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Abstract
Background: Forecasting of COVID-19 daily confirmed cases has been one of the several challenges posed to the
governments and health sectors on a global scale. To facilitate informed public health decisions, the concerned parties
rely on short-term daily projections generated via predictive modeling. We calibrate stochastic variants of growth
models and the standard SIR model into one Bayesian framework to evaluate their short-term forecasts. Results: We
implement rolling-origin cross-validation to compare the short-term forecasting performance of the stochastic
epidemiological models and the autoregressive moving average model across the top 20 countries with the most
confirmed cases as of August 22, 2020. Conclusion: In summary, it was noted that none of the models proved to be
golden standards across all the regions in their entirety, while all outperformed the autoregressive moving average
model in terms of the accuracy of forecast and interpretability.
Key words: COVID-19; SARS-CoV-2; Stochastic growth model; Stochastic SIR model; Time-series cross-validation.

Background

COVID-19, a respiratory disease coronavirus SARS-CoV-2, has
rapidly created an ongoing global pandemic. It has become one
of the leading causes of deaths in the United States (U.S.) and
continues to spread fast in most other countries. Given the ex-
tent of the physical and economic suffering caused by the pan-
demic, there is an urgent public health need to better predict
the spread of COVID-19 locally, nationally and globally. Since
the emergence of the COVID-19 outbreak, a myriad of predic-
tive modeling approaches have been proposed to predict trends
of the disease to allow public health officials to develop effec-
tive policies and measures to suppress spread and minimize
casualties. The five general approaches to forecast the num-
ber of new cases or the expected total mortality caused by the

COVID-19 exist: 1) time-series forecasting such as autoregres-
sive integrated moving average (ARIMA) [1, 2]; 2) growth curve
fitting based on the generalized Richards curve (GRC) or its
special cases [3, 4, 5, 6, 7]; 3) compartmental modeling based
on the susceptible-infectious-removed (SIR) models or their
derivations [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]; 4) agent-based
modeling [19]; 5) artificial intelligence (AI)-inspired modeling
[20, 21, 22, 23].

Each approach, whether deterministic or stochastic, has its
own strengths. For instance, the ARIMA model combines the
regressive process and the moving average, allowing to pre-
dict a given time series by considering its own lags and lagged
forecast error. Curve fitting approaches (also known as phe-
nomenological modeling) fit a curve to the observed number of
cumulative confirmed cases or deaths with a certain error struc-
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ture (e.g. Gaussian or Poisson), enabling meaningful interpre-
tation through curve parameters while accounting for measure-
ment errors. Compartmental modeling (also known as mech-
anistic modeling) approaches assign partitions of the popula-
tion to compartments corresponding to different stages of the
disease and characterize the disease transmission dynamics by
the flow of individuals through compartments. Agent-based
modeling approaches use computer simulations to study the
dynamic interactions among the agents (e.g. people in epi-
demiology) and between an agent and the environment. AI-
based modeling approaches usually combines time series, clus-
tering, and forecasting, resulting in an exemplary predictive
performance. There has been a growing debate among re-
searchers over model performance evaluation and how to find
the best model appropriate for a certain feature (cases, deaths,
etc.), a particular regional level (county, state, country, etc.),
and other parameters. Fair evaluation and comparison of the
output of different forecasting methods have remained elusive
[24] since models vary in their complexity and the number of
variables and parameters that characterize the dynamic states
of a system.

Although predictive models for infectious diseases have
been compared in the literature, to our best knowledge, ex-
isting work does not systematically compare performances,
specifically with the same amount of available information.
We calibrate stochastic variants of six different growth mod-
els (i.e. logistic, generalized logistic, Richards, generalized
Richards, Bertalanffy, and Gompertz) and the standard SIR
model, all of which can be specified by an ordinary differential
equation(ODE), into one flexible Bayesian modeling framework.
The main reason for limiting our analysis to these two model-
ing approaches is that both not only produce good short and
long-term forecasts, but also provide useful insights to under-
stand the disease dynamics of COVID-19. The growth models
provide an empirical approach without a specific theory on the
mechanisms that give rise to the observed patterns in the cu-
mulative infection data, while the compartmental models in-
corporate key mechanisms involved in the disease transmis-
sion dynamics to explain patterns in the observed data.

In our Bayesian modeling framework, the bottom-level is
represented by a negative binomial model that directly models
infection count data and accounts for the over-dispersed ob-
servational errors. The top-level is derived from a choice of
growth or compartmental models that characterizes a certain
disease transmission dynamic through ODE(s). The Markov
chain Monte Carlo (MCMC) algorithm is used to sample from
the posterior distribution. The short-term forecasts are made
from the resulting MCMC samples. We perform the rolling-
origin cross-validation procedure to compare the prediction
error of different stochastic models. In terms of regions, we
used the top 20 countries in terms of confirmed case num-
bers for a country-level analysis. Observations included that
1) as the models learned more, the predictive performance
improved in general for all regions; 2) none of the models
proved to be the golden standard across all the regions, while
the ARIMA model underperformed all stochastic models pro-
posed in the paper. We designed a graphical interface that al-
lows users to interact with future trends of COVID-19 at dif-
ferent geographic locations in the U.S. based on the real-time
COVID-19 data. This web portal is updated daily and used
to inform local policy-makers and the general public (https:
//qiwei.shinyapps.io/PredictCOVID19/).

Data Description

Let C = (C1, . . . , CT) be a sequence of cumulative confirmed case
numbers observed at T successive equally spaced points in time

(e.g. day) in a specific region, where each entry Ct ∈ N for t =
1, . . . , T. Further let C0 be the initial value and Ċ = (Ċ1, . . . , ĊT)
be the lag one difference of C, where Ċ1 = C1–C0 and each follow-
ing entry Ċt = Ct – Ct–1, t = 2, . . . , T, i.e. the difference between
two adjacent observations. In the analysis and modeling of a
series of infectious disease daily report data, the time-series
data could also be the cumulative death numbers, recovery case
numbers, or their sums, denoted by D (Death), E (Recovery),
and R (Removed), and their corresponding new case numbers,
denoted by Ḋ, Ė, and Ṙ. Assuming a closed population with size
N, the time-series data could also be the number of suscepti-
ble people, denoted by S, with each entry St = N – Ct. In reality,
only confirmed cases and deaths are reported in most regions.
Recovery data are not available or suffer from under-reporting
issues even if existing. Thus, our main goal is to make predic-
tions of the future trend of an infectious diseases only based
on the daily confirmed cases Ċ.

Analyses

In this section, we discuss the findings of COVID-19 data anal-
ysis. We first implemented each of the growth models listed
in Table 1 and the standard SIR model under the proposed
Bayesian framework for the top 20 countries with the most
confirmed cases as of August 22, 2020. Note that the in-
put data was the sequence of daily confirmed cases Ċ only,
which is accessible from the Johns Hopkins University Center
for Systems Science and Engineering COVID-19 Data Repos-
itory (https://github.com/CSSEGISandData/COVID-19/). Several
recent COVID-19 studies also based their analyses on this re-
source [25, 26, 27]. For our MCMC algorithms, we set 100, 000
iterations with the first half as burn in and chose weakly in-
formative priors. Both numerical and graphical summaries for
posterior inference and short-term forecasting are presented.
Our final goal is to compare the predictive performance of all
models, taking ARIMA as a benchmark model.

Forecasting of daily confirmed cases in the U.S.

We first present the forecasting of the U.S. daily confirmed
cases made by the ARIMA and our Bayesian framework with
the choices of a GRC or SIR model. As we can see from Fig-
ures 1, the GRC model demonstrates a downwards trend, the
SIR model displays an upward trend, while the ARIMA model
predicts a flat trajectory of daily predicted cases. A natural fea-
ture of epidemiological interest is the estimated final size and
date of the epidemic. Growth models comprise of a model pa-
rameter K that estimates the final epidemic size. On the other
hand, for the SIR model, there is no available parameter that
estimates the final size. Hence, the final case count is approx-
imated to be the predictive mean that converges to a certain
value from the related MCMC samples. A similar strategy is
applied to obtain the predicted mean of the final case counts
using the ARIMA model [2]. The estimated cumulative con-
firmed cases by the end of 2020 are projected to be 13.1, 106.1,
and 10.0 (in millions), fitting the GRC, SIR, and ARIMA mod-
els, respectively. Under the assumption that the epidemic lasts
until the end of 2021, the final epidemic sizes are predicted to
be 13.4, 187.3, and 22.0 (in millions) by the three models, re-
spectively. To account for the reasons behind the discrepancy
in forecasts and to measure the validity of the results, there is
a need for an appropriate strategy to evaluate and compare the
predictive performance of the concerned models.

https://qiwei.shinyapps.io/PredictCOVID19/
https://qiwei.shinyapps.io/PredictCOVID19/
https://github.com/CSSEGISandData/COVID-19/
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Figure 1. The one-month forecasting of new daily confirmed cases in the U.S.
made by the (a) GRC and (b) SIR model under the proposed Bayesian frame-
work, as well as the benchmark (c) ARIMA model. The black circles represent
the observed case numbers since the beginning of March, 2020, while the col-
ored circles and ribbons represent the predicted means and 95% prediction
intervals, respectively.

Model comparison through rolling-origin cross-
validation

Cross-validation (CV) is a resampling procedure used to evalu-
ate regression and classification models on a limited data sam-
ple. The procedure randomly splits all data samples into two
parts: training and testing sets, where the former is used to fit
a model and the latter is used to evaluate the model’s predic-
tion performance in terms of a certain error measure. The key
assumption of CV is that all data points should be independent
and identically distributed (i.i.d.). Unfortunately, time-series
data is serially autocorrelated i.e. the observations are depen-
dent on the time they were recorded on. To circumvent this sit-
uation, the rolling-origin CV (ROCV) technique was proposed
[28]. It splits the data into training and testing sets without
hampering the i.i.d. assumption. An adaptation of this method
is used here to evaluate the short-term forecasting perfor-
mance among different top-level choices under the proposed
Bayesian framework and ARIMA. Figure 2 shows the ROCV rep-
resentation for an example of time-series data (T = 17). In
our analysis, the choice of initial training sample size was set
to seven days so as to evaluate how well the models are able
to generate forecasts during the initial phase of the pandemic,
while the testing sample size was chosen to be three days to
meet with our objective of comparing short-term forecasting
performance. We define the first day t = 1 as the date when the
100-th case was confirmed, so it varied for different countries.

A CV algorithm needs a predictive error metric that could
quantify model performance in terms of forecasting accuracy.
Root mean square error (RMSE) and mean absolute deviations
(MAD) are candidates of error measures for out-of-bag pre-
dictions but are dependent on scale. As a result, large values
may influence the errors to be larger. Mean absolute percentage
error (MAPE) has been a widely used predictive measure due to
its interpretability and its independence from scale. Although,
the distribution of such percentage errors can be skewed if the

time

Figure 2. A visual guide to rolling-origin cross-validation (ROCV), where the
total sample size T = 17, the initial training sample size is 9, and the testing
sample size is 3. The green, orange, and white circles are training, testing, and
unused samples in one CV iteration.

Algorithm 1 Rolling-origin cross-validation (ROCV)
1: Store the data starting day 1 to day T
2: Initialize the number of initial training observations k (k =

7)
3: Set the size of the testing set ω (ω = 3)
4: while k +ω ≤ T do
5: Learn the first k observations (green circles) as training

data
6: Hold out the next k + 1, . . . , k +ω observations (orange

circles) as the testing data
7: Discard the remaining T – (k + ω) observations (white

circles)
8: Compute an out-of-bag prediction error measure on the

testing set (orange circles)

sMAPE = 2
ω

k+ω∑
t=k+1

∣∣∣∣ et
ŷt + yt

∣∣∣∣
9: k = k + 1

10: end while

data consists of values close to zero. Moreover, there is a possi-
bility of this measure being undefined by having a zero in the
denominator. To address these issues, an improved percent-
age error metric namely, symmetric mean absolute percentage er-
ror (sMAPE) was proposed [28]. This metric was considered in
our analysis as it circumvented the problem of having an unde-
fined measure and provided better symmetry as compared to
MAPE. In all, we summarize the evaluation procedure used in
this paper as follows.

Figure 3 displays the smoothed sMAPE curves generated by
the ROCV across time for the top 20 countries with respect to
the highest cumulative confirmed cases as of August 22, 2020.
As we can see, all the models performed poorly in the early
stage but as more and more data became available to be learned,
the predictive performance gradually improved as the sMAPE
dropped. It can also be observed that the ARIMA and SIR mod-
els were performing a lot worse in general than the growth
models in the early phase. This could be attributed to the fact
that ARIMA not having the growth specific parameters, unable
to detect the early growth. On the other hand, making as-
sumptions of a fixed transmission rate γ and due to the under-
reported data issue, SIR performed poorly. While, the stochas-
tic growth curves were able to learn the trend of epidemiolog-
ical data in the initial phase with the help of the growth and
scaling parameters. Although, towards the latter half of the
epidemic, all the models were performing equally well. Hence,
it is hard to conclude that any one particular dominated the
entire duration of the epidemic.

Now, the question arises of whether we could pick one
model which has the best predictive performance on an aver-
age for any particular country. To answer that we construct
a Cleveland dot plot, as shown in Figure 4, that allows us to
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Figure 3. The smoothed sMAPE curves generated by the rolling-origin cross-validation (ROCV) over time for the top 20 countries with the most confirmed cases
as of August 22, 2020.
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Figure 4. The Cleveland dot plot of the averaged sMAPE generated by the
rolling-origin cross-validation (ROCV) for the top 20 countries with the most
confirmed cases as of August 22, 2020.

rank the model performance averaged over the entire duration,
per country. Furthermore, the countries are arranged in de-
scending order of predictive performance from the bottom to
the top.

Discussion

It is observed that all the models had the best and the worst
predictive performances for Italy and South Africa respectively.

The Richards model had the minimum averaged sMAPE for
forecasting cumulative case counts in the U.S. While, the GRC
model had the lowest averaged sMAPE across seven countries
followed by the GLC model with four. The SIR model was the
best performer for South Africa. The Richards, Bertalanffy, and
Gompertz models also had their fair share of predictive dom-
inance in the remaining countries. On the other hand, the
ARIMA model was a below-average performer across all coun-
tries.

In general, the GRC and GLC models were consistent per-
formers throughout all countries due to their ability to detect
sub-exponential growth rates at an early stage of an epidemic.
In most cases, the GRC and Richards models were the best per-
formers in countries that did not have symmetric ‘S’-shaped
growth patterns and displayed randomness as well as multiple
peaks. This is due to the inclusion of the scale parameter α
that could account for any asymmetry in the data. Countries
including the U.S., Peru, Saudi Arabia, Iran, Turkey, and France
display multiple peaks in the daily confirmed case counts. As a
result, the Richards model performs the best in the U.S., United
Kingdom (U.K.), and Peru, while the GRC model dominates in
the rest of the countries having multiple peaks. Moreover, a
random structure was observed in countries like Brazil, Chile,
Bangladesh, and Mexico. GRC being the most complex model
out of all the other growth models performed the best in these
countries. On the other hand, the GLC model usually performed
better in countries that had a single peak and attributed an ap-
proximate ‘S’-shaped curvature. The GLC model was able to
generalize better than the GRC model when the data was well
structured and had less randomness. Countries including Ar-
gentina, Pakistan, Germany, Colombia, and India attributed a
single peak without much randomness. As a result, the GLC
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model was a better performer in these countries. Whereas, in
the case of South Africa, the usual growth models performed
the worst due to a staggering growth rate in the initial and the
middle phase of the epidemic. The SIR model performed the
best out of the worst while the logistic model performed well
due to its simplicity. On the other hand, the Gompertz model
was the best performer in Russia, Spain, and Italy as it gener-
alizes better than the other models.

Conclusion

In this paper, we developed a number of stochastic variants of
growth and compartmental models under a unified Bayesian
framework. A theoretical comparison of growth models has
been discussed in greater detail in the literature [5, 6, 7, 29, 30,
31, 32, 33]. However, to our best knowledge, no work system-
atically compares their performances between all pairs as well
as against a compartmental model such as the SIR model and
a time-series forecasting model such as the ARIMA. Based on
our analysis, we conclude that the proposed Bayesian frame-
work not only allows room for interpretation but also offers an
exemplary predictive performance when it comes to COVID-19
daily report data. Moreover, ARIMA being a pure learning al-
gorithm is not able to match with the forecasting accuracy of
stochastic models, let alone the model parameters of ARIMA do
not provide any information on epidemiological interests.

For future work, we aim to develop an ensemble model,
which can aggregate the prediction of each base model and re-
sults in once final prediction for the unseen data. Note that
a group of researchers have recently introduced a GGM-GLM
ensemble model [32] and compared forecasting performances
of that with the individual models for the Ebola Forecasting
Challenge [34]. It was reported that the ensemble model out-
performed the others under some circumstances. We also plan
to perform long-term forecasting evaluation using some epi-
demic features described in [24]. A sub-epidemic wave model
that could detect multiple peaks in the data has been recently
developed [35], which has the potential to improve forecasting
performance. Thus, developing stochastic growth models via
the addition of a change-point detection mechanism to account
for multiple peaks is worth investigating. In this regard, we
have demonstrated that an approach that combines a change-
point detection model and a stochastic SIR model could signif-
icantly improve the short-term forecasting of the new daily
confirmed cases [36].

Potential Implications

The proposed Bayesian epidemiological models in a unified
framework lay the foundation of an integrative approach to
model and predict epidemiological data with tremendous accu-
racy and interpretability. Growth and compartmental models
obtained as solutions to ordinary differential equations (ODEs)
are implemented to model epidemiological data under a deter-
ministic setting as they provide a natural framework represen-
tative of such data types. However, the estimated model pa-
rameters crucial for providing insights into the nature of the
epidemic are unreliable under the deterministic setting due to
identifiability issues. The stochastic models mimic the struc-
ture of epidemiological models and incorporate parameter spe-
cific priors and measurement error to solve these issues. Re-
searchers can follow a similar setup to predict cases and deaths
caused by an epidemic at any geographical level given the avail-
ability of data. Furthermore, the stochastic SIR model can be
augmented by incorporating mobility, hospitalization, and re-
covery data resulting in better forecasts. This work also pro-

motes an algorithmic strategy to measure forecasting perfor-
mances of time series models in general.

On a much broader scale, this work encourages researchers
to exploring probabilistic approaches to model epidemiological
data as well as developing computationally efficient algorithms
that further meet time and cost constraints.

Methods

In this section, we present a bi-level Bayesian framework for
predicting new daily confirmed cases during a pandemic in a
closed society. The bottom level directly models the observed
counts while accounting for measurement errors. Two alter-
natives for the top level are then introduced, both of which
characterizes the epidemic dynamics through growth curve or
compartmental trajectories, respectively. Before introducing
the main components, we summarize the possibly observable
data as follows.

Bottom-level: Time-series count generating process

We consider the new case number observed at time t, i.e. Ċt,are sampled from a negative binomial (NB) model,
Ċt ∼ NB(g(Ct–1,Θ),φ), t = 2, . . . , T

as it automatically accounts for measurement errors and
uncertainties associated with the counts. Here, we use
NB(µ,φ),µ,φ > 0 to denote a NB distribution with expecta-
tion µ and dispersion 1/φ. We assume this stochastic pro-
cess is a Markov process, where the present state (at time t)
depends only upon its previous state (at time t – 1). There-
fore, the NB mean is a function, denoted by g(·), of the case
number observed at time t – 1, characterized by a set of inter-
pretable/uninterpretable model parameters Θ. With this pa-
rameterization, the NB variance is µ + µ2/φ, indicating that
φ controls the variance of measurement error. A small value
leads to a large variance to mean ratio, while a large value ap-
proaching infinity reduces the NB model to a Poisson model
with the same mean and variance. The probability mass func-
tion of a NB random variable Y is Γ(Y+φ)

Y!Γ(φ)
(
φ
λ+φ

)φ (
λ
λ+φ

)Y .
Thus, we can write the full data likelihood as
f(Ċ|Θ,φ) =
T∏
t=2
Γ(Ċt +φ)
Ċt!Γ(φ)

(
φ

g(Ct–1,Θ) +φ
)φ ( g(Ct–1,Θ)

g(Ct–1,Θ) +φ
)Ċt . (1)

For the prior distribution of the dispersion parameter φ, we
choose a gamma distribution, φ ∼ Ga(aφ, bφ). We recommend
small values, such as aφ = bφ = 0.001, for a non-informative
setting [37]. Note that the proposed framework can be also
viewed as a stochastic discrete-time state-space model with a
negative binomial error structure. The proposed Bayesian mod-
els, on average, mimics the epidemic dynamics and is more
flexible than those deterministic epidemiological models, as it
accounts for measurement error and has the potential to incor-
porate existing information into the prior structure of Θ.

Top-level I: Growth model

We first discuss the choices of g(·) when implementing growth
models. The development of a variety of growth curves orig-
inates from population dynamics [38] and growth of biologi-
cal systems [39, 40, 41, 42] modeling. A number of growth
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curves have been adapted in epidemiology for trend characteri-
zation and forecasting of an epidemic, such as the severe acute
respiratory syndrome (SARS) [43, 44], dengue fever [45, 46],
pandemic influenza A (H1N1) [47], Ebola virus disease (EVD)
[29, 30], Zika fever [31], and COVID-19 [3, 6, 7, 48].

The underlying assumption is that the rate of growth of a
population, organism, or infectious individuals eventually de-
clines with size. The logistic curve (also known as sigmoid
curve) is the simplest growth curve of continuous time u ∈ R.
It is a non-negative symmetric ‘S’-shaped curve with equation
y(u) = K1+exp(–λ(u–u0)) , where u0 is the midpoint, K is the maxi-
mum value, and λ reflects the steepness of the curve. It is clear
to see that y(u) approaches K when u → ∞, while it converges
to zero when u→ –∞. In fact, the continuous curve y(u) is the
solution of a first-order non-linear ODE,

dy(u)
du = λy(u)

(
1 – y(u)K

)

with condition y(u0) = K/2, where dy(u)/du can be interpreted
as time-variant growth rate of the curve y. The above ODE
reveals: 1) a non-negative growth rate, dy(u)/du > 0 as y(u) ∈
[0,K]; 2) an approximately exponential growth at the initial
stage, y(u) ≈ exp(λu) as dy(u)/du ≈ λy(u) when y(u) → 0; 3)
no growth at the final stage, y(u) dy(u)/du = 0 when y(u) →
K; 4) a maximum growth rate of λK/4 occurred when y(u) =
K/2, indicated by d2y(u)/du2 = λdy(u)/du (1 – 2y(u)/K). Based
on those curve characteristics, we can use the growth curve to
characterize the trend of cumulative confirmed cases C.

In this paper, we mainly consider a family of growth curves
that are derived from the generalized Richards curve (GRC),
which is the solution to the following ODE,

dy(u)
du = λy(u)p

[
1 –
( y(u)
K

)α] . (2)

For those model-specific parameters in the context of epidemi-
ology, K is the final epidemic size and should be an integer in
the range of (0,N], where N is the total population, λ ∈ R+ is
the infectious rate at early epidemic stage, p ∈ (0, 1) is known
as scaling of growth, and α ∈ R+ controls the curve symme-
try. As our observed infectious disease data are usually counts
collected at successive equally spaced discrete time points, we
formulate the NB mean function g(·) based on the discrete ver-
sion of (2),

g(Ct–1,Θ = {K,λ, p,α}) = λCpt–1
[
1 –
(Ct–1
K

)α] . (3)

Table 1 provides a list of g(·)’s for growth curves with their
characteristics. All the listed growth curves have been utilized
and discussed in previous epidemiological studies. We include
all of those choices in our framework excluding the last one,
which is based on the generalized growth curve (GGC), because
it lacks the final epidemic size K specification.

Without any existing information, we assume that K is from
a discrete uniform distribution in its range and γ is from
a gamma or a beta distribution, depending on the choice of
growth curves. For instance, for both logistic and Gompertz
curves, we assume γ ∼ Beta(aγ, bγ), a natural modeling choice
for parameter value restricted to the (0, 1) interval, and sug-
gest to choose aγ = bγ = 1 for a uniform setting; otherwise,
we place a gamma prior, i.e. γ ∼ Ga(aγ = 0.001, bγ = 0.001).
For the choice of GRC and generalized logistic curve (GLC), the
prior of p is chose to be Beta(ap = 1, bp = 1). Lastly, we set
α ∼ Ga(aγ = 0.001, bγ = 0.001) for fitting a GRC or Richards
curve.

Top-level II: Compartmental model

The susceptible-infected-removed (SIR) model was developed
to simplify the mathematical modeling of human-to-human
infectious diseases by Kermack and McKendrick [50]. It is a
fundamental compartmental model in epidemiology. At any
given time u, each individual in a closed population with size N
is assigned to three distinctive compartments with labels: sus-
ceptible (S), infectious (I), or removed (R, being either recovery
or dead). The standard SIR model describes the flow of people
from S to I and then from I to R by the following set of nonlinear
ODEs: 

dS(u)
du = –βS(u) I(u)N
dI(u)
du = βS(u) I(u)N – γI(u)
dR(u)
du = γI(u)

,

where S(u), I(u), and R(u) are the population numbers of sus-
ceptible, infectious, and removed compartments measured in
time u, subjecting to S(u) + I(u) + R(u) = N, ∀u. Another na-
ture constraint is dS(u)/du + dI(u)/du + dR(u)/du = 0. Here,
β ∈ R+ is the disease transmission rate, γ ∈ R+ is the removal
rate, and their ratio R0 = β/γ is defined as the basic repro-
ductive number. The rationale behind the first equation is that
the number of new infections during an infinitesimal amount
of time, –dS(u)/du, is equal to the number of susceptible peo-
ple, S(u), times the product of the contact rate, I(t)/N, and the
disease transmission rate β. The third equation reflects that
the infectious individuals leave the infectious population per
unit time, dI(u)/du, as a rate of γI(u). The second equation fol-
lows immediately from the first and third ones as a result of
dS(u)/du + dI(u)/du + dR(u)/du = 0. Assuming that only a small
fraction of the population is infected or removed in the onset
phase of an epidemic, we have S(u)/N ≈ 1 and thus the second
equation reduces to dI(u)/du = (β – γ)I(u), revealing that the
infectious population is growing if and only if β > γ. As the
expected lifetime of an infected case is given by γ–1, the ratio
R0 = β/γ is the average number of new infectious cases di-
rectly produced by an infected case in a completely susceptible
population. The so called basic reproductive number is a good
indicator of the transmissibility of an infectious disease.

In this paper, we only consider the standard SIR model,
although it is still feasible to design g(·)’s from its vari-
ations (see a comprehensive summary [51]), such as the
susceptible-infectious (SIS) model, the susceptible-infectious-
recovered-deceases (SIRD) model, the susceptible-exposed-
infectious-removed (SEIR) model, the susceptible-exposed-
infectious-susceptible (SEIS) model, and their versions with
the maternally-derived immunity compartment [52], as well
as the recently developed extended-SIR (eSIR) model [14]. For
modeling discrete time-series data, we use the discrete-time
version of the standard SIR model,


Ṡt = –βSt–1 It–1

N
İt = βSt–1 It–1

N – γIt–1
Ṙt = γIt–1

. (4)

The model has three trajectories, one for each compartment.
The compositional nature of the three trajectories implies that
we only need two of the three sequence data, e.g. St = N–Ct and
Rt for t = 1, . . . ,n. However, recovery data only exist in few re-
gions, and suffer from under-reporting issue even if existing,
which makes both model inference and predictions infeasible.
Alternatively, we consider both of the removed and actively in-
fectious cases as missing data and mimic their relationship in
spirit to some compartmental models in epidemiology. Specif-
ically, we assume the number of new removed cases at time t,
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Table 1. List of g(·)’s functions based on growth curves
Models g(Ct–1,Θ) Parameters Θ Curve y(u) y(u) at the turning point Examples
GRC λCpt–1

[1 – ( Ct–1
K

)α]
K ∈ N, N/A (

p
p+α
)1/α

K [7, 29, 31]
λ ∈ R+,
p ∈ (0, 1),
α ∈ R+

Richards λCt–1
[1 – ( Ct–1

K

)α]
K ∈ N, K

(1 + A exp(–λαu))–1/α, ( 11+α
)1/α K [43, 44, 45, 46, 47]

λ ∈ R+, where A = –1 + ( K
y(0)
)α

α ∈ R+
GLC λCpt–1

(1 – Ct–1
K

)
K ∈ N, N/A p

p+1K [7, 35, 32, 33]
λ ∈ R+,
p ∈ (0, 1)

Logistic λCt–1
(1 – Ct–1

K

)
K ∈ N, K

(1 + A exp(–λu))–1, 12K [3, 6, 7, 29, 30]
λ ∈ (0, 1) where A = –1 + K

y(0)
Bertalanffy λC

23
t–1
[
1 – ( Ct–1

K

) 13
]

K ∈ N, K
(1 + A exp(– 13γK–1/3u))3, 827K [6]

λ ∈ R+ where A = 1 – ( y(0)
K

)1/3

Gompertz λCt–1 log K
Ct–1 K ∈ N, K exp(A exp(–λu)), 1

eK [6]
λ ∈ (0, 1) where A = log y(0)

K

GGC λCpt–1 λ ∈ R+, (
A + λu(1 – p))1/(1–p) N/A [7, 31, 32, 33, 49]

p ∈ (0, 1) where A = y(0)1–p

Abbreviations: GRC is generalized Richards curve; GLC is generalized logistic curve; GGC is generalized growth curve.

i.e. Ṙt, is sampled from a Poisson distribution with mean γIt–1,that is, Ṙt ∼ Poi(γIt–1) = Poi(γ(N–Ct–1 –Rt–1)), where γ should
be specified. Such a strategy but with different error structure
was also considered in some other compartmental models in
epidemiology [16, 53, 54]. We can estimate the value of γ from
publicly available high-quality data where confirmed, deaths,
and recovery cases are all well-documented, or from prior epi-
demic studies due to the same under-reporting issue in actual
data. In this paper, we choose the removal rate γ = 0.1 as sug-
gested by Pedersen and Meneghini [55] and Weitz et al. [56].
Based on this simplification, we rewrite the first equation in
(4) as,

(N – Ct) – (N – Ct–1) = –β(N – Ct–1)N – Ct–1 – Rt–1
N ,

resulting in

Ċt = β(N – Ct–1)N – Ct–1 – Rt–1
N .

Thus, we formulate the NB mean function g(·) for the standard
SIR model as,

g(Ct–1,Θ = {β}|R) = β(N – Ct–1)N – Ct–1 – Rt–1
N , (5)

where R can be sequentially inferred from C.

Without any existing information, in our Bayesian frame-
work we assume β from a gamma distribution with hyperpa-
rameters that makes both the mean and variance of the trans-
formed variable R0 = β/γ equal to 1, that is, β ∼ Ga(1, 1/γ).

Model Fitting

In this section, we briefly describe the MCMC algorithm for
posterior inference and forecasting. Our Bayesian inferential
strategy allows us to simultaneously infer all model-specific
parameters and quantify their uncertainties.

MCMC algorithms

We first describe how to update the dispersion parameter φ in
the proposed Bayesian framework, as it does not depend on
the choice of models. At each MCMC iteration, we perform the
following step:

Update of dispersion parameter φ: We update φ by using
a random walk Metropolis-Hastings (RWMH) algorithm. We
first propose a newφ∗, of which logarithmic value is generated
from N(logφ,τ2

φ

) and then accept the proposed valueφ∗ with
probability min(1,mMH), where the Hastings ratio is

mMH = f(Ċ|φ∗,Θ)
f(Ċ|φ,Θ)

π (φ∗)
π (φ)

J (φ← φ∗)
J (φ∗ ← φ) .

Here we use J(· ← ·) to denote the proposal probability distri-
bution for the selected move. Note that the last term, which is
the proposal density ratio, cancels out for this RWMH update.
Top-level as a growth model
We only present the updates of each parameters in the GRC
model, as all other derivative models are its special cases. Our
primary interest lies in the estimation of the final pandemic
size K and the infectious rate at early epidemic stage λ.

Update of final epidemic size parameter K: We update K by
using a RWMH algorithm. We first propose a new K∗, of which
logarithmic value is generated from a truncated Poisson distri-
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bution Poi (logK) within [log CT, logN] and then accept the pro-
posed value K∗ with probability min(1,mMH), where the Hast-
ings ratio is

mMH = f(Ċ|φ,K∗,λ, p,α)
f(Ċ|φ,K,λ, p,α)

π (K∗)
π (K)

J (K← K∗)
J (K∗ ← K) .

Note that with a discrete uniform prior on K, the last two terms
cancel out for this RWMH update.

Update of infectious rate parameter λ: We update λ by us-
ing a RWMH algorithm. We first propose a new λ∗, of which
logarithmic value is generated from N(logλ,τ2

λ

) and then
accept the proposed value λ∗ with probability min(1,mMH),
where the Hastings ratio is

mMH = f(Ċ|φ,K,λ∗, p,α)
f(Ċ|φ,K,λ, p,α)

π (λ∗)
π (λ)

J (λ← λ∗)
J (λ∗ ← λ) .

Note that the last term, which is the proposal density ratio,
cancels out for this RWMH update.

Update of growth scaling parameter p: We update p by us-
ing a RWMH algorithm. We first propose a new p∗, of which
logarithmic value is generated from a truncated normal dis-
tribution N(log p,τ2

p
) within [–∞, 0] and then accept the pro-

posed value p∗ with probability min(1,mMH), where the Hast-
ings ratio is

mMH = f(Ċ|φ,K,λ, p∗,α)
f(Ċ|φ,K,λ, p,α)

π (p∗)
π (p)

J (p← p∗)
J (p∗ ← p) .

Note that with a uniform prior on p over its range [0, 1], the
last two terms cancel out for this RWMH update.

Update of symmetry parameter α: We update α by using a
RWMH algorithm. We first propose a new α∗, of which loga-
rithmic value is generated from N(logα,τ2

α

) and then accept
the proposed value α∗ with probability min(1,mMH), where the
Hastings ratio is

mMH = f(Ċ|φ,K,λ, p,α∗)
f(Ċ|φ,K,λ, p,α)

π (α∗)
π (α)

J (α← α∗)
J (α∗ ← α) .

Note that the last term, which is the proposal density ratio,
cancels out for this RWMH update.

Top-level as a compartmental model

Our primary interest lies in the estimation of the reproductive
number R0 = β/γ, which reflects the transmissibility of the
disease. With our assumption that γ is given, we propose the
following updates in each MCMC iterations.

Generate R based on C: We assume I1 = C1, i.e. all the con-
firmed cases are capable to pass the disease to all susceptible
individuals in a closed population at the very beginning. In
other words, R1 = 0. Then we sample R2 ∼ Poi(γI1), where γ
is a pre-specified tuning parameter. Due to the compositional
nature, we can compute I2 = I1 + Ċ2 – R2, where Ċ2 = C2 – C1is the new confirmed cases and R1 is the total removed cases
from the actively infectious population at time 2. Next, we re-
peat this process of sampling Rt ∼ Poi(γIt–1) and computing
It = It–1 + Ċt – Rt, to generate the sequence R.

Update of reproduction number parameter β: We update
β by using a RWMH algorithm. We first propose a new β∗, of
which logarithmic value is generated from a truncated normal
distribution N(logβ,τ2

β

) and then accept the proposed value

β∗ with probability min(1,mMH), where the Hastings ratio is

mMH = f(Ċ|β∗,R)
f(Ċ|β,R)

π (β∗)
π (β)

J (β← β∗)
J (β∗ ← β) .

Note that the last term, which is the proposal density ratio,
cancels out for this RWMH update.

Posterior inference

We obtain posterior inference by post-processing the MCMC
samples after burn-in. Suppose that a sequence of MCMC sam-
ples on θ,θ ∈ {φ,K,λ, p,α,β},

θ(1), . . . ,θ(U)

have been collected, where u, u = 1, . . . ,U indexes the iteration
after burn-in. An approximate Bayesian estimator of each pa-
rameter can be simply obtained by averaging over the samples,
θ̂ =∑Uu=1 θ(u)/U. In additional to that, a quantile estimation or
credible interval for each parameter of interest can be obtained
from this sequence as well.

Forecasting

Based on the sequences of MCMC samples on K, λ, p, and α in
the growth model or β in the compartmental model, we can
predict the cumulative or new confirmed cases at any future
time Tf by Monte Carlo simulation. Particularly, from time T+1
to Tf , we sequentially generate

Ċ(u)
t ∼ NB(g(Ct–1,Θ(u)),φ(u)), t = T + 1, . . . , Tf . (6)

Then, both short and long-term forecast can be made by sum-
marizing the (Tf – T)-by-U matrix of MCMC samples. For
instance, the predictive number of cumulative and new con-
firmed cases at time T + 1, in average, are ∑Uu=1 C(u)

T+1/U and∑U
u=1 Ċ(u)

T+1/U, respectively.

Software

This paper introduces a user-friendly interactive web applica-
tion (https://qiwei.shinyapps.io/PredictCOVID19/) integrated
with R Shiny package. Shiny is a web platform that allows users
to interact with real-time data and use a myriad of visualiza-
tion tools to analyze it. The web application has been devel-
oped to help the general public assess both short and long-
term forecasts of COVID-19 across the U.S. at both state and
metropolitan-level. The numbers of cumulative or new daily
confirmed cases as well as deaths are projected by different
growth models and the SIR model under the proposed Bayesian
framework. Alongside the numerical summaries, users can
view and interpret the trends that cover the same information.
To validate the short-term forecasting, numerical and graph-
ical summaries of MAE and MAPE of the predictions are pro-
vided for the more advanced users. Moving on to the long-term
forecasting, the models estimate the peak number of cases and
deaths as well as their respective dates. Moreover, a predictive
estimate for the final size and date is also offered. Finally, for
the users that are keen to visualize the currently observed cases
at a geographical level, the website offers county-level spatial
maps.

https://qiwei.shinyapps.io/PredictCOVID19/
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Figure 5. The web interface of the COVID-19 trend analysis page. The green box highlights the input panel that allows users to choose different mapping types
and levels for a region. The orange box highlights the visualizations for short-term forecasting as per the instructions of users. Other tabs offer different graphs
for summarizing the model performance, long-term forecasting, and county-level spatial maps.

Availability of source code and requirements

• Project name: BayesEpiModels
• Project home page: https://github.com/liqiwei2000/

BayesEpiModels
• Operating system(s): Windows and Linux
• Programming language: R (version 3.6.0.)
• Other requirements: Not applicable.
• License: GNU General Public License v3.0

Availability of supporting data and materials

The related R/C++ codes for model preparation and execution
are available on GitHub at https://github.com/liqiwei2000/
BayesEpiModels. The R Shiny web application is available
for users at https://qiwei.shinyapps.io/PredictCOVID19/. The
COVID-19 data repository is operated by the Johns Hopkins
University Center for Systems Science and Engineering (JHU
CSSE) and is freely available on GitHub at https://github.com/
CSSEGISandData/COVID-19/.
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moving average, COVID-19: Coronavirus disease - 2019,
CV: Cross-validation, eSIR: extended susceptible-infectious-
removed, GGC: Generalized growth curve, GGM-GLM: Gen-
eralized growth model - Generalized logistic model, GLC:
Generalized logistic curve, GRC: Generalized Richards curve,
i.i.d.: independent and identically distributed, JHUCSSE: Johns
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Abstract
Background: Forecasting of COVID-19 daily confirmed cases has been one of the several challenges posed to the
governments and health sectors on a global scale. To facilitate informed public health decisions, the concerned parties
rely on short-term daily projections generated via predictive modeling. We calibrate stochastic variants of growth
models and the standard SIR model into one Bayesian framework to evaluate their short-term forecasts. Results: We
implement rolling-origin cross-validation to compare the short-term forecasting performance of the stochastic
epidemiological models and the autoregressive moving average model across the top 20 countries with the most
confirmed cases as of August 22, 2020. Conclusion: In summary, it was noted that none of the models proved to be
golden standards across all the regions in their entirety, while all outperformed the autoregressive moving average
model in terms of the accuracy of forecast and interpretability.
Key words: COVID-19; SARS-CoV-2; Stochastic growth model; Stochastic SIR model; Time-series cross-validation.

Background

COVID-19, a respiratory disease coronavirus SARS-CoV-2, has
rapidly created an ongoing global pandemic. It has become one
of the leading causes of deaths in the United States (U.S.) and
continues to spread fast in most other countries. Given the ex-
tent of the physical and economic suffering caused by the pan-
demic, there is an urgent public health need to better predict
the spread of COVID-19 locally, nationally and globally. Since
the emergence of the COVID-19 outbreak, a myriad of predic-
tive modeling approaches have been proposed to predict trends
of the disease to allow public health officials to develop effec-
tive policies and measures to suppress spread and minimize
casualties. The five general approaches to forecast the num-
ber of new cases or the expected total mortality caused by the

COVID-19 exist: 1) time-series forecasting such as autoregres-
sive integrated moving average (ARIMA) [? ? ]; 2) growth curve
fitting based on the generalized Richards curve (GRC) or its spe-
cial cases [? ? ? ? ? ]; 3) compartmental modeling based on the
susceptible-infectious-removed (SIR) models or their deriva-
tions [? ? ? ? ? ? ? ? ? ? ? ]; 4) agent-based modeling [? ]; 5)
artificial intelligence (AI)-inspired modeling [? ? ? ? ].

Each approach, whether deterministic or stochastic, has its
own strengths. For instance, the ARIMA model combines the
regressive process and the moving average, allowing to pre-
dict a given time series by considering its own lags and lagged
forecast error. Curve fitting approaches (also known as phe-
nomenological modeling) fit a curve to the observed number of
cumulative confirmed cases or deaths with a certain error struc-
ture (e.g. Gaussian or Poisson), enabling meaningful interpre-
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tation through curve parameters while accounting for measure-
ment errors. Compartmental modeling (also known as mecha-
nistic modeling) approaches assign partitions of the population
to compartments corresponding to different stages of the dis-
ease and characterize the disease transmission dynamics by the
flow of individuals through compartments. Agent-based mod-
eling approaches use computer simulations to study the dy-
namic interactions among the agents (e.g. people in epidemi-
ology) and between an agent and the environment. AI-based
modeling approaches usually combines time series, clustering,
and forecasting, resulting in an exemplary predictive perfor-
mance. There has been a growing debate among researchers
over model performance evaluation and how to find the best
model appropriate for a certain feature (cases, deaths, etc.),
a particular regional level (county, state, country, etc.), and
other parameters. Fair evaluation and comparison of the out-
put of different forecasting methods have remained elusive [?
] since models vary in their complexity and the number of vari-
ables and parameters that characterize the dynamic states of a
system.

Although predictive models for infectious diseases have
been compared in the literature, to our best knowledge, ex-
isting work does not systematically compare performances,
specifically with the same amount of available information.
We calibrate stochastic variants of six different growth mod-
els (i.e. logistic, generalized logistic, Richards, generalized
Richards, Bertalanffy, and Gompertz) and the standard SIR
model, all of which can be specified by an ordinary differential
equation(ODE), into one flexible Bayesian modeling framework.
The main reason for limiting our analysis to these two model-
ing approaches is that both not only produce good short and
long-term forecasts, but also provide useful insights to under-
stand the disease dynamics of COVID-19. The growth models
provide an empirical approach without a specific theory on the
mechanisms that give rise to the observed patterns in the cu-
mulative infection data, while the compartmental models in-
corporate key mechanisms involved in the disease transmis-
sion dynamics to explain patterns in the observed data.

In our Bayesian modeling framework, the bottom-level is
represented by a negative binomial model that directly models
infection count data and accounts for the over-dispersed ob-
servational errors. The top-level is derived from a choice of
growth or compartmental models that characterizes a certain
disease transmission dynamic through ODE(s). The Markov
chain Monte Carlo (MCMC) algorithm is used to sample from
the posterior distribution. The short-term forecasts are made
from the resulting MCMC samples. We perform the rolling-
origin cross-validation procedure to compare the prediction
error of different stochastic models. In terms of regions, we
used the top 20 countries in terms of confirmed case num-
bers for a country-level analysis. Observations included that
1) as the models learned more, the predictive performance
improved in general for all regions; 2) none of the models
proved to be the golden standard across all the regions, while
the ARIMA model underperformed all stochastic models pro-
posed in the paper. We designed a graphical interface that al-
lows users to interact with future trends of COVID-19 at dif-
ferent geographic locations in the U.S. based on the real-time
COVID-19 data. This web portal is updated daily and used
to inform local policy-makers and the general public (https:
//qiwei.shinyapps.io/PredictCOVID19/).

Data Description

Let C = (C1, . . . , CT) be a sequence of cumulative confirmed case
numbers observed at T successive equally spaced points in time
(e.g. day) in a specific region, where each entry Ct ∈ N for t =

1, . . . , T. Further let C0 be the initial value and Ċ = (Ċ1, . . . , ĊT)
be the lag one difference of C, where Ċ1 = C1–C0 and each follow-
ing entry Ċt = Ct – Ct–1, t = 2, . . . , T, i.e. the difference between
two adjacent observations. In the analysis and modeling of a
series of infectious disease daily report data, the time-series
data could also be the cumulative death numbers, recovery case
numbers, or their sums, denoted by D (Death), E (Recovery),
and R (Removed), and their corresponding new case numbers,
denoted by Ḋ, Ė, and Ṙ. Assuming a closed population with size
N, the time-series data could also be the number of suscepti-
ble people, denoted by S, with each entry St = N – Ct. In reality,
only confirmed cases and deaths are reported in most regions.
Recovery data are not available or suffer from under-reporting
issues even if existing. Thus, our main goal is to make predic-
tions of the future trend of an infectious diseases only based
on the daily confirmed cases Ċ.

Analyses

In this section, we discuss the findings of COVID-19 data anal-
ysis. We first implemented each of the growth models listed
in Table ?? and the standard SIR model under the proposed
Bayesian framework for the top 20 countries with the most
confirmed cases as of August 22, 2020. Note that the in-
put data was the sequence of daily confirmed cases Ċ only,
which is accessible from the Johns Hopkins University Center
for Systems Science and Engineering COVID-19 Data Repos-
itory (https://github.com/CSSEGISandData/COVID-19/). Several
recent COVID-19 studies also based their analyses on this re-
source [? ? ? ]. For our MCMC algorithms, we set 100, 000
iterations with the first half as burn in and chose weakly in-
formative priors. Both numerical and graphical summaries for
posterior inference and short-term forecasting are presented.
Our final goal is to compare the predictive performance of all
models, taking ARIMA as a benchmark model.

Forecasting of daily confirmed cases in the U.S.

We first present the forecasting of the U.S. daily confirmed
cases made by the ARIMA and our Bayesian framework with
the choices of a GRC or SIR model. As we can see from Fig-
ures ??, the GRC model demonstrates a downwards trend, the
SIR model displays an upward trend, while the ARIMA model
predicts a flat trajectory of daily predicted cases. A natural fea-
ture of epidemiological interest is the estimated final size and
date of the epidemic. Growth models comprise of a model pa-
rameter K that estimates the final epidemic size. On the other
hand, for the SIR model, there is no available parameter that
estimates the final size. Hence, the final case count is approx-
imated to be the predictive mean that converges to a certain
value from the related MCMC samples. A similar strategy is
applied to obtain the predicted mean of the final case counts
using the ARIMA model [? ]. The estimated cumulative con-
firmed cases by the end of 2020 are projected to be 13.1, 106.1,
and 10.0 (in millions), fitting the GRC, SIR, and ARIMA mod-
els, respectively. Under the assumption that the epidemic lasts
until the end of 2021, the final epidemic sizes are predicted to
be 13.4, 187.3, and 22.0 (in millions) by the three models, re-
spectively. To account for the reasons behind the discrepancy
in forecasts and to measure the validity of the results, there is
a need for an appropriate strategy to evaluate and compare the
predictive performance of the concerned models.

https://qiwei.shinyapps.io/PredictCOVID19/
https://qiwei.shinyapps.io/PredictCOVID19/
https://github.com/CSSEGISandData/COVID-19/
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Figure 1. The one-month forecasting of new daily confirmed cases in the U.S.
made by the (a) GRC and (b) SIR model under the proposed Bayesian frame-
work, as well as the benchmark (c) ARIMA model. The black circles represent
the observed case numbers since the beginning of March, 2020, while the col-
ored circles and ribbons represent the predicted means and 95% prediction
intervals, respectively.

Model comparison through rolling-origin cross-
validation

Cross-validation (CV) is a resampling procedure used to evalu-
ate regression and classification models on a limited data sam-
ple. The procedure randomly splits all data samples into two
parts: training and testing sets, where the former is used to fit
a model and the latter is used to evaluate the model’s predic-
tion performance in terms of a certain error measure. The key
assumption of CV is that all data points should be independent
and identically distributed (i.i.d.). Unfortunately, time-series
data is serially autocorrelated i.e. the observations are depen-
dent on the time they were recorded on. To circumvent this sit-
uation, the rolling-origin CV (ROCV) technique was proposed [?
]. It splits the data into training and testing sets without ham-
pering the i.i.d. assumption. An adaptation of this method is
used here to evaluate the short-term forecasting performance
among different top-level choices under the proposed Bayesian
framework and ARIMA. Figure ?? shows the ROCV representa-
tion for an example of time-series data (T = 17). In our analysis,
the choice of initial training sample size was set to seven days
so as to evaluate how well the models are able to generate fore-
casts during the initial phase of the pandemic, while the testing
sample size was chosen to be three days to meet with our ob-
jective of comparing short-term forecasting performance. We
define the first day t = 1 as the date when the 100-th case was
confirmed, so it varied for different countries.

time

Figure 2. A visual guide to rolling-origin cross-validation (ROCV), where the
total sample size T = 17, the initial training sample size is 9, and the testing
sample size is 3. The green, orange, and white circles are training, testing, and
unused samples in one CV iteration.

Algorithm 1 Rolling-origin cross-validation (ROCV)
1: Store the data starting day 1 to day T
2: Initialize the number of initial training observations k (k =

7)
3: Set the size of the testing set ω (ω = 3)
4: while k +ω ≤ T do
5: Learn the first k observations (green circles) as training

data
6: Hold out the next k + 1, . . . , k +ω observations (orange

circles) as the testing data
7: Discard the remaining T – (k + ω) observations (white

circles)
8: Compute an out-of-bag prediction error measure on the

testing set (orange circles)

sMAPE = 2
ω

k+ω∑
t=k+1

∣∣∣∣ et
ŷt + yt

∣∣∣∣
9: k = k + 1

10: end while

A CV algorithm needs a predictive error metric that could
quantify model performance in terms of forecasting accuracy.
Root mean square error (RMSE) and mean absolute deviations
(MAD) are candidates of error measures for out-of-bag pre-
dictions but are dependent on scale. As a result, large values
may influence the errors to be larger. Mean absolute percentage
error (MAPE) has been a widely used predictive measure due to
its interpretability and its independence from scale. Although,
the distribution of such percentage errors can be skewed if the
data consists of values close to zero. Moreover, there is a possi-
bility of this measure being undefined by having a zero in the
denominator. To address these issues, an improved percent-
age error metric namely, symmetric mean absolute percentage er-
ror (sMAPE) was proposed [? ]. This metric was considered in
our analysis as it circumvented the problem of having an unde-
fined measure and provided better symmetry as compared to
MAPE. In all, we summarize the evaluation procedure used in
this paper as follows.

Figure ?? displays the smoothed sMAPE curves generated
by the ROCV across time for the top 20 countries with respect
to the highest cumulative confirmed cases as of August 22,
2020. As we can see, all the models performed poorly in the
early stage but as more and more data became available to be
learned, the predictive performance gradually improved as the
sMAPE dropped. It can also be observed that the ARIMA and
SIR models were performing a lot worse in general than the
growth models in the early phase. This could be attributed to
the fact that ARIMA not having the growth specific parame-
ters, unable to detect the early growth. On the other hand,
making assumptions of a fixed transmission rate γ and due
to the under-reported data issue, SIR performed poorly. While,
the stochastic growth curves were able to learn the trend of
epidemiological data in the initial phase with the help of the
growth and scaling parameters. Although, towards the latter
half of the epidemic, all the models were performing equally
well. Hence, it is hard to conclude that any one particular dom-
inated the entire duration of the epidemic.

Now, the question arises of whether we could pick one
model which has the best predictive performance on an aver-
age for any particular country. To answer that we construct
a Cleveland dot plot, as shown in Figure ??, that allows us to
rank the model performance averaged over the entire duration,
per country. Furthermore, the countries are arranged in de-
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Figure 3. The smoothed sMAPE curves generated by the rolling-origin cross-validation (ROCV) over time for the top 20 countries with the most confirmed cases
as of August 22, 2020.
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Figure 4. The Cleveland dot plot of the averaged sMAPE generated by the
rolling-origin cross-validation (ROCV) for the top 20 countries with the most
confirmed cases as of August 22, 2020.

scending order of predictive performance from the bottom to
the top.

Discussion

It is observed that all the models had the best and the worst
predictive performances for Italy and South Africa respectively.
The Richards model had the minimum averaged sMAPE for
forecasting cumulative case counts in the U.S. While, the GRC

model had the lowest averaged sMAPE across seven countries
followed by the GLC model with four. The SIR model was the
best performer for South Africa. The Richards, Bertalanffy, and
Gompertz models also had their fair share of predictive dom-
inance in the remaining countries. On the other hand, the
ARIMA model was a below-average performer across all coun-
tries.

In general, the GRC and GLC models were consistent per-
formers throughout all countries due to their ability to detect
sub-exponential growth rates at an early stage of an epidemic.
In most cases, the GRC and Richards models were the best per-
formers in countries that did not have symmetric ‘S’-shaped
growth patterns and displayed randomness as well as multiple
peaks. This is due to the inclusion of the scale parameter α
that could account for any asymmetry in the data. Countries
including the U.S., Peru, Saudi Arabia, Iran, Turkey, and France
display multiple peaks in the daily confirmed case counts. As a
result, the Richards model performs the best in the U.S., United
Kingdom (U.K.), and Peru, while the GRC model dominates in
the rest of the countries having multiple peaks. Moreover, a
random structure was observed in countries like Brazil, Chile,
Bangladesh, and Mexico. GRC being the most complex model
out of all the other growth models performed the best in these
countries. On the other hand, the GLC model usually performed
better in countries that had a single peak and attributed an ap-
proximate ‘S’-shaped curvature. The GLC model was able to
generalize better than the GRC model when the data was well
structured and had less randomness. Countries including Ar-
gentina, Pakistan, Germany, Colombia, and India attributed a
single peak without much randomness. As a result, the GLC
model was a better performer in these countries. Whereas, in
the case of South Africa, the usual growth models performed
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the worst due to a staggering growth rate in the initial and the
middle phase of the epidemic. The SIR model performed the
best out of the worst while the logistic model performed well
due to its simplicity. On the other hand, the Gompertz model
was the best performer in Russia, Spain, and Italy as it gener-
alizes better than the other models.

Conclusion

In this paper, we developed a number of stochastic variants of
growth and compartmental models under a unified Bayesian
framework. A theoretical comparison of growth models has
been discussed in greater detail in the literature [? ? ? ? ?
? ? ? ]. However, to our best knowledge, no work systemat-
ically compares their performances between all pairs as well
as against a compartmental model such as the SIR model and
a time-series forecasting model such as the ARIMA. Based on
our analysis, we conclude that the proposed Bayesian frame-
work not only allows room for interpretation but also offers an
exemplary predictive performance when it comes to COVID-19
daily report data. Moreover, ARIMA being a pure learning al-
gorithm is not able to match with the forecasting accuracy of
stochastic models, let alone the model parameters of ARIMA do
not provide any information on epidemiological interests.

For future work, we aim to develop an ensemble model,
which can aggregate the prediction of each base model and re-
sults in once final prediction for the unseen data. Note that
a group of researchers have recently introduced a GGM-GLM
ensemble model [? ] and compared forecasting performances
of that with the individual models for the Ebola Forecasting
Challenge [? ]. It was reported that the ensemble model out-
performed the others under some circumstances. We also plan
to perform long-term forecasting evaluation using some epi-
demic features described in [? ]. A sub-epidemic wave model
that could detect multiple peaks in the data has been recently
developed [? ], which has the potential to improve forecasting
performance. Thus, developing stochastic growth models via
the addition of a change-point detection mechanism to account
for multiple peaks is worth investigating. In this regard, we
have demonstrated that an approach that combines a change-
point detection model and a stochastic SIR model could signif-
icantly improve the short-term forecasting of the new daily
confirmed cases [? ].

Potential Implications

The proposed Bayesian epidemiological models in a unified
framework lay the foundation of an integrative approach to
model and predict epidemiological data with tremendous accu-
racy and interpretability. Growth and compartmental models
obtained as solutions to ordinary differential equations (ODEs)
are implemented to model epidemiological data under a deter-
ministic setting as they provide a natural framework represen-
tative of such data types. However, the estimated model pa-
rameters crucial for providing insights into the nature of the
epidemic are unreliable under the deterministic setting due to
identifiability issues. The stochastic models mimic the struc-
ture of epidemiological models and incorporate parameter spe-
cific priors and measurement error to solve these issues. Re-
searchers can follow a similar setup to predict cases and deaths
caused by an epidemic at any geographical level given the avail-
ability of data. Furthermore, the stochastic SIR model can be
augmented by incorporating mobility, hospitalization, and re-
covery data resulting in better forecasts. This work also pro-
motes an algorithmic strategy to measure forecasting perfor-
mances of time series models in general.

On a much broader scale, this work encourages researchers
to exploring probabilistic approaches to model epidemiological
data as well as developing computationally efficient algorithms
that further meet time and cost constraints.

Methods

In this section, we present a bi-level Bayesian framework for
predicting new daily confirmed cases during a pandemic in a
closed society. The bottom level directly models the observed
counts while accounting for measurement errors. Two alter-
natives for the top level are then introduced, both of which
characterizes the epidemic dynamics through growth curve or
compartmental trajectories, respectively. Before introducing
the main components, we summarize the possibly observable
data as follows.

Bottom-level: Time-series count generating process

We consider the new case number observed at time t, i.e. Ċt,are sampled from a negative binomial (NB) model,
Ċt ∼ NB(g(Ct–1,Θ),φ), t = 2, . . . , T

as it automatically accounts for measurement errors and
uncertainties associated with the counts. Here, we use
NB(µ,φ),µ,φ > 0 to denote a NB distribution with expecta-
tion µ and dispersion 1/φ. We assume this stochastic pro-
cess is a Markov process, where the present state (at time t)
depends only upon its previous state (at time t – 1). There-
fore, the NB mean is a function, denoted by g(·), of the case
number observed at time t – 1, characterized by a set of inter-
pretable/uninterpretable model parameters Θ. With this pa-
rameterization, the NB variance is µ + µ2/φ, indicating that
φ controls the variance of measurement error. A small value
leads to a large variance to mean ratio, while a large value ap-
proaching infinity reduces the NB model to a Poisson model
with the same mean and variance. The probability mass func-
tion of a NB random variable Y is Γ(Y+φ)

Y!Γ(φ)
(
φ
λ+φ

)φ (
λ
λ+φ

)Y .
Thus, we can write the full data likelihood as
f(Ċ|Θ,φ) =
T∏
t=2
Γ(Ċt +φ)
Ċt!Γ(φ)

(
φ

g(Ct–1,Θ) +φ
)φ ( g(Ct–1,Θ)

g(Ct–1,Θ) +φ
)Ċt . (1)

For the prior distribution of the dispersion parameter φ, we
choose a gamma distribution, φ ∼ Ga(aφ, bφ). We recommend
small values, such as aφ = bφ = 0.001, for a non-informative
setting [? ]. Note that the proposed framework can be also
viewed as a stochastic discrete-time state-space model with a
negative binomial error structure. The proposed Bayesian mod-
els, on average, mimics the epidemic dynamics and is more
flexible than those deterministic epidemiological models, as it
accounts for measurement error and has the potential to incor-
porate existing information into the prior structure of Θ.

Top-level I: Growth model

We first discuss the choices of g(·) when implementing growth
models. The development of a variety of growth curves origi-
nates from population dynamics [? ] and growth of biological
systems [? ? ? ? ] modeling. A number of growth curves
have been adapted in epidemiology for trend characterization
and forecasting of an epidemic, such as the severe acute respi-
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ratory syndrome (SARS) [? ? ], dengue fever [? ? ], pandemic
influenza A (H1N1) [? ], Ebola virus disease (EVD) [? ? ], Zika
fever [? ], and COVID-19 [? ? ? ? ].

The underlying assumption is that the rate of growth of a
population, organism, or infectious individuals eventually de-
clines with size. The logistic curve (also known as sigmoid
curve) is the simplest growth curve of continuous time u ∈ R.
It is a non-negative symmetric ‘S’-shaped curve with equation
y(u) = K1+exp(–λ(u–u0)) , where u0 is the midpoint, K is the maxi-
mum value, and λ reflects the steepness of the curve. It is clear
to see that y(u) approaches K when u → ∞, while it converges
to zero when u→ –∞. In fact, the continuous curve y(u) is the
solution of a first-order non-linear ODE,

dy(u)
du = λy(u)

(
1 – y(u)K

)

with condition y(u0) = K/2, where dy(u)/du can be interpreted
as time-variant growth rate of the curve y. The above ODE
reveals: 1) a non-negative growth rate, dy(u)/du > 0 as y(u) ∈
[0,K]; 2) an approximately exponential growth at the initial
stage, y(u) ≈ exp(λu) as dy(u)/du ≈ λy(u) when y(u) → 0; 3)
no growth at the final stage, y(u) dy(u)/du = 0 when y(u) →
K; 4) a maximum growth rate of λK/4 occurred when y(u) =
K/2, indicated by d2y(u)/du2 = λdy(u)/du (1 – 2y(u)/K). Based
on those curve characteristics, we can use the growth curve to
characterize the trend of cumulative confirmed cases C.

In this paper, we mainly consider a family of growth curves
that are derived from the generalized Richards curve (GRC),
which is the solution to the following ODE,

dy(u)
du = λy(u)p

[
1 –
( y(u)
K

)α] . (2)

For those model-specific parameters in the context of epidemi-
ology, K is the final epidemic size and should be an integer in
the range of (0,N], where N is the total population, λ ∈ R+ is
the infectious rate at early epidemic stage, p ∈ (0, 1) is known
as scaling of growth, and α ∈ R+ controls the curve symme-
try. As our observed infectious disease data are usually counts
collected at successive equally spaced discrete time points, we
formulate the NB mean function g(·) based on the discrete ver-
sion of (??),

g(Ct–1,Θ = {K,λ, p,α}) = λCpt–1
[
1 –
(Ct–1
K

)α] . (3)

Table ?? provides a list of g(·)’s for growth curves with their
characteristics. All the listed growth curves have been utilized
and discussed in previous epidemiological studies. We include
all of those choices in our framework excluding the last one,
which is based on the generalized growth curve (GGC), because
it lacks the final epidemic size K specification.

Without any existing information, we assume that K is from
a discrete uniform distribution in its range and γ is from
a gamma or a beta distribution, depending on the choice of
growth curves. For instance, for both logistic and Gompertz
curves, we assume γ ∼ Beta(aγ, bγ), a natural modeling choice
for parameter value restricted to the (0, 1) interval, and sug-
gest to choose aγ = bγ = 1 for a uniform setting; otherwise,
we place a gamma prior, i.e. γ ∼ Ga(aγ = 0.001, bγ = 0.001).
For the choice of GRC and generalized logistic curve (GLC), the
prior of p is chose to be Beta(ap = 1, bp = 1). Lastly, we set
α ∼ Ga(aγ = 0.001, bγ = 0.001) for fitting a GRC or Richards
curve.

Top-level II: Compartmental model

The susceptible-infected-removed (SIR) model was developed
to simplify the mathematical modeling of human-to-human
infectious diseases by ? ]. It is a fundamental compartmental
model in epidemiology. At any given time u, each individual in
a closed population with size N is assigned to three distinctive
compartments with labels: susceptible (S), infectious (I), or re-
moved (R, being either recovery or dead). The standard SIR
model describes the flow of people from S to I and then from I
to R by the following set of nonlinear ODEs:


dS(u)
du = –βS(u) I(u)N
dI(u)
du = βS(u) I(u)N – γI(u)
dR(u)
du = γI(u)

,

where S(u), I(u), and R(u) are the population numbers of sus-
ceptible, infectious, and removed compartments measured in
time u, subjecting to S(u) + I(u) + R(u) = N, ∀u. Another na-
ture constraint is dS(u)/du + dI(u)/du + dR(u)/du = 0. Here,
β ∈ R+ is the disease transmission rate, γ ∈ R+ is the removal
rate, and their ratio R0 = β/γ is defined as the basic repro-
ductive number. The rationale behind the first equation is that
the number of new infections during an infinitesimal amount
of time, –dS(u)/du, is equal to the number of susceptible peo-
ple, S(u), times the product of the contact rate, I(t)/N, and the
disease transmission rate β. The third equation reflects that
the infectious individuals leave the infectious population per
unit time, dI(u)/du, as a rate of γI(u). The second equation fol-
lows immediately from the first and third ones as a result of
dS(u)/du + dI(u)/du + dR(u)/du = 0. Assuming that only a small
fraction of the population is infected or removed in the onset
phase of an epidemic, we have S(u)/N ≈ 1 and thus the second
equation reduces to dI(u)/du = (β – γ)I(u), revealing that the
infectious population is growing if and only if β > γ. As the
expected lifetime of an infected case is given by γ–1, the ratio
R0 = β/γ is the average number of new infectious cases di-
rectly produced by an infected case in a completely susceptible
population. The so called basic reproductive number is a good
indicator of the transmissibility of an infectious disease.

In this paper, we only consider the standard SIR model,
although it is still feasible to design g(·)’s from its varia-
tions (see a comprehensive summary [? ]), such as the
susceptible-infectious (SIS) model, the susceptible-infectious-
recovered-deceases (SIRD) model, the susceptible-exposed-
infectious-removed (SEIR) model, the susceptible-exposed-
infectious-susceptible (SEIS) model, and their versions with
the maternally-derived immunity compartment [? ], as well
as the recently developed extended-SIR (eSIR) model [? ]. For
modeling discrete time-series data, we use the discrete-time
version of the standard SIR model,


Ṡt = –βSt–1 It–1

N
İt = βSt–1 It–1

N – γIt–1
Ṙt = γIt–1

. (4)

The model has three trajectories, one for each compartment.
The compositional nature of the three trajectories implies that
we only need two of the three sequence data, e.g. St = N–Ct and
Rt for t = 1, . . . ,n. However, recovery data only exist in few re-
gions, and suffer from under-reporting issue even if existing,
which makes both model inference and predictions infeasible.
Alternatively, we consider both of the removed and actively in-
fectious cases as missing data and mimic their relationship in
spirit to some compartmental models in epidemiology. Specif-
ically, we assume the number of new removed cases at time t,
i.e. Ṙt, is sampled from a Poisson distribution with mean γIt–1,
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Table 1. List of g(·)’s functions based on growth curves
Models g(Ct–1,Θ) Parameters Θ Curve y(u) y(u) at the turning point Examples
GRC λCpt–1

[1 – ( Ct–1
K

)α]
K ∈ N, N/A (

p
p+α
)1/α

K [? ? ? ]
λ ∈ R+,
p ∈ (0, 1),
α ∈ R+

Richards λCt–1
[1 – ( Ct–1

K

)α]
K ∈ N, K

(1 + A exp(–λαu))–1/α, ( 11+α
)1/α K [? ? ? ? ? ]

λ ∈ R+, where A = –1 + ( K
y(0)
)α

α ∈ R+
GLC λCpt–1

(1 – Ct–1
K

)
K ∈ N, N/A p

p+1K [? ? ? ? ]
λ ∈ R+,
p ∈ (0, 1)

Logistic λCt–1
(1 – Ct–1

K

)
K ∈ N, K

(1 + A exp(–λu))–1, 12K [? ? ? ? ? ]
λ ∈ (0, 1) where A = –1 + K

y(0)
Bertalanffy λC

23
t–1
[
1 – ( Ct–1

K

) 13
]

K ∈ N, K
(1 + A exp(– 13γK–1/3u))3, 827K [? ]

λ ∈ R+ where A = 1 – ( y(0)
K

)1/3

Gompertz λCt–1 log K
Ct–1 K ∈ N, K exp(A exp(–λu)), 1

eK [? ]
λ ∈ (0, 1) where A = log y(0)

K

GGC λCpt–1 λ ∈ R+, (
A + λu(1 – p))1/(1–p) N/A [? ? ? ? ? ]

p ∈ (0, 1) where A = y(0)1–p

Abbreviations: GRC is generalized Richards curve; GLC is generalized logistic curve; GGC is generalized growth curve.

that is, Ṙt ∼ Poi(γIt–1) = Poi(γ(N–Ct–1 –Rt–1)), where γ should
be specified. Such a strategy but with different error structure
was also considered in some other compartmental models in
epidemiology [? ? ? ]. We can estimate the value of γ from
publicly available high-quality data where confirmed, deaths,
and recovery cases are all well-documented, or from prior epi-
demic studies due to the same under-reporting issue in actual
data. In this paper, we choose the removal rate γ = 0.1 as sug-
gested by ? ] and ? ]. Based on this simplification, we rewrite
the first equation in (??) as,

(N – Ct) – (N – Ct–1) = –β(N – Ct–1)N – Ct–1 – Rt–1
N ,

resulting in

Ċt = β(N – Ct–1)N – Ct–1 – Rt–1
N .

Thus, we formulate the NB mean function g(·) for the standard
SIR model as,

g(Ct–1,Θ = {β}|R) = β(N – Ct–1)N – Ct–1 – Rt–1
N , (5)

where R can be sequentially inferred from C.
Without any existing information, in our Bayesian frame-

work we assume β from a gamma distribution with hyperpa-
rameters that makes both the mean and variance of the trans-
formed variable R0 = β/γ equal to 1, that is, β ∼ Ga(1, 1/γ).

Model Fitting

In this section, we briefly describe the MCMC algorithm for
posterior inference and forecasting. Our Bayesian inferential

strategy allows us to simultaneously infer all model-specific
parameters and quantify their uncertainties.

MCMC algorithms

We first describe how to update the dispersion parameter φ in
the proposed Bayesian framework, as it does not depend on
the choice of models. At each MCMC iteration, we perform the
following step:

Update of dispersion parameter φ: We update φ by using
a random walk Metropolis-Hastings (RWMH) algorithm. We
first propose a newφ∗, of which logarithmic value is generated
from N(logφ,τ2

φ

) and then accept the proposed valueφ∗ with
probability min(1,mMH), where the Hastings ratio is

mMH = f(Ċ|φ∗,Θ)
f(Ċ|φ,Θ)

π (φ∗)
π (φ)

J (φ← φ∗)
J (φ∗ ← φ) .

Here we use J(· ← ·) to denote the proposal probability distri-
bution for the selected move. Note that the last term, which is
the proposal density ratio, cancels out for this RWMH update.

Top-level as a growth model

We only present the updates of each parameters in the GRC
model, as all other derivative models are its special cases. Our
primary interest lies in the estimation of the final pandemic
size K and the infectious rate at early epidemic stage λ.

Update of final epidemic size parameter K: We update K by
using a RWMH algorithm. We first propose a new K∗, of which
logarithmic value is generated from a truncated Poisson distri-
bution Poi (logK) within [log CT, logN] and then accept the pro-
posed value K∗ with probability min(1,mMH), where the Hast-
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ings ratio is

mMH = f(Ċ|φ,K∗,λ, p,α)
f(Ċ|φ,K,λ, p,α)

π (K∗)
π (K)

J (K← K∗)
J (K∗ ← K) .

Note that with a discrete uniform prior on K, the last two terms
cancel out for this RWMH update.

Update of infectious rate parameter λ: We update λ by us-
ing a RWMH algorithm. We first propose a new λ∗, of which
logarithmic value is generated from N(logλ,τ2

λ

) and then
accept the proposed value λ∗ with probability min(1,mMH),
where the Hastings ratio is

mMH = f(Ċ|φ,K,λ∗, p,α)
f(Ċ|φ,K,λ, p,α)

π (λ∗)
π (λ)

J (λ← λ∗)
J (λ∗ ← λ) .

Note that the last term, which is the proposal density ratio,
cancels out for this RWMH update.

Update of growth scaling parameter p: We update p by us-
ing a RWMH algorithm. We first propose a new p∗, of which
logarithmic value is generated from a truncated normal dis-
tribution N(log p,τ2

p
) within [–∞, 0] and then accept the pro-

posed value p∗ with probability min(1,mMH), where the Hast-
ings ratio is

mMH = f(Ċ|φ,K,λ, p∗,α)
f(Ċ|φ,K,λ, p,α)

π (p∗)
π (p)

J (p← p∗)
J (p∗ ← p) .

Note that with a uniform prior on p over its range [0, 1], the
last two terms cancel out for this RWMH update.

Update of symmetry parameter α: We update α by using a
RWMH algorithm. We first propose a new α∗, of which loga-
rithmic value is generated from N(logα,τ2

α

) and then accept
the proposed value α∗ with probability min(1,mMH), where the
Hastings ratio is

mMH = f(Ċ|φ,K,λ, p,α∗)
f(Ċ|φ,K,λ, p,α)

π (α∗)
π (α)

J (α← α∗)
J (α∗ ← α) .

Note that the last term, which is the proposal density ratio,
cancels out for this RWMH update.
Top-level as a compartmental model

Our primary interest lies in the estimation of the reproductive
number R0 = β/γ, which reflects the transmissibility of the
disease. With our assumption that γ is given, we propose the
following updates in each MCMC iterations.

Generate R based on C: We assume I1 = C1, i.e. all the con-
firmed cases are capable to pass the disease to all susceptible
individuals in a closed population at the very beginning. In
other words, R1 = 0. Then we sample R2 ∼ Poi(γI1), where γ
is a pre-specified tuning parameter. Due to the compositional
nature, we can compute I2 = I1 + Ċ2 – R2, where Ċ2 = C2 – C1is the new confirmed cases and R1 is the total removed cases
from the actively infectious population at time 2. Next, we re-
peat this process of sampling Rt ∼ Poi(γIt–1) and computing
It = It–1 + Ċt – Rt, to generate the sequence R.

Update of reproduction number parameter β: We update
β by using a RWMH algorithm. We first propose a new β∗, of
which logarithmic value is generated from a truncated normal
distribution N(logβ,τ2

β

) and then accept the proposed value
β∗ with probability min(1,mMH), where the Hastings ratio is

mMH = f(Ċ|β∗,R)
f(Ċ|β,R)

π (β∗)
π (β)

J (β← β∗)
J (β∗ ← β) .

Note that the last term, which is the proposal density ratio,
cancels out for this RWMH update.

Posterior inference

We obtain posterior inference by post-processing the MCMC
samples after burn-in. Suppose that a sequence of MCMC sam-
ples on θ,θ ∈ {φ,K,λ, p,α,β},

θ(1), . . . ,θ(U)

have been collected, where u, u = 1, . . . ,U indexes the iteration
after burn-in. An approximate Bayesian estimator of each pa-
rameter can be simply obtained by averaging over the samples,
θ̂ =∑Uu=1 θ(u)/U. In additional to that, a quantile estimation or
credible interval for each parameter of interest can be obtained
from this sequence as well.

Forecasting

Based on the sequences of MCMC samples on K, λ, p, and α in
the growth model or β in the compartmental model, we can
predict the cumulative or new confirmed cases at any future
time Tf by Monte Carlo simulation. Particularly, from time T+1
to Tf , we sequentially generate

Ċ(u)
t ∼ NB(g(Ct–1,Θ(u)),φ(u)), t = T + 1, . . . , Tf . (6)

Then, both short and long-term forecast can be made by sum-
marizing the (Tf – T)-by-U matrix of MCMC samples. For
instance, the predictive number of cumulative and new con-
firmed cases at time T + 1, in average, are ∑Uu=1 C(u)

T+1/U and∑U
u=1 Ċ(u)

T+1/U, respectively.

Software

This paper introduces a user-friendly interactive web applica-
tion (https://qiwei.shinyapps.io/PredictCOVID19/) integrated
with R Shiny package. Shiny is a web platform that allows users
to interact with real-time data and use a myriad of visualiza-
tion tools to analyze it. The web application has been devel-
oped to help the general public assess both short and long-
term forecasts of COVID-19 across the U.S. at both state and
metropolitan-level. The numbers of cumulative or new daily
confirmed cases as well as deaths are projected by different
growth models and the SIR model under the proposed Bayesian
framework. Alongside the numerical summaries, users can
view and interpret the trends that cover the same information.
To validate the short-term forecasting, numerical and graph-
ical summaries of MAE and MAPE of the predictions are pro-
vided for the more advanced users. Moving on to the long-term
forecasting, the models estimate the peak number of cases and
deaths as well as their respective dates. Moreover, a predictive
estimate for the final size and date is also offered. Finally, for
the users that are keen to visualize the currently observed cases
at a geographical level, the website offers county-level spatial
maps.

Availability of source code and requirements

• Project name: BayesEpiModels
• Project home page: https://github.com/liqiwei2000/

BayesEpiModels
• Operating system(s): Windows and Linux

https://qiwei.shinyapps.io/PredictCOVID19/
 https://github.com/liqiwei2000/BayesEpiModels
 https://github.com/liqiwei2000/BayesEpiModels
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Figure 5. The web interface of the COVID-19 trend analysis page. The green box highlights the input panel that allows users to choose different mapping types
and levels for a region. The orange box highlights the visualizations for short-term forecasting as per the instructions of users. Other tabs offer different graphs
for summarizing the model performance, long-term forecasting, and county-level spatial maps.

• Programming language: R (version 3.6.0.)
• Other requirements: Not applicable.
• License: GNU General Public License v3.0

Availability of supporting data and materials

The related R/C++ codes for model preparation and execution
are available on GitHub at https://github.com/liqiwei2000/
BayesEpiModels. The R Shiny web application is available
for users at https://qiwei.shinyapps.io/PredictCOVID19/. The
COVID-19 data repository is operated by the Johns Hopkins
University Center for Systems Science and Engineering (JHU
CSSE) and is freely available on GitHub at https://github.com/
CSSEGISandData/COVID-19/.
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