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1 Supplementary Note 1: Search Strategy Details

1.1 Search Strings Formation

To form the search string for automatic database search, we applied the following non-linguistic and
linguistic techniques.

Non-linguistic— We conducted a literature review and considered tentative keywords used by the
existing reviews that investigated the application of Internet-based data for di↵erent aspects of
public health surveillance. Also, we drew on our experience of applying social media analysis for
public health surveillance and included key terms that we frequently used in our relevant studies.

Linguistic– To enrich our search strings with more context-relevant strings in the context of digital
public health surveillance, we implemented the following natural language processing (NLP)
techniques.

1.1.1. Data collection and preparation

We imported the title, abstract, and discussion/conclusion of the articles in the QGS set
to separate '.txt' files and used this corpus as the input to our natural language processing algorithms.
Due to the complexity and diversity of natural language content, this data was not immediately ready
for analysis. We implemented the following data preparation steps iteratively. Each step performed in
the nth and final iteration is described below as well as its evolution throughout our iterations.
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Step ∂ Convert text to lowercase: We used this for all three iterations. We removed case sensitivity to
ensure we do not analyze a word’s capitalization as a separate case than its lower-case counterpart.

Step ∑ Removing numbers and punctuations: We used this for all three iterations. This joined
hyphenated words together, rather than separate them.

Step ∏ Removing stop-words: Stop-words are common words that provide no meaning on their own,
such as 'the', 'this', and 'could'. In this step, we removed the default set of stop-words in the tm map

package for R. Moreover, we added a new set of stop words specific to academic publications, such
as 'paper', 'research', 'propose', 'section', and 'aim'.

Step π Strip Whitespace: We removed excessive whitespaces such as newlines, double spaces, and
tabs.

Step ∫ Stemming: We did this for all three iterations. Stemming is the process of reducing words to
their origins by removing su�xes.

The cleaned dataset was used to implement the following methods. The extracted strings using this
corpus is presented in Supplementary Figure 1.

1.1.2. Lexical Association and language modelling

The traditional automatic keyword extraction methods (e.g. Term Frequency-Inverse Document
Frequency (TF-IDF)1) use basic document features such as the frequency of terms and the document
length. Using these features, relevant terms can still stay independent of other content-carrying terms
in the document, which contributes to overlooking the context surrounding terms when measuring their
relevance. This is a weakness shared by all bag of words approaches. Thus, to extract the keywords
for our automatic database search process, we used lexical association between the terms in the
cleaned corpus, which quantitatively determine the strength of association between two or more words
based on their co-occurrence in a corpus 2. The intuition behind using lexical association is the basic
assumption that a context in which a word is used can often influence its meaning 3. Thus, the words
that are highly associated with each other occur together, more often than expected by chance, have a
particular function and can be considered lexically associated terms. There is a high chance that these
words (together) appear in other contextually relevant documents.

To calculate lexical association (i.e. co-occurrence knowledge), we use statistical language models
(LMs), which assign probabilities to sequences of words based on their prior history. Using the chain
rule of probability, we can decompose the probability of any sequence wn

1 = (w1w2...wn) to:

P(w1w2...wn) =
nY

i=1

P(wi|wi�1
1 ) (1)

where P(w|h) assigns a probability to term hw, considering some history h, and word w 4. An n-gram
model is a sequence of n words that approximates the probability of each word only to the last n � 1
words: 'social media' and 'public health' in 'social media analysis for public health surveillance', are
bi-grams (2-gram). Supplementary Figure 1 shows a directional graph of the bi-grams that we extracted
from the QGS corpus. The directions in this graph present the order of the most frequent bi-grams. For

1Liu F, Liu F, Liu Y. Automatic keyword extraction for the meeting corpus using a supervised approach and bigram expansion. In 2008
IEEE Spoken Language Technology Workshop 2008 Dec 15 (pp. 181-184). IEEE.

2Pecina P. Lexical association measures and collocation extraction. Language resources and evaluation. 2010 Apr 1;44(1-2):137-58.
3Harris Z. Mathematical structures of language. Interscience tracts in pure and applied mathematics. 1968.
4Jurafsky D. Speech language processing. Pearson Education India; 2000.
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example in google!query, the word google comes before the word query, when defining the search
strings.

Supplementary Table 2 lists the keywords related to each of the surveillance and digital platforms
categories and can be formulated as below:

Health + t1 ^
�
t2 ^ [w1 _ w2 _ . . . _ wi]

�
, where t1 2 C1 and t2,wi 2 C2.

For example, 'surveillance + health + social media' would be one of the search strings for
automatic search.
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Supplementary Figure 1: Directed graph of common bi-grams formed from the QGS set. These bigrams were used for defining the search
strings (filters)

Supplementary Table 1: C1: Surveillance-related keywords, C2: Social media-related keywords. � : empty string, |: or. The terms infodemi-
ology and digital epidemiology were added to this list for the last round of searches.

C1 C2
Surveillance Social [media, network, listening]
Public [Facebook, Twitter, Instagram, Yelp, Flicker, Reddit, Quora, YouTube,

(micro)blog, Wikipedia, Google+, Google-plus, Tumblr, MySpace,
Weibo]

Crowdsource Web | Internet [�, forum, search, channel]
Population Tweet
Community Google [trends, search, query]
Monitor Search engine

Online [review, query, platform]

1.2 QGS

To assess the performance of our search strings in identifying Digital Public Health Surveillance
(DPHS) studies in di↵erent databases, we created a Quasi Gold Standard (QGS) of 80 related papers.
One author manually reviewed all the manuscripts published in the Journal of Medical Internet Research
(JMIR)/Public Health and Surveillance (PHS), American Journal of Public Health (APHA), Journal of
Public Health (JPH), and Journal of the American Medical Informatics Association (JAMIA) from 2017
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to 2018 and selected papers based on their title, abstract, and conclusion. These papers all were used to
complement the search strings of the review.

We used the number of records retrieved from database search–using our defined search strings to
evaluate the e↵ectiveness of our search process. The sensitivity of this process was defined as follows:55

Sensitivity:
number of QGS articles retrieved

number of QGS articles indexed in the searched databases
(2)

The searches, using the search strings defined in Supplementary Table 2, in Global Health, Web
of Science, PubMed, and Google Scholar retrieved 67 records (before applying the inclusion/exclusion
criteria) of the 80 articles in the QGS set. As of these 80 articles were indexed in the searched databases,
the precision of our search strings in retrieving the QGS set is 84%. Seven of these records were
excluded during the study selection phase, which improved the sensitivity to 92%. One reason
that our search process could not achieve a sensitivity of 100% is that four papers did not use any of
the core terms (i.e. public health, surveillance) in their main text/title and instead, while they utilized
digital data to study a public health-related theme in a population. Three papers used other terms such as
infodemiology or digital epidemiology to study the application of digital data for public health
surveillance. To improve the sensitivity of the search strings, we added these keywords to our search
strings when updated the database search process in January 2020. However, we could not perform any
statistical analysis on the updated search results as the QGS set of records was relatively small at 73
records.

Supplementary Table 2: Details of the search process [PHR: Public Health Reports]

Publisher #QGS(2017�2018) #Retrieved
JMIR/PHS 63 54
APHA 8 6
JPH 2 2
JAMIA 7 5
Total 80 67

1.3 Database Search

All databases were searched in April 2019, and the search was updated in September 2019 and
January 2020. These searches yielded 4,249 records, of which 2,907 remained after duplicates were
removed. A further 2,024 articles were excluded after a title and abstract screen; 503 for surveys,
20 were not written in English, 134 were editorials/letters/viewpoints, 31 used mobile apps to run
surveys, and 1,336 were not relevant to the scope. A further 128 articles were removed after the full-
text screening based on the exclusion criteria outlined in the methods section. These exclusions left 755
primary articles for the scoping review (Figure 1).

1.4 Inclusion/Exclusion Criteria

We defined the inclusion and exclusion criteria of this review based on the
purpose of data generation –by the public and the purpose of data utilization – by potential studies.

We detail each of these categories below:

4



Supplementary Figure 2: The homepage of the visual dashboard presenting the results of the included studies

Data generation purpose– We sought evidence that used data generated voluntarily by the pub-
lic and is openly accessible by everyone on the Internet. By voluntary, we mean the
data that is not generated with the primary goal of public health surveillance. Follow-
ing this definition, all the content sharing and awareness media such as Wikipedia—
created and maintained by a community of volunteer editors , news websites, and specific

websites— created and maintained for public awareness, without the primary goal of surveillance
fall under the scope of our review. In addition to the content generated by laypeople on popular
social media platforms (e.g. Twitter, Facebook, Instagram, and Weibo), this definition covers
implicit data generated by the public when using di↵erent Internet-based technologies. This
includes search strings generated by Google Trends, access logs generated by WikiTrends, and
likes/clicks generated during user interactions with di↵erent digital platforms. We did not put
any constraint on the type of data and investigated ten di↵erent type combinations in this review.
However we excluded studies that utilized the following digital data sources:

Online surveys— Studies that utilized the data generated by online surveys/poll were excluded,
as this data is not generated voluntarily and might not be openly accessible to everyone. We
mean surveys posted on social media platforms or are sent directly to the public by online
surveys here.

Mobile App surveys— We excluded all the studies that developed an app to intentionally collect
data from their users for the purpose of public health monitoring. Also, studies that used
mobile apps to publish the survey link were excluded for further analysis.

Selected social media users— Studies that selected a specific cohort of users on digital plat-
forms for their data collection, while the user was aware of this process and signed consent
forms were excluded from this review.

Data utilization purpose– We included studies that used digital data to implement a surveillance sys-
tem (infoveillance) directly or mined, analyzed, and aggregated information from digital resources
to inform public health and public policy for public health surveillance purposes (infodemiology).
All the studies that investigated the applicability and the usefulness of di↵erent types of digital
data for public health surveillance were included in this review. The 'purpose' of data utilization
covers common applications such as outbreak detection, predicting seasonal diseases, explor-
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ing unhealthy advertisements, and vaccines to less common applications such as animal health,
pediatric health, exploring disease burden, and the risk factors associated with di↵erent health
practices. We excluded studies that utilized digital data for the following purposed:

Education— Studies that leveraged the content of digital media for the purpose of public health-
related education (e.g. university students, public health professionals) were excluded for
further analysis.

Social media for recruitment— Studies that used social media itself and digital data to recruit
subjects for public health studies were excluded.

With only technical contribution— Studies that only contributed to developing a new machine
learning or other technical methods for utilizing digital data in public health surveillance
were excluded.

Studies were deemed eligible if they met both of the above conditions (i.e. data and purpose).
Studies that did not meet any of these conditions were excluded from this review. Also, all review
studies that investigated the publications on DPHS were excluded. Also, general commentary, letters,
and perspective publications were excluded.

2 Supplementary Note 2: Visual Interactive Dashboard

To complement the results of this review and to add more intuition to the results with a higher
level of granularity, we have developed an interactive visual dashboard that is accessible at https:
//rpubs.com/zshakeri/dashboard (Supplementary Figure 2). This dashboard contains four main
visual components that are detailed below.

2.1 Chord-Diagram [Authors Collaborations]

We developed a Chord diagram to show the collaboration between authors from di↵erent countries.
Countries (nodes) are displayed all around a circle and connected with arcs (links). The thickness of
the links shows the volume of papers that are published between the countries. Self-links visualize the
sing-country publications. Users can interact with this diagram for more information about the number
of publications and filter the data for further analysis.

2.2 Stream Diagram [Surveillance Topics Over Time]

A stream diagram is a variation of stacked area charts with a more flexible visual design. We used
this diagram to represent the evolution of public health topics over time. Areas are usually displayed
around a central axis, and edges are used to give a flowing shape. To filter the dataset based on a specific
topic, users can filter the data, and the chart will be updated accordingly.

2.3 Interactive Tabular Visualization [A Big Picture of the Included Studies]

This interactive table illustrates a big picture of the included studies in this review, including the
public health topics, frequency, percentage, and temporal trend. Users can interact with this table for
more details on each of these variables.
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Supplementary Figure 3: Expandable tree diagram, mapped to the PHS topics/categories/sub-categories listed in Table 1.

2.4 Expandable Tree [The Hierarchy of Themes/Categories/Sub-Categories]

Considering the high level of details in Table 1, with a large number of categories and sub-categories,
we implemented an interactive collapsible tree diagram that conclusively shows hierarchical data and
can be expanded and minimized during the interactions (Supplementary Figure 3). This diagram con-
sists of a root node connected to other nodes by branches. The first level shows the 16 public health
topics listed in Table 1. The second level visualizes the 49 categories. The nodes furthest to the right of
the tree present the 208 sub-categories and have no child nodes.

3 Supplementary Note 3: Digital Media Platforms

Supplementary Figure 4 represents the frequency of the digital platforms used by the included stud-
ies, and the average number of authors per platform. Bing search index, WhatsApp (with one study),
Sina, MySpace, Google Reviews, and Google maps (with two studies each) were minimally represented
in studies. Regarding the average # of authors per platform, the majority of the platforms follow the
overall average (i.e. 5.13), with some exceptions: Sina (9), forums (8), and studies that used more than
five digital platforms (social medial platforms) with an average eight authors per study. Supplementary
Figure 5 shows the frequency of utilized platforms by the included studies over time. The drop in the
number of Twitter studies from 2017 to 2018 could cause by Twitter’s new data access policy enacted in
2018; as of July 2018, all the requests for access to Twitter’s standard and premium APIs were required
to go through a new process. Similarly, the number of Facebook studies spiked dramatically from 2014
to 2017 and then tapered o↵ due to the new Facebook’s data collection restrictions implemented in
April 2018.
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Supplementary Figure 4: The frequency of di↵erent digital platforms utilized by the included studies (bar chart), and the average number of
authors per platform (bubble chart).

Supplementary Figure 5: The frequency of digital platforms used by the included studies over time.
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Supplementary Figure 6: The frequency of studies that found the application of digital platforms challenging, mapped to PHS topics.

4 Supplementary Note 4: Applicability Challenges

This section describes the studies that questioned the applicability of using social media for specific
purposes. Supplementary Figure 6 shows the mapping between health topics and platforms that might
not be e↵ective for them. The number in each cell shows the number of studies associated with each
mapping. Interestingly, 52 (7%) studies found the application of digital platforms challenging. For
example, Facebook is not an appropriate platform to study the relationship between smoking and ge-
netics, as little information on this topic is present on this platform.a46 Similarly, the number of views
of the Italian Wikipedia articles related to multiple sclerosis (MS) and its treatment showed no promise
to explore the disease prevalence,a232 as this type of data does not reliably reflect its actual epidemiol-
ogy. While several studies found Twitter as a useful tool to study public interest in and concerns about
di↵erent diseases, but when it comes to disease comparison (in general), the application of Twitter is
more challenging due to the lack of population demographics and word ambiguity.a753

The application of specific websites (e.g. news, awareness websites, or online review websites)
in developing digital public health campaigns for changing public health-related behaviours was also
found to be challenging, which could be due to a poor campaign design or using and inappropriate
platform.a394 The online food review websites in the United States might not be an appropriate platform
to detect critical food safety violations in food establishments, as food-borne illnesses are vastly under-
reported by the US public.a516

While Google Trends data is an accurate correlate of the reported incidence of Lyme disease and
tick-borne encephalitis in Germany, but it fails to improve the performance of the predictive mod-
els.a408, a428

5 Supplementary References: Included Articles

In this section, we list all the included studies in this review. These numbers can be directly mapped
to Tables 1 and 2 as well as the main text of the manuscript and the Supplementary Information section.
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[a209] Kamiński, M., Łoniewski, I., Misera, A. & Marlicz, W. Heartburn-related internet searches and trends of interest across six western
countries: A four-year retrospective analysis using google ads keyword planner. International journal of environmental research and
public health 16, 4591 (2019).

[a210] Scheres, L., Lijfering, W., Middeldorp, S. & Cannegieter, S. Influence of world thrombosis day on digital information seeking on
venous thrombosis: a google trends study. Journal of Thrombosis and Haemostasis 14, 2325–2328 (2016).

[a211] Sinnenberg, L. et al. Twitter as a potential data source for cardiovascular disease research. JAMA cardiology 1, 1032–1036 (2016).

[a212] Braunberger, T., Mounessa, J., Rudningen, K., Dunnick, C. A. & Dellavalle, R. P. Global skin diseases on instagram hashtags.
Dermatology online journal 23 (2017).
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[a671] Novillo-Ortiz, D. & Hernández-Pérez, T. Social media in public health: an analysis of national health authorities and leading causes
of death in spanish-speaking latin american and caribbean countries. BMC medical informatics and decision making 17, 16 (2017).

[a672] Speaks, H., Falise, A., Grosgebauer, K., Duncan, D. & Carrico, A. Racial disparities in mortality among american film celebrities: A
wikipedia-based retrospective cohort study. Interactive Journal of Medical Research 8, e13871 (2019).

[a673] Meaney, S., Cussen, L., Greene, R. A. & O’Donoghue, K. Reaction on twitter to a cluster of perinatal deaths: a mixed method study.
JMIR public health and surveillance 2, e36 (2016).

[a674] Bundy, J. J. et al. #stroke. Journal of NeuroInterventional Surgery 10, e33–e33 (2018).

[a675] Jain, M. J. & Mavani, K. J. A comprehensive study of worldwide selfie-related accidental mortality: a growing problem of the modern
society. International Journal of Injury Control and Safety Promotion 24, 544–549 (2017).

[a676] Parker, J., Cuthbertson, C., Loveridge, S., Skidmore, M. & Dyar, W. Forecasting state-level premature deaths from alcohol, drugs,
and suicides using google trends data. Journal of a↵ective disorders 213, 9–15 (2017).

[a677] Hobbs, W. R., Burke, M., Christakis, N. A. & Fowler, J. H. Online social integration is associated with reduced mortality risk.
Proceedings of the National Academy of Sciences 113, 12980–12984 (2016).

[a678] Arnoux-Guenegou, A. et al. The adverse drug reactions from patient reports in social media project: Protocol for an evaluation against
a gold standard. JMIR research protocols 8, e11448 (2019).

[a679] Jamison, A. M. et al. Vaccine-related advertising in the facebook ad archive. Vaccine 38, 512–520 (2020).

[a680] Lutkenhaus, R. O., Jansz, J. & Bouman, M. P. Mapping the dutch vaccination debate on twitter: Identifying communities, narratives,
and interactions. Vaccine: X 1, 100019 (2019).

[a681] Kang, G. J. et al. Semantic network analysis of vaccine sentiment in online social media. Vaccine 35, 3621–3638 (2017).

31



[a682] Tafuri, S. et al. Communication about vaccinations in italian websites: a quantitative analysis. Human vaccines& immunotherapeutics
10, 1416–1420 (2014).

[a683] Broniatowski, D. A. et al. Weaponized health communication: Twitter bots and russian trolls amplify the vaccine debate. American
journal of public health 108, 1378–1384 (2018).

[a684] Tomeny, T. S., Vargo, C. J. & El-Toukhy, S. Geographic and demographic correlates of autism-related anti-vaccine beliefs on twitter,
2009-15. Social science & medicine 191, 168–175 (2017).

[a685] Blankenship, E. B. et al. Sentiment, contents, and retweets: A study of two vaccine-related twitter datasets. The Permanente journal
22 (2018).

[a686] Larson, H. J. et al. Measuring vaccine confidence: analysis of data obtained by a media surveillance system used to analyse public
concerns about vaccines. The Lancet infectious diseases 13, 606–613 (2013).

[a687] Schmidt, A. L., Zollo, F., Scala, A., Betsch, C. & Quattrociocchi, W. Polarization of the vaccination debate on facebook. Vaccine 36,
3606–3612 (2018).

[a688] Covolo, L., Ceretti, E., Passeri, C., Boletti, M. & Gelatti, U. What arguments on vaccinations run through youtube videos in italy? a
content analysis. Human vaccines & immunotherapeutics 13, 1693–1699 (2017).

[a689] Alsyouf, M. et al. ‘fake news’ in urology: evaluating the accuracy of articles shared on social media in genitourinary malignancies.
BJU international 124, 701–706 (2019).

[a690] Meleo-Erwin, Z., Basch, C., MacLean, S. A., Scheibner, C. & Cadorett, V. “to each his own”: Discussions of vaccine decision-making
in top parenting blogs. Human vaccines & immunotherapeutics 13, 1895–1901 (2017).

[a691] Bryan, M. A., Gunningham, H. & Moreno, M. A. Content and accuracy of vaccine information on pediatrician blogs. Vaccine 36,
765–770 (2018).

[a692] Kearney, M. D., Selvan, P., Hauer, M. K., Leader, A. E. & Massey, P. M. Characterizing hpv vaccine sentiments and content on
instagram. Health Education & Behavior 46, 37S–48S (2019).

[a693] Du, J., Xu, J., Song, H.-Y. & Tao, C. Leveraging machine learning-based approaches to assess human papillomavirus vaccination
sentiment trends with twitter data. BMC medical informatics and decision making 17, 69 (2017).

[a694] Zhou, X. et al. Using social connection information to improve opinion mining: Identifying negative sentiment about hpv vaccines
on twitter (2015).

[a695] Keelan, J., Pavri, V., Balakrishnan, R. & Wilson, K. An analysis of the human papilloma virus vaccine debate on myspace blogs.
Vaccine 28, 1535–1540 (2010).

[a696] Massey, P. M. et al. Applying multiple data collection tools to quantify human papillomavirus vaccine communication on twitter.
Journal of medical Internet research 18, e318 (2016).

[a697] Dunn, A. G., Leask, J., Zhou, X., Mandl, K. D. & Coiera, E. Associations between exposure to and expression of negative opinions
about human papillomavirus vaccines on social media: an observational study. Journal of medical Internet research 17, e144 (2015).

[a698] Surian, D. et al. Characterizing twitter discussions about hpv vaccines using topic modeling and community detection. Journal of
medical Internet research 18, e232 (2016).

[a699] Eichstaedt, J. C. et al. Psychological language on twitter predicts county-level heart disease mortality. Psychological science 26,
159–169 (2015).

[a700] Du, J. et al. Leveraging deep learning to understand health beliefs about the human papillomavirus vaccine from social media. NPJ
digital medicine 2, 1–4 (2019).

[a701] Zhang, H. et al. Mining twitter to assess the determinants of health behavior toward human papillomavirus vaccination in the united
states. Journal of the American Medical Informatics Association 27, 225–235 (2020).

[a702] Powell, G. A. et al. Media content about vaccines in the united states and canada, 2012–2014: an analysis using data from the vaccine
sentimeter. Vaccine 34, 6229–6235 (2016).

[a703] Wiyeh, A. B. et al. Social media and hpv vaccination: Unsolicited public comments on a facebook post by the western cape department
of health provide insights into determinants of vaccine hesitancy in south africa. Vaccine 37, 6317–6323 (2019).

[a704] Budenz, A. et al. Hpv vaccine, twitter, and gay, bisexual and other men who have sex with men. Health Promotion International 35,
290–300 (2020).

[a705] Krittanawong, C., Tunhasiriwet, A., Chirapongsathorn, S. & Kitai, T. Tweeting influenza vaccine to cardiovascular health community.
European Journal of Cardiovascular Nursing 16, 704–706 (2017).

[a706] Berlinberg, E. J., Deiner, M. S., Porco, T. C. & Acharya, N. R. Monitoring interest in herpes zoster vaccination: analysis of google
search data. JMIR Public Health and Surveillance 4, e10180 (2018).

[a707] Orr, D., Baram-Tsabari, A. & Landsman, K. Social media as a platform for health-related public debates and discussions: the polio
vaccine on facebook. Israel journal of health policy research 5, 1–11 (2016).

[a708] Gunaratne, K., Coomes, E. A. & Haghbayan, H. Temporal trends in anti-vaccine discourse on twitter. Vaccine 37, 4867–4871 (2019).

[a709] Wang, J., Zhao, L., Ye, Y. & Zhang, Y. Adverse event detection by integrating twitter data and vaers. Journal of biomedical semantics
9, 19 (2018).

[a710] Suragh, T. A. et al. Cluster anxiety-related adverse events following immunization (aefi): an assessment of reports detected in social
media and those identified using an online search engine. Vaccine 36, 5949–5954 (2018).

[a711] Dunn, A. G. et al. Mapping information exposure on social media to explain di↵erences in hpv vaccine coverage in the united states.
Vaccine 35, 3033–3040 (2017).

32



[a712] Dyda, A. et al. Hpv vaccine coverage in australia and associations with hpv vaccine information exposure among australian twitter
users. Human vaccines & immunotherapeutics 15, 1488–1495 (2019).

[a713] Pı́as-Peleteiro, L., Cortés-Bordoy, J. & Martinón-Torres, F. Dr google: What about the human papillomavirus vaccine? Human
vaccines & immunotherapeutics 9, 1712–1719 (2013).

[a714] Habel, M. A., Liddon, N. & Stryker, J. E. The hpv vaccine: a content analysis of online news stories. Journal of women’s health 18,
401–407 (2009).

[a715] Keim-Malpass, J., Mitchell, E. M., Sun, E. & Kennedy, C. Using twitter to understand public perceptions regarding the# hpv vaccine:
opportunities for public health nurses to engage in social marketing. Public Health Nursing 34, 316–323 (2017).

[a716] Lama, Y., Hu, D., Jamison, A., Quinn, S. C. & Broniatowski, D. A. Characterizing trends in human papillomavirus vaccine discourse
on reddit (2007-2015): an observational study. JMIR public health and surveillance 5, e12480 (2019).

[a717] Massey, P. M. et al. What drives health professionals to tweet about# hpvvaccine? identifying strategies for e↵ective communication.
Preventing chronic disease 15 (2018).

[a718] Basch, C. H. & MacLean, S. A. A content analysis of hpv related posts on instagram. Human vaccines & immunotherapeutics 15,
1476–1478 (2019).

[a719] Covolo, L. et al. How has the flu virus infected the web? 2010 influenza and vaccine information available on the internet. BMC
Public Health 13, 83 (2013).

[a720] Shah, M. P. et al. Use of internet search data to monitor rotavirus vaccine impact in the united states, united kingdom, and mexico.
Journal of the Pediatric Infectious Diseases Society 7, 56–63 (2018).

[a721] Radzikowski, J. et al. The measles vaccination narrative in twitter: a quantitative analysis. JMIR public health and surveillance 2, e1
(2016).

[a722] Arif, N. et al. Fake news or weak science? visibility and characterization of antivaccine webpages returned by google in di↵erent
languages and countries. Frontiers in immunology 9, 1215 (2018).

[a723] Han, L., Han, L., Darney, B. & Rodriguez, M. I. Tweeting pp: an analysis of the 2015–2016 planned parenthood controversy on
twitter. Contraception 96, 388–394 (2017).

[a724] Baazeem, M. & Abenhaim, H. Google and women’s health-related issues: what does the search engine data reveal? Online journal
of public health informatics 6 (2014).

[a725] Fioretti, B., Reiter, M., Betrán, A. & Torloni, M. Googling caesarean section: a survey on the quality of the information available on
the internet. BJOG: An International Journal of Obstetrics & Gynaecology 122, 731–739 (2015).

[a726] Thompson, E. L. et al. Rethinking preconception care: a critical, women’s health perspective. Maternal and child health journal 21,
1147–1155 (2017).

[a727] Gesualdo, F. et al. Does googling for preconception care result in information consistent with international guidelines: a comparison
of information found by italian women of childbearing age and health professionals. BMC Medical Informatics and Decision Making
13, 14 (2013).

[a728] D’Ambrosio, A. et al. Web-based surveillance of public information needs for informing preconception interventions. PloS one 10,
e0122551 (2015).

[a729] Wood, L. N. et al. Public awareness of uterine power morcellation through us food and drug administration communications: Analysis
of google trends search term patterns. JMIR public health and surveillance 4, e47 (2018).

[a730] Salem, J. et al. Online discussion on# kidneystones: a longitudinal assessment of activity, users and content. PloS one 11, e0160863
(2016).

[a731] Dreher, P. C., Tong, C., Ghiraldi, E. & Friedlander, J. I. Use of google trends to track online behavior and interest in kidney stone
surgery. Urology 121, 74–78 (2018).

[a732] Ahmed, S. et al. User-driven conversations about dialysis through facebook: a qualitative thematic analysis. Nephrology 22, 301–307
(2017).

[a733] Rossignol, L. et al. A method to assess seasonality of urinary tract infections based on medication sales and google trends. PloS one
8, e76020 (2013).

[a734] Lotto, M., Aguirre, P. E., Strieder, A. P., Cruvinel, A. F. & Cruvinel, T. Levels of toothache-related interests of google and youtube
users from developed and developing countries over time. PeerJ 7, e7706 (2019).

[a735] Cruvinel, T. et al. Digital behavior surveillance: monitoring dental caries and toothache interests of google users from developing
countries. Oral diseases 25, 339–347 (2019).

[a736] Heaivilin, N., Gerbert, B., Page, J. & Gibbs, J. Public health surveillance of dental pain via twitter. Journal of dental research 90,
1047–1051 (2011).

[a737] Strieder, A. P., Aguirre, P. E. A., Lotto, M., Cruvinel, A. F. P. & Cruvinel, T. Digital behavior surveillance for monitoring the interests
of google users in amber necklace in di↵erent countries. International journal of paediatric dentistry 29, 603–614 (2019).

[a738] Russo, G. I. et al. Consulting “dr google” for sexual dysfunction: a contemporary worldwide trend analysis. International journal of
impotence research 1–7 (2019).

[a739] Sansone, A. et al. The sentiment analysis of tweets as a new tool to measure public perception of male erectile and ejaculatory
dysfunctions. Sexual Medicine 7, 464–471 (2019).

[a740] Muellner, U. J. et al. Timely reporting and interactive visualization of animal health and slaughterhouse surveillance data in switzer-
land. Frontiers in veterinary science 2, 47 (2015).

[a741] Abreo, N. A. S., Thompson, K. F., Arabejo, G. F. P. & Superio, M. D. A. Social media as a novel source of data on the impact of
marine litter on megafauna: The philippines as a case study. Marine pollution bulletin 140, 51–59 (2019).

33



[a742] Qiu, R., Hadzikadic, M., Yu, S. & Yao, L. Estimating disease burden using internet data. Health informatics journal 25, 1863–1877
(2019).

[a743] Whitsitt, J., Karimkhani, C., Boyers, L. N., Lott, J. P. & Dellavalle, R. P. Comparing burden of dermatologic disease to search interest
on google trends. Dermatology online journal 21 (2015).

[a744] Reddy, D. & Colman, E. A comparative toxidrome analysis of human organophosphate and nerve agent poisonings using social
media. Clinical and translational science 10, 225–230 (2017).

[a745] Vilela, R. et al. social network for the surveillance and prevention of workplace accidents. Work 41, 3123–3129 (2012).

[a746] Bragazzi, N. L., Dini, G., Toletone, A., Brigo, F. & Durando, P. Leveraging big data for exploring occupational diseases-related
interest at the level of scientific community, media coverage and novel data streams: the example of silicosis as a pilot study. PLoS
One 11, e0166051 (2016).

[a747] Workewych, A. M. et al. Twitter and traumatic brain injury: A content and sentiment analysis of tweets pertaining to sport-related
brain injury. SAGE open medicine 5, 2050312117720057 (2017).

[a748] Jha, A., Lin, L. & Savoia, E. The use of social media by state health departments in the us: analyzing health communication through
facebook. Journal of community health 41, 174–179 (2016).
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