculate the 

normalized percentage of tweets concerning a given topic against the overall number of tweets, 

we divided the number of tweets concerning a topic of interest – which were generated in the 

24 hours before the analysis – for the number of average tweets per day. This number generally 

fluctuates between 0% (no contents of the analysed topic) and 100% (all contents are associated 

to a given topic). However, this percentage can occasionally exceed 100% due to fluctuations 



between the number of tweets published on average in a day and the actual number of tweets 

published in the 24 hours prior to analysis. 

 

Statistical analysis 
Ordinary one-way ANOVA was used to compare the number of contents, tweets, replies and 

retweets between the different groups, as well as the differences between the number of 

retweets per tweet, the number of conspiracy theories-associated contents, the number of 

emotional tweets or children-related tweets, the total engagement per day, the average 

engagement per tweet and the number of followers. The statistical analysis was preceded by 

the elimination of behavioural outliers (excluded with ROUT, Q=0.1%). Behavioural outliers 

predominantly included profiles sharing a vast number of contents per day. The Chi-square test 

was used to determine differences in users’ behavioural patterns and in particular to determine 

whether users belonging to different groups would be more or less prone to disclose personal 

information (name, surname and personal picture), their education or profession status. In 

general, 50 profiles were analysed for each individual group and experimental analysis, unless 

differently specified. 

 

Language analysis 
Using TweetStats, we retrieved the 5 most used words on Twitter for each individual profile 

belonging to each group (n=42) and compiled a list of the most used words for each group. We 

assigned a value to each word, depending on how often it was observed to be among the top 5 

words used by a profile. For instance, a score of 42 indicates that 100% of analysed profiles 

included the word of interest among the 5 most used words on Twitter, whereas 0 indicates that 

none of the profiles used that particular word often enough. We performed two normalization 

analyses: The first compared the most used words in the pro- and anti-vaccination groups with 

words predominantly used by control profiles, and the second compared the most used words 

in the pro- versus anti-vaccination group. For example, a value of 18 indicates that a particular 

word has been used 18-times more in one group when compared with another one (such as the 

word “vaccines in the anti-vaccination group, when compared with the control). If a word was 

not used in a given group, we arbitrarily doubled the number of times the word was used in the 

comparison group. In the aforementioned analyses, words were clustered for plurals or 

variations of the same word with identical meaning. For example, the word “vaccine” and 



“vaccines” were considered as one variable, as well as the words “Dr”, “Doctor” and 

“Doctors”. Words were further clustered per topic. For instance, the category “politics” 

included words such as “Trump”, “Democrats”, “Conservative” or “elections”; similarly, the 

cluster “phrasal” included “Don’t”, “I’m”, “We”, etc. As before, we determined whether this 

clusters are over- or under-represented among different study groups by performing a 

comparison between the most used clusters in one group versus another group. 

 

Engagement 
Engagement was calculated as the sum of likes, comments and retweets. The average 

engagement was determined dividing the total engagement for the total amount of tweets 

published in a given time. 

 

Network generation and analysis 
In order to generate pro- and anti-vaccination networks, we considered n=42 profiles for our 

analysis. For each of these profiles, assigned to one of the two groups, we used TweetStats to 

retrieve the profiles of the 10 most retweeted users. This allowed us to identify a larger number 

of individuals, directly or indirectly involved in the anti-vaccination community. Our analysis 

considered profiles regardless of their personal position in the vaccination debate, assuming 

that overrepresented profiles in the network would be associated to the anti-vaccination or pro-

vaccination community, respectively. We generated the networks with Cytoscape and retrieved 

the average number of neighbours, the clustering coefficient, the density of the network and 

the characteristic path length from the Cytoscape Analyzer Tool. In order to optimize the 

graphical representation of the webs, we removed clusters of individuals that were not 

connected with other clusters. We further highlighted in yellow those profiles with a number 

of edges (connections with other profiles) between 2 and 4, in orange those with a number of 

edges between 5 and 9, and in red those with 10 or more edges. The size of the node (profile) 

in the web was also linearly scaled depending on the number of connections. Finally, in order 

to determine the content-based connections among influencers and between influencers and 

the community at large, we analysed the 10 most retweeted profiles for each profile with more 

than 5 edges and included them in our analysis. 

 

 



Education and personal information 
In order to define whether a profile was trackable, and ascribable to a real person, we scored 

the number of individuals publicly declaring their name, surname and utilizing a profile picture 

of a seemingly real person (n=42 for each group). We defined a profile as trackable when all 

these criteria were met, and not trackable when at least one of the above-mentioned criteria 

was not met. “Not defined” (nd) was assigned when the judgment could not be made, for 

instance when profiles represented institutions without a verification badge. Further, we scored 

whether profiles indicated either their education or profession status in their Twitter headline. 

“Yes” indicates that the profile declares either their education or profession publicly, whereas 

“No” indicates that neither of the two is indicated, and “nd” is assigned when the judgement 

could not be made. For instance, when profiles represented institutions without a verification 

badge. 

 

Supplementary Figures 

 
Supplementary Figure 1. Definition of the study groups and relative hashtags. We 

classified profiles in three groups: control (grey), anti-Vaccine (red) and pro-Vaccine (blue). 

Profiles (n=50 for each group) were identifying automatically through the use of hashtags. 

Control profiles were selected for their use of randomly selected hashtags, anti-vaccination 

profiles for their use of widely chosen hashtags in the community (#vaccineskill and 

#vaccinesharm), whereas Pro-vaccine profiles were selected for their use of the #vaccineswork 

hashtag. 

 



 
 
Supplementary Figure 2. Anti-Vaccination profiles retweet more than they tweet. Profiles 

belonging to the control and pro-vaccination groups tweet more than they retweet (1 indicates 

an equal number of retweets per tweet on average in a month), whereas anti-vaccination 

profiles retweet more than they tweet. Ordinary one-way ANOVA; ****p<0.0001; Outliers 

were excluded with ROUT, Q=0.1%; n=50. 

 
Supplementary Figure 3. The number of vaccines- and science-related contents shared 

by anti- and pro-vaccination profiles are correlated. For both the anti-vaccination group 

(red) (A) and the pro-vaccination group (blue) (A’), the higher the normalized number of 

science-related contents generated or shared (for the overall number of contents generated on 

any given topic), the larger the number of normalized vaccines-related tweets and retweets 

(R2=0.464 and R2=0.5924 respectively; ****p<0.0001; Outliers were excluded with ROUT, 

Q=0.1%; n=50). 
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Supplementary Figure 4. Positive correlation between the number of normalized 

vaccines-related contents and conspiracy theories-associated for the anti-vaccination 

group. For the anti-vaccination group (red), the higher the normalized number of vaccines-

related contents generated or shared (for the overall number of contents generated on any given 

topic), the larger the number of normalized conspiracy theory (CT)-related tweets and retweets 

(R2=0.7479; ****p<0.0001) (A). For the pro-vaccination group, no correlation exists between 

the normalized number of vaccines-related tweets and the normalized number of tweets and 

retweets including CTs (B). Outliers were excluded with ROUT, Q=0.1%; n=50. 

 
 

 
 

Supplementary Figure 5. Both anti- and pro-vaccination groups share contents associated 

to children. Anti- (red) and pro-vaccination (blue) profiles share children-related contents, 

with the anti-vaccination group being the largest net producer of children-related contents on 

Twitter (A). We calculated the number of children-related content (tweets and retweets) 

published in the 24 hours before data analysis and normalized it for the total number of tweets 

published on average during a single day. 100 percent indicates that all generated contents are 

estimated to be children-related. Natural fluctuations above 100 percent are due to the variation 
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between the activity on Twitter during the 24 hours prior to data analysis compared to an 

average day (A’). Ordinary one-way ANOVA; *p<0.05; **p<0.01;****p<0.0001; Outliers 

were excluded with ROUT, Q=0.1%; n=50. 

 

 

 
 
Supplementary Figure 6. Anti-vaccination profiles are less prone to declare their identity, 

education or profession when compared with control and pro-vaccination profiles. 30% 

of control profiles (grey shades) declare their identity (name and surname, and a profile picture 

depicting a real person). In comparison, pro-vaccination profiles (blue shades) are more likely 

declare their identity (64%) and only 16% of anti-vaccination profiles (red shades) declare their 

identity (A). 10% of control profiles declare either their education level or current profession. 

This percentage increases substantially for the pro-vaccination group (32%) and drops further 

for the anti-vaccination group (6%) (B). Profiles are defined as trackable when users publicly 

release their name, surname and a valid profile picture. Profiles are not defined as trackable 

when they fail to meet one of the aforementioned parameters. nd (not defined) indicates the 

above-mentioned criteria are not applicable (for instance, in the case of institutions without a 

verified badge on Twitter). This approach was also used for determining whether users declare 

their education level or profession. Chi-square test; *p<0.05;**p<0.01;***p<0.001; n=50. 
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Supplementary Figure 7. Anti-vaccination profiles are better connected with each other 

and establish a community, when compared with the pro-vaccination group. The pro-

vaccination (A) and anti-vaccination (B) Twitter webs, scaled 1:1. Yellow colour represents 

Twitter profiles (nodes) with 2 to 4 anti-vaccination profiles preferentially retweeting their 

contents within the top 10 most retweeted users (edges; 2≤ E ≤4; n=42). Orange nodes represent 

profiles with 5 to 9 edges (5≤ E ≤9; n=42), whereas red nodes indicate profiles with more than 

10 connecting edges (E ≥10; n=42). Size of the nodes is linearly scaled depending on the 

number of edges connecting the node (A, B). Number of nodes and edges for anti- (blue 

syringe) and pro-vaccination groups (red syringe). The anti-vaccination group has more edges 

than nodes, when compared with the pro-vaccination group. The number of edges per node is 

higher in the anti-vaccination web, when compared with the pro-vaccination web (C). 

Graphical representation and web parameters were generated with Cytoscape. 
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