
GigaScience, 2017, 1–11
doi: xx.xxxx/xxxx
Manuscript in Preparation
Paper

PA P ER

Evaluating Short-term Forecasting among Di�erent
Epidemiological Models under a Bayesian
Framework
Qiwei Li1,†,*, Tejasv Bedi1,†, Christoph U. Lehmann2,3,4, Guanghua Xiao3,4
and Yang Xie3,4
1Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA and
2Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA and
3Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX
75390, USA and 4Department of Population and Data Sciences, The University of Texas Southwestern Medical
Center, Dallas, TX 75390, USA
*qiwei.li@utdallas.edu
†Contributed equally.

Abstract
Background: Forecasting of COVID-19 cases daily and weekly has been one of the challenges posed to governments and the
health sector globally. To facilitate informed public health decisions, the concerned parties rely on short-term daily
projections generated via predictive modeling. We calibrate stochastic variants of growth models and the standard SIR
model into one Bayesian framework to evaluate and compare their short-term forecasts. Results: We implement
rolling-origin cross-validation to compare the short-term forecasting performance of the stochastic epidemiological
models and an autoregressive moving average model across 20 countries that had the most con�rmed COVID-19 cases as of
August 22, 2020. Conclusion: None of the models proved to be a gold standard across all regions, while all outperformed
the autoregressive moving average model in terms of the accuracy of forecast and interpretability.
Key words: COVID-19; SARS-CoV-2; Stochastic growth model; Stochastic SIR model; Time-series cross-validation.

Background

COVID-19, a respiratory disease coronavirus SARS-CoV-2,
rapidly caused an ongoing global pandemic. By October 2020,
COVID-19 had become the third leading cause of death in the
United States (U.S.) for individuals aged 45 – 84 years, and
continues to spread quickly in most countries. Given the ex-
tent of health and economic distress caused by the pandemic,
there is an urgent public health need to improve prediction of
the spread of COVID-19 locally, nationally, and globally.
Since its emergence, a myriad of predictive modeling ap-

proaches have been proposed to forecast trends of COVID-19
disease to aid public health o�cials in developing e�ective poli-

cies and measures to suppress spread and minimize casualties.
Five general approaches to forecast new cases or expected com-
bined mortality linked to COVID-19 exist: 1) Time-series fore-
casting like autoregressive integrated moving average (ARIMA)
[1, 2]; 2) Growth curve �tting based on the generalized Richards
curve (GRC) or its special cases [3, 4, 5, 6, 7]; 3) Compartmental
modeling based on the susceptible-infectious-removed (SIR)
models or their derivations [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18];
4) Agent-based modeling [19]; and 5) Arti�cial intelligence
(AI)-inspired modeling [20, 21, 22, 23].
Each approach, whether deterministic or stochastic, has its

own strengths. For example, the ARIMA model combines the
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regressive process and the moving average allowing prediction
of a given time series by considering its own lags and lagged
forecast error. Curve �tting approaches (also known as phe-
nomenological modeling) �t a curve to the observed number
of cumulative con�rmed cases or deaths with a certain error
structure (e.g. Gaussian or Poisson), enabling meaningful in-
terpretation through curve parameters while accounting for
measurement errors. Compartmental modeling (also known as
mechanistic modeling) assigns partitions of the population to
compartments corresponding to di�erent stages of the disease
and characterize the disease transmission dynamics by the �ow
of individuals through compartments. Agent-based modeling
approaches use computer simulations to study the dynamic in-
teractions among the agents (e.g. people in epidemiology) and
between an agent and the environment. AI-basedmodeling ap-
proaches usually combine time series, clustering, and forecast-
ing, resulting in an exemplary predictive performance. Debate
among researchers has grown over model performance evalua-
tion and selection of the best model for a certain feature (cases,
deaths, etc.), a particular regional level (county, state, country,
etc.), and other parameters. Fair evaluation and comparison
of the output of di�erent forecasting methods have remained
elusive [24] since models vary in their complexity and the vari-
ables and parameters that characterize the dynamic states of a
system.
Although the literature has compared predictive models for

infectious diseases, to our best knowledge, existing work does
not systematically compare performances, speci�cally with the
same amount of a priori available information. We calibrate
stochastic variants of six di�erent growth models (i.e. logis-
tic, generalized logistic, Richards, generalized Richards, Berta-
lan�y, and Gompertz) and the standard SIR model. All models
can be included using an ordinary di�erential equation (ODE)
into one �exible Bayesian modeling framework. We limited the
analysis to these two modeling approaches because both not
only produce good short and long-term forecasts, but also pro-
vide useful insights in the disease dynamics of COVID-19. The
growth models provide an empirical approach without a spe-
ci�c theory on the mechanisms giving rise to the observed pat-
terns in the cumulative infection data, while the compartmen-
tal models incorporate key mechanisms involved in the disease
transmission dynamics that explain patterns in the observed
data.
In our Bayesian modeling framework, the bottom-level is

represented by a negative binomial model that directly mod-
els infection count data and accounts for the over-dispersed
observational errors. The top-level is derived from a choice
of growth or compartmental models that characterize certain
disease transmission dynamics through ODE(s). The Markov
chain Monte Carlo (MCMC) algorithm samples from the pos-
terior distribution. The short-term forecasts derive from the
resultingMCMC samples. We perform the rolling- origin cross-
validation procedure to compare the prediction error of di�er-
ent stochastic models. We used the 20 countries with the most
con�rmed case numbers for a country-level analysis. Observa-
tions included that 1) as the models learned more, the predic-
tive performance improved in general for all regions; 2) none
of the models proved to be a gold standard across all the re-
gions; and 3) the ARIMA model underperformed all stochas-
tic models proposed in the paper. We designed a graphical
interface that allows users to interact with future COVID-19
trends at di�erent geographic locations in the U.S. based on
real-time COVID-19 data. This web portal is updated daily
and used to inform local policy-makers and the general public
(https://qiwei.shinyapps.io/PredictCOVID19/ with Biotools ID:
bayesepimodels_webapp and RRID: SCR_019292 ).

Data Description

Let C = (C1, . . . , CT) be a sequence of cumulative con�rmed casenumbers observed at T successive equally spaced points in time
(e.g. day) in a speci�c region, where each entry Ct ∈ N for t =
1, . . . , T. Further let C0 be the initial value and Ċ = (Ċ1, . . . , ĊT)be the lag one di�erence of C, where Ċ1 = C1–C0 and each follow-ing entry Ċt = Ct – Ct–1, t = 2, . . . , T, i.e. the di�erence betweentwo adjacent observations. In the analysis and modeling of a
series of reported infectious disease daily data, the time-series
data could also be the cumulative death numbers, recovery case
numbers, or their sums, denoted by D (Death), E (Recovery),
and R (Removed), and their corresponding new case numbers,
denoted by Ḋ, Ė, and Ṙ. Assuming a closed population with size
N, the time-series data could also be the number of suscepti-
ble people, denoted by S, with each entry St = N – Ct. In reality,only con�rmed cases and deaths are reported in most regions.
Recovery data are not available or su�er from under-reporting
issues if available. Thus, our main goal was to make predic-
tions of the future trend of an infectious diseases only based
on the daily con�rmed cases Ċ.

Analysis

In this section, we discuss the �ndings of our COVID-19 data
analysis. We �rst implemented each of the growth models
listed in Table 1 and the standard SIR model under the pro-
posed Bayesian framework for the 20 countries with the most
con�rmed COVID-19 case numbers as of August 22, 2020. In-
put data were the sequence of daily con�rmed cases Ċ only,
which were accessible from the Johns Hopkins University Cen-
ter for Systems Science and Engineering COVID-19 Data Repos-
itory (https://github.com/CSSEGISandData/COVID-19/). Several
recent COVID-19 studies also based their analyses on this re-
source [see e.g. 25, 26, 27]. For our MCMC algorithms, we
set 100, 000 iterations with the �rst half as burn in and chose
weakly informative priors. We present numerical and graphical
summaries for posterior inference and short-term forecasting.
Our �nal goal was to compare the predictive performance of all
models using ARIMA as a benchmark model.

Forecasting of daily con�rmed cases in the U.S.

We �rst present the forecasting of U.S. daily con�rmed cases
made by the ARIMA model and our Bayesian framework with
the choices of a GRC or SIR model. As seen in Figures 1, the GRC
model demonstrates a downwards trend, the SIR model dis-
plays an upward trend, while the ARIMA model predicts a �at
trajectory of daily predicted cases. A natural epidemiological
interest is the estimated �nal size and end date of an epidemic.
Growth models include a model parameter K that estimates the
�nal epidemic size. For the SIR model, there is no available
parameter that estimates the �nal size. Hence, the �nal case
count is approximated as the predictive mean that converges
to a speci�c value from the related MCMC samples. We applied
a similar strategy to obtain the predicted mean of the �nal case
counts using the ARIMA model [2]. The estimated cumulative
con�rmed cases by the end of 2020 were projected at 13.1, 106.1,
and 10.0 (in millions), �tting the GRC, SIR, and ARIMA models,
respectively. Assuming that the epidemic continues until the
end of 2021, the �nal epidemic sizes are predicted to be 13.4,
187.3, and 22.0 (in millions) by the three models, respectively.
To account for the discrepancies in forecasts and validate the
forecast with actual reported �gures, there is a need for an ap-
propriate strategy to evaluate and compare the predictive per-
formance of the concerned models.

https://qiwei.shinyapps.io/PredictCOVID19/
https://github.com/CSSEGISandData/COVID-19/


| 3

0

25,000

50,000

75,000

M
ar

Apr
M

ay
Jun

Jul
Aug

Sep
Oct

Date

N
ew

 d
ai

ly
 c

on
fir

m
ed

 c
as

es

GRC(a)

0

500,000

1,000,000

M
ar

Apr
M

ay
Jun

Jul
Aug

Sep
Oct

Date

N
ew

 d
ai

ly
 c

on
fir

m
ed

 c
as

es

SIR(b)

0

20,000

40,000

60,000

80,000

M
ar

Apr
M

ay
Jun

Jul
Aug

Sep
Oct

Date

N
ew

 d
ai

ly
 c

on
fir

m
ed

 c
as

es

ARIMA(c)

Figure 1. The one-month forecasting of new daily con�rmed COVID-19 cases
in the U.S. made by the (a) GRC and (b) SIR model under the proposed Bayesian
framework, as well as the benchmark (c) ARIMA model. The black circles rep-
resent the observed COVID-19 case numbers since early March, 2020, while the
colored circles and ribbons represent the predicted means and 95% prediction
intervals, respectively.

Model comparison through rolling-origin cross-
validation

Cross-validation (CV) is a resampling procedure used to eval-
uate regression and classi�cation models when only a limited
data sample is available. The procedure randomly splits all data
samples into two parts: training and testing sets, where the
former is used to �t a model and the latter is used to eval-
uate the model’s prediction performance in terms of certain
error measures. The key assumption of CV is that all data
points should be independent and identically distributed (i.i.d.).
Unfortunately, time-series data are serially auto-correlated
meaning that the observations are dependent on the time they
were recorded. To circumvent this issue, the rolling-origin
CV (ROCV) technique was proposed [28]. It splits the data
into training and testing sets without a�ecting the i.i.d. as-
sumption. We used an adaption of this method to evaluate the
short-term forecasting performance among di�erent top-level
choices under the proposed Bayesian framework and ARIMA.
Figure 2 shows the ROCV representation for an example of time-
series data (T = 17). Algorithm 1 summarizes this evaluation
procedure. The choice of initial training sample size (denoted
by k) was set to seven days to evaluate how well the models
are able to generate forecasts during the initial phase of the
pandemic, while the testing sample size (denoted by ω) was
chosen to be three days to meet with our objective of compar-
ing short-term forecasting performance. We de�ned the �rst
day t = 1 as the date when cumulative con�rmed case load per
country reached 100, resulting in di�erent days for di�erent
countries.
A CV algorithm requires a predictive error metric that can

quantify model performance in terms of forecasting accuracy.
Root mean square error (RMSE) and mean absolute deviations
(MAD) are candidates for error measures for out-of-bag pre-
dictions but are dependent on scale. Thus, large values may
in�uence the errors to be larger. Mean absolute percentage error
(MAPE) has been a widely used predictive measure due to its

time

Figure 2. A visual guide to rolling-origin cross-validation (ROCV), where the
total sample size T = 17, the initial training sample size is 9, and the testing
sample size is 3. The green, orange, and white circles are training, testing, and
unused samples in one CV iteration.

Algorithm 1 Rolling-origin cross-validation (ROCV)
1: Store the data starting day 1 to day T
2: Initialize the number of initial training observations k (k =
7)

3: Set the size of the testing set ω (ω = 3)
4: while k +ω ≤ T do
5: Learn the �rst k observations (green circles) as training

data
6: Hold out the next k + 1, . . . , k +ω observations (orange

circles) as the testing data
7: Discard the remaining T – (k + ω) observations (white

circles)
8: Compute an out-of-bag prediction error measure on the

testing set (orange circles):

sMAPE = 100%
ω

k+ω∑
t=k+1

∣∣∣∣∣ Ct – Ĉt
(Ct + Ĉt)/2

∣∣∣∣∣ ,
where Ĉt denotes the predicted cumulative cases at timepoint t.

9: k = k + 1
10: end while

interpretability and its independence from scale, although the
distribution of such percentage errors can be skewed if the data
consist of values close to zero. Moreover, there is a possibility
of this measure being unde�ned due to a zero in the denomina-
tor. In addition, MAPE can be subjected to unbounded extreme
values if the actual data points are close to zero or if the abso-
lute forecasting error (Ct– Ĉt) is large. An improved percentageerror metric, namely symmetric mean absolute percentage error
(sMAPE), was proposed to address these issues [28]. This mea-
sure bounded the error between 0% – 200% by incorporating
the mean of actual and predicted cases (Ct + Ĉt)/2 in the de-nominator. Values close to 0% result from accurate predictions,
while errors close to 200% signify inaccurate forecasting.This
metric was considered in our analysis as it addressed the prob-
lem of having an unbounded measure and provided better sym-
metry and interpretability compared to MAPE.
Figure 3 displays the smoothed sMAPE curves generated by

the ROCV across time for the 20 countries with the most con-
�rmed case numbers as of August 22, 2020. All models per-
formed poorly in the early stage, but as more data became
available to be learned, the predictive performance gradually
improved as the sMAPE dropped. The ARIMA and SIR models
were performing signi�cantly worse than the growthmodels in
the early phase, which may be attributable to ARIMA (not hav-
ing the growth speci�c parameters) being unable to detect the
early growth. However, due to assumptions of a �xed trans-
mission rate γ and under-reporting of data, SIR performed
poorly. The stochastic growth curves were able to learn the
epidemiological data trend in the initial phase with the help
of the growth and scaling parameters. In latter half of the epi-
demic, all the models were performing equally well. Hence, we
were unable to conclude that any one particular dominated the
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Figure 3. The smoothed sMAPE curves generated by the rolling-origin cross-validation (ROCV) over time for the 20 countries with the most con�rmed COVID-19
case numbers as of August 22, 2020.
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Figure 4. The Cleveland dot plot of the averaged sMAPE generated by the
rolling-origin cross-validation (ROCV) for the 20 countries with the most con-
�rmed COVID-19 case numbers as of August 22, 2020.

entire duration of the epidemic.
To answer the question if we could pick one model with best

predictive performance on an average for any particular coun-
try, we constructed a Cleveland dot plot as shown in Figure 4
that allowed us to rank the model performance averaged over
the entire pandemic by country. We arranged countries in as-
cending order of predictive performance.

Discussion

We observed that all models performed best for Italy and worst
for South Africa. The Richards model had the minimum aver-
aged sMAPE for forecasting cumulative case counts in the U.S.,
while the GRC model had the lowest averaged sMAPE across
seven countries followed by the GLC model with four. The SIR
model was the best performer for South Africa. The Richards,
Bertalan�y, and Gompertz models had a fair share of predic-
tive dominance in the remaining countries. The ARIMA model
performed below average across all countries.
The GRC and GLCmodels were consistent performers across

all countries due to their ability to detect sub-exponential
growth rates at an early stage of an epidemic. The inclusion of
the scale parameter α that could account for any asymmetry in
the data allowed the GRC and Richards models to generally per-
form best in countries that did not have symmetric ‘S’-shaped
growth patterns and displayed randomness as well as multi-
ple peaks. Countries including the U.S., Peru, Saudi Arabia,
Iran, Turkey, and France displayed multiple peaks in the daily
con�rmed case counts. As a result, the Richards model per-
formed the best in the U.S., United Kingdom, and Peru, while
the GRCmodel dominated in the remaining countries withmul-
tiple peaks.
We observed a random structure in countries like Brazil,

Chile, Bangladesh, and Mexico. The GRC was the most complex
model and performed the best in these countries. However, the
GLCmodel usually performed better in countries that had a sin-
gle peak and an approximate ‘S’-shaped curvature. The GLC
model was able to generalize better than the GRC model when
data were well structured and less random. Argentina, Pak-
istan, Germany, Colombia, and India had a single peak with-
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out much randomness and the GLC model performed better
in these countries. In South Africa, the usual growth models
performed the worst due to a staggering growth rate in the
initial and the middle phase of the epidemic. The SIR model
performed the best out of the worst while the logistic model
performed well due to its simplicity. The Gompertz model was
the best performer in Russia, Spain, and Italy as it generalizes
better than the other models.

Conclusion

We developed a number of stochastic variants of growth and
compartmental models in a uni�ed Bayesian framework. The
literature has discussed a theoretical comparison of growth
models in great detail [5, 6, 7, 29, 30, 31, 32, 33]. However, to
our best knowledge, no work systematically compares the per-
formances among all as well as against a compartmental model
such as the SIRmodel and a time-series forecastingmodel such
as the ARIMA model.
We conclude that the proposed Bayesian framework not only

allows room for interpretation but also o�ers an exemplary pre-
dictive performance when it comes to COVID-19 daily report
data. Moreover, ARIMA (being a pure learning algorithm) is
not able to match the forecasting accuracy of stochastic mod-
els. Further, the model parameters of ARIMA do not provide
any information of epidemiological interests.
In the future, we aim to develop an ensemble model that

can aggregate the prediction of each base model, resulting in
one �nal prediction for the unseen data. Note that a group
of researchers have recently introduced a GGM-GLM ensem-
ble model [32] and compared forecasting performances with
the individual models for the Ebola Forecasting Challenge [34].
The ensemble model outperformed the others under some cir-
cumstances. We also plan to perform long-term forecasting
evaluation using epidemic features described in [24]. A sub-
epidemic wave model that could detect multiple peaks in the
data has been recently developed [35] and has the potential to
improve forecasting performance.
An ‘S’-shaped curvature on C attributes a simple growth

model as it assumes that an epidemic would last only a short
duration and that only a single peak would be observable on Ċ.
This oversimpli�ed assumption could be problematic as COVID-
19 is more likely to be an endemic. Moreover, the changing gov-
ernment policies and public health guidelines as well as popu-
lation behaviors (holiday) led to variable disease transmission
rates, resulting in multiple peaks.Thus, developing stochastic
growth models with the addition of a change-point detection
mechanism to account for multiple peaks is worth investigat-
ing. We have demonstrated that an approach that combines a
change-point detectionmodel and a stochastic SIRmodel could
signi�cantly improve the short-term forecasting of the new
daily con�rmed cases [36]. To handle the sophisticated exten-
sions of the current work, we need to utilize advanced versions
of the Metropolis-Hastings (MH) algorithm in the MCMC al-
gorithms. For example, the MH with delayed rejection [37],
the combination of delayed rejection and adaptive Metropolis
samplers [38], the multiple-try Metropolis [39, 40], and the
methods discussed in Liang et al. [41].

Potential Implications

The proposed Bayesian epidemiological models in a uni�ed
framework lay the foundation for an integrative approach to
model and predict epidemiological data with tremendous accu-
racy and interpretability. Growth and compartmental models
obtained as solutions to ordinary di�erential equations (ODEs)

are implemented to model epidemiological data under a deter-
ministic setting as they provide a natural framework represen-
tative of such data types. However, the estimated model pa-
rameters crucial for providing insights into the nature of the
epidemic are unreliable under the deterministic setting due to
identi�ability issues. The stochastic models mimic the struc-
ture of epidemiological models and incorporate parameter spe-
ci�c priors and measurement errors to solve the issues. Re-
searchers can follow a similar setup to predict cases and deaths
caused by an epidemic at any geographical level given the avail-
ability of data. Furthermore, the stochastic SIR model can be
augmented by incorporating mobility, hospitalization, and re-
covery data resulting in better forecasts. This work also pro-
motes an algorithmic strategy to measure forecasting perfor-
mances of time series models in general.
On a much broader scale, this work encourages researchers

to explore probabilistic approaches to model epidemiological
data to develop computationally e�cient algorithms that meet
time and cost constraints.

Methods

In this section, we present a bi-level Bayesian framework for
predicting new con�rmed cases during a pandemic in a closed
society. The bottom level directly models the observed counts
while accounting for measurement errors. Two alternatives
for the top level are then introduced and characterizes the epi-
demic dynamics through growth curve or compartmental tra-
jectories, respectively. Before introducing the main compo-
nents, we summarize the possibly observable data.

Bottom-level: Time-series count generating process

We consider the new case number observed at time t, i.e. Ċt,are sampled from a negative binomial (NB) model,
Ċt ∼ NB(g(Ct–1,Θ),φ), t = 2, . . . , T

as it automatically accounts for measurement errors and
uncertainties associated with the counts. Here, we use
NB(µ,φ),µ,φ > 0 to denote a NB distribution with expecta-
tion µ and dispersion 1/φ. We assume this stochastic pro-
cess is a Markov process, where the present state (at time t)
depends only upon its previous state (at time t – 1). There-
fore, the NB mean is a function, denoted by g(·), of the case
number observed at time t – 1, characterized by a set of inter-
pretable/uninterpretable model parameters Θ. With this pa-
rameterization, the NB variance is µ + µ2/φ, indicating that
φ controls the variance of measurement error. A small value
leads to a large variance to mean ratio, while a large value ap-
proaching in�nity reduces the NB model to a Poisson model
with the same mean and variance. The probability mass func-
tion of a NB random variable Y is Γ(Y+φ)

Y!Γ(φ)
(
φ
λ+φ

)φ (
λ
λ+φ

)Y .
Thus, we can write the full data likelihood as
f(Ċ|Θ,φ) =
T∏
t=2
Γ(Ċt +φ)
Ċt!Γ(φ)

(
φ

g(Ct–1,Θ) +φ
)φ ( g(Ct–1,Θ)

g(Ct–1,Θ) +φ
)Ċt . (1)

For the prior distribution of the dispersion parameter φ, we
choose a gamma distribution, φ ∼ Ga(aφ, bφ). We recommendsmall values, such as aφ = bφ = 0.001, for a non-informativesetting [42]. Note that the proposed framework can be viewed
as a stochastic discrete-time state-space model with a nega-
tive binomial error structure. The proposed Bayesian models,



6 | GigaScience, 2017, Vol. 00, No. 0

on average, mimic the epidemic dynamics and are more �ex-
ible than those deterministic epidemiological models, as they
account for measurement error and have the potential to incor-
porate existing information into the prior structure ofΘ.

Top-level I: Growth model

We �rst discuss the choices of g(·) when implementing growth
models. The development of a variety of growth curves orig-
inates from population dynamics [43] and growth of biologi-
cal systems [44, 45, 46, 47] modeling. A number of growth
curves have been adapted in epidemiology for trend characteri-
zation and forecasting of an epidemic, such as the severe acute
respiratory syndrome (SARS) [48, 49], dengue fever [50, 51],
pandemic in�uenza A (H1N1) [52], Ebola virus disease (EVD)
[29, 30], Zika fever [31], and COVID-19 [3, 6, 7, 53].
The underlying assumption is that the rate of growth of a

population, organism, or infectious individuals eventually de-
clines with size. The logistic curve (also known as sigmoid
curve) is the simplest growth curve of continuous time u ∈ R.
It is a non-negative symmetric ‘S’-shaped curve with equation
y(u) = K1+exp(–λ(u–u0)) , where u0 is the midpoint, K is the max-imum value, and λ re�ects the steepness of the curve. Clearly,
y(u) approaches Kwhen u→∞, while it converges to zero when
u→ –∞. In fact, the continuous curve y(u) is the solution of a
�rst-order non-linear ODE,

dy(u)
du = λy(u)

(
1 – y(u)K

)

with condition y(u0) = K/2, where dy(u)/du can be interpretedas time-variant growth rate of the curve y. The above ODE
reveals: 1) a non-negative growth rate, dy(u)/du > 0 as y(u) ∈
[0,K]; 2) an approximately exponential growth at the initial
stage, y(u) ≈ exp(λu) as dy(u)/du ≈ λy(u) when y(u) → 0; 3)
no growth at the �nal stage, y(u) dy(u)/du = 0 when y(u) →
K; 4) a maximum growth rate of λK/4 occurred when y(u) =
K/2, indicated by d2y(u)/du2 = λdy(u)/du (1 – 2y(u)/K). Based
on those curve characteristics, we can use the growth curve to
characterize the trend of cumulative con�rmed cases C.
We mainly considered a family of growth curves that are

derived from the generalized Richards curve (GRC), which is
the solution to the following ODE,

dy(u)
du = λy(u)p

[
1 –
( y(u)
K

)α] (2)

in continuous time u, while its discretized form at time point
t is written as yt – yt–1 = λypt–1 [1 – (yt–1/K)α]. For those model-speci�c parameters in the context of epidemiology, K is the
�nal epidemic size and should be an integer in the range of
(0,N], where N is the total population, λ ∈ R+ is the infectious
rate at early epidemic stage, p ∈ (0, 1) is known as scaling of
growth, and α ∈ R+ controls the curve symmetry. As our ob-
served infectious disease data are usually counts collected at
successive equally spaced discrete time points, we formulate
the NB mean function g(·) based on the discretized form of (2),

g(Ct–1,Θ = {K,λ, p,α}) = λCpt–1
[
1 –
(Ct–1
K

)α] . (3)

Table 1 provides a list of g(·)’s for growth curves with their
characteristics. All the listed growth curves have been utilized
and discussed in previous epidemiological studies. We include
all of those choices in our framework excluding the last one,
which is based on the generalized growth curve (GGC), because

it lacks the �nal epidemic size K speci�cation.
Without any existing information, we assume that K is from

a discrete uniform distribution in its range and γ is from
a gamma or a beta distribution, depending on the choice of
growth curves. For example, for both logistic and Gompertz
curves, we assume γ ∼ Beta(aγ, bγ), a natural modeling choicefor parameter value restricted to the (0, 1) interval, and sug-
gest to choose aγ = bγ = 1 for a uniform setting; otherwise,
we place a gamma prior, i.e. γ ∼ Ga(aγ = 0.001, bγ = 0.001).For the choice of GRC and generalized logistic curve (GLC), the
prior of p is chosen to be Beta(ap = 1, bp = 1). Lastly, we set
α ∼ Ga(aγ = 0.001, bγ = 0.001) for �tting a GRC or Richardscurve.

Top-level II: Compartmental model

The susceptible-infected-removed (SIR) model was developed
to simplify the mathematical modeling of human-to-human
infectious diseases by Kermack and McKendrick [55]. It is a
fundamental compartmental model in epidemiology. At any
given time u, each individual in a closed population with size
N is assigned to three distinctive compartments with labels:
susceptible (S), infectious (I), or removed (R, being either re-
covered or dead). The standard SIR model describes the �ow of
people from S to I and then from I to R by the following set of
nonlinear ODEs:

dS(u)
du = –βS(u) I(u)N
dI(u)
du = βS(u) I(u)N – γI(u)
dR(u)
du = γI(u)

,

where S(u), I(u), and R(u) are the population numbers of sus-
ceptible, infectious, and removed compartments measured in
time u, subjecting to S(u) + I(u) + R(u) = N, ∀u. Another nature
constraint is dS(u)/du + dI(u)/du + dR(u)/du = 0. Here, β ∈ R+
is the disease transmission rate, γ ∈ R+ is the removal rate,
and their ratio R0 = β/γ is de�ned as the basic reproductive
number. The rationale behind the �rst equation is that the
number of new infections during an in�nitesimal amount of
time, –dS(u)/du, is equal to the number of susceptible people,
S(u), times the product of the contact rate, I(t)/N, and the dis-
ease transmission rate β. The third equation re�ects that the
infectious individuals leave the infectious population per unit
time, dI(u)/du, as a rate of γI(u). The second equation follows
immediately from the �rst and third equations as a result of
dS(u)/du + dI(u)/du + dR(u)/du = 0. Assuming that only a small
fraction of the population is infected or removed in the onset
phase of an epidemic, we have S(u)/N ≈ 1 and thus the second
equation reduces to dI(u)/du = (β – γ)I(u), revealing that the
infectious population is growing if and only if β > γ. As the
expected lifetime of an infected case is given by γ–1, the ratio
R0 = β/γ is the average number of new infectious cases di-
rectly produced by an infected case in a completely susceptible
population. The so-called basic reproductive number is a good
indicator of an infectious disease’s transmissibility.
We only consider the standard SIR model, although it is

still feasible to design g(·)’s from its variations (see a com-
prehensive summary [56]), such as the susceptible-infectious
(SIS) model, the susceptible-infectious-recovered-deceased
(SIRD) model, the susceptible-exposed-infectious-removed
(SEIR) model, the susceptible-exposed-infectious-susceptible
(SEIS) model, and their versions with the maternally-derived
immunity compartment [57], as well as the recently developed
extended-SIR (eSIR) model [14]. For modeling discrete time-
series data, we use the discrete-time version of the standard
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Table 1. List of g(·)’s functions based on growth curves
Models g(Ct–1,Θ) ParametersΘ Continuous curve y(u) Value at the turning point Examples
GRC λCpt–1

[1 – ( Ct–1K )α]
K ∈ N, N/A (

p
p+α
)1/α

K [7, 29, 31]
λ ∈ R+,
p ∈ (0, 1),
α ∈ R+

Richards λCt–1
[1 – ( Ct–1K )α]

K ∈ N, K
(1 + A exp(–λαu))–1/α, ( 11+α

)1/α K [48, 49, 50, 51, 52]
λ ∈ R+, where A = –1 + ( K

y(0)
)α

α ∈ R+
GLC λCpt–1

(1 – Ct–1
K

)
K ∈ N, N/A p

p+1K [7, 35, 32, 33]
λ ∈ R+,
p ∈ (0, 1)

Logistic λCt–1
(1 – Ct–1

K

)
K ∈ N, K

(1 + A exp(–λu))–1, 12K [3, 6, 7, 29, 30]
λ ∈ (0, 1) where A = –1 + K

y(0)
Bertalan�y λC

23
t–1
[
1 – ( Ct–1K ) 13 ] K ∈ N, K

(1 + A exp(– 13γK–1/3u))3, 827K [6]
λ ∈ R+ where A = 1 – ( y(0)K )1/3

Gompertz λCt–1 log K
Ct–1 K ∈ N, K exp(A exp(–λu)), 1

eK [6]
λ ∈ (0, 1) where A = log y(0)K

GGC λCpt–1 λ ∈ R+, (
A + λu(1 – p))1/(1–p) N/A [7, 31, 32, 33, 54]

p ∈ (0, 1) where A = y(0)1–p
Abbreviations: GRC is generalized Richards curve; GLC is generalized logistic curve; GGC is generalized growth curve.

SIR model,

Ṡt = –βSt–1 It–1N
İt = βSt–1 It–1N – γIt–1
Ṙt = γIt–1

, (4)

where Ṡt = St – St–1, İt = It – It–1, and Ṙt = Rt – Rt–1 are thedi�erences between two adjacent observations in the sequence
of susceptible, infectious, and removed case numbers, respec-
tively. The model has three trajectories, one for each compart-
ment. The compositional nature of the three trajectories im-
plies that we only need two of the three sequence data, e.g. St =
N– Ct and Rt for t = 1, . . . , T. However, recovery data only existin few regions and su�er from under-reporting issue even if
they exist, which makes both model inference and predictions
infeasible. Alternatively, we consider both of the removed and
actively infectious cases as missing data and mimic their rela-
tionship in spirit to some compartmental models in epidemiol-
ogy. Speci�cally, we assume the number of new removed cases
at time t, i.e. Ṙt, is sampled from a Poisson distribution with
mean γIt–1, that is, Ṙt ∼ Poi(γIt–1) = Poi(γ(N – Ct–1 – Rt–1)),where γ should be speci�ed. Such a strategy but with di�erent
error structure was also considered in some other compartmen-
tal models in epidemiology [16, 58, 59]. We can estimate the
value of γ from publicly available high-quality data where con-
�rmed, deaths, and recovery cases are all well documented, or
from prior epidemic studies due to the same under-reporting
issue in actual data. In this paper, we choose the removal rate
γ = 0.1 as suggested by Pedersen andMeneghini [60] andWeitz
et al. [61]. Based on this simpli�cation, we rewrite the �rst
equation in (4) as,

(N – Ct) – (N – Ct–1) = –β(N – Ct–1)N – Ct–1 – Rt–1N ,

resulting in

Ċt = β(N – Ct–1)N – Ct–1 – Rt–1N .
Thus, we formulate the NB mean function g(·) for the standard
SIR model as,

g(Ct–1,Θ = {β}|R) = β(N – Ct–1)N – Ct–1 – Rt–1N , (5)
where R can be sequentially inferred from C.
Without any existing information, in our Bayesian frame-

work we assume β from a gamma distribution with hyperpa-
rameters that makes both the mean and variance of the trans-
formed variable R0 = β/γ equal to 1, that is, β ∼ Ga(1, 1/γ).

Model Fitting

In this section, we brie�y describe the MCMC algorithm for
posterior inference and forecasting. Our Bayesian inferential
strategy allows us to simultaneously infer all model-speci�c
parameters and quantify their uncertainties.

MCMC algorithms

We �rst describe how to update the dispersion parameter φ in
the proposed Bayesian framework, as it does not depend on
the choice of models. At each MCMC iteration, we perform the
following step:
Update of dispersion parameter φ: We update φ by using

a random walk Metropolis-Hastings (RWMH) algorithm. We
�rst propose a newφ∗, of which logarithmic value is generated
from N(logφ,τ2φ) and then accept the proposed valueφ∗ with
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probability min(1,mMH), where the Hastings ratio is

mMH = f(Ċ|φ∗,Θ)
f(Ċ|φ,Θ)

π (φ∗)
π (φ)

J (φ← φ∗)
J (φ∗ ← φ) .

Here we use J(· ← ·) to denote the proposal probability distri-
bution for the selected move. Note that the last term, which is
the proposal density ratio, cancels out for this RWMH update.
Top-level as a growth model
We only present the updates of each parameters in the GRC
model, as all other derivative models are its special cases. Our
primary interest lies in the estimation of the �nal pandemic
size K and the infectious rate at early epidemic stage λ.
Update of �nal epidemic size parameter K: We update K by

using a RWMH algorithm. We �rst propose a new K∗, of which
logarithmic value is generated from a truncated Poisson distri-
bution Poi (logK)within [log CT, logN] and then accept the pro-posed value K∗ with probability min(1,mMH), where the Hast-ings ratio is

mMH = f(Ċ|φ,K∗,λ, p,α)
f(Ċ|φ,K,λ, p,α)

π (K∗)
π (K)

J (K← K∗)
J (K∗ ← K) .

Note that with a discrete uniform prior on K, the last two terms
cancel out for this RWMH update.
Update of infectious rate parameter λ: We update λ by us-

ing a RWMH algorithm. We �rst propose a new λ∗, of which
logarithmic value is generated from N(logλ,τ2λ) and then
accept the proposed value λ∗ with probability min(1,mMH),where the Hastings ratio is

mMH = f(Ċ|φ,K,λ∗, p,α)
f(Ċ|φ,K,λ, p,α)

π (λ∗)
π (λ)

J (λ← λ∗)
J (λ∗ ← λ) .

Note that the last term, which is the proposal density ratio,
cancels out for this RWMH update.
Update of growth scaling parameter p: We update p by us-

ing a RWMH algorithm. We �rst propose a new p∗, of which
logarithmic value is generated from a truncated normal dis-
tribution N(log p,τ2p) within [–∞, 0] and then accept the pro-
posed value p∗ with probability min(1,mMH), where the Hast-ings ratio is

mMH = f(Ċ|φ,K,λ, p∗,α)
f(Ċ|φ,K,λ, p,α)

π (p∗)
π (p)

J (p← p∗)
J (p∗ ← p) .

Note that with a uniform prior on p over its range [0, 1], the
last two terms cancel out for this RWMH update.
Update of symmetry parameter α: We update α by using a

RWMH algorithm. We �rst propose a new α∗, of which loga-
rithmic value is generated from N(logα,τ2α) and then accept
the proposed value α∗ with probability min(1,mMH), where theHastings ratio is

mMH = f(Ċ|φ,K,λ, p,α∗)
f(Ċ|φ,K,λ, p,α)

π (α∗)
π (α)

J (α← α∗)
J (α∗ ← α) .

Note that the last term, which is the proposal density ratio,
cancels out for this RWMH update.
Top-level as a compartmental model
Our primary interest lies in the estimation of the reproductive
number R0 = β/γ, which re�ects the transmissibility of thedisease. With our assumption that γ is given, we propose the
following updates in each MCMC iterations.

Generate R based on C: We assume I1 = C1, i.e. all the con-�rmed cases are capable to pass the disease to all susceptible in-
dividuals in a closed population at the very beginning. In other
words, R1 = 0. Then we sample Ṙ2 ∼ Poi(γI1), where γ is a pre-speci�ed tuning parameter and Ṙ2 = R2 – R1 (Ṙ2 = R2 here inthat R1 = 0) is the new removed case numbers at time t = 2. Dueto the compositional nature, we can compute I2 = I1 + Ċ2 – Ṙ2,where Ċ2 = C2 – C1 is the new con�rmed case numbers at time
t = 2. Next, we repeat this process of sampling Ṙt ∼ Poi(γIt–1)and computing It = It–1 + Ċt – Ṙt, t = 3, . . . , T, to generate thesequence R.
Update of reproduction number parameter β: We update

β by using a RWMH algorithm. We �rst propose a new β∗, of
which logarithmic value is generated from a truncated normal
distribution N(logβ,τ2β) and then accept the proposed value
β∗ with probability min(1,mMH), where the Hastings ratio is

mMH = f(Ċ|β∗,R)
f(Ċ|β,R)

π (β∗)
π (β)

J (β← β∗)
J (β∗ ← β) .

Note that the last term, which is the proposal density ratio,
cancels out for this RWMH update.

Posterior inference

We obtain posterior inference by post-processing the MCMC
samples after burn-in. Suppose that a sequence of MCMC sam-
ples on θ,θ ∈ {φ,K,λ, p,α,β},

θ(1), . . . ,θ(U)

has been collected, where u, u = 1, . . . ,U indexes the iteration
after burn-in. An approximate Bayesian estimator of each pa-
rameter can be obtained simply by averaging over the samples,
θ̂ =∑Uu=1 θ(u)/U. In additional to that, a quantile estimation orcredible interval for each parameter of interest can be obtained
from this sequence as well.

Forecasting

Based on the sequences of MCMC samples on K, λ, p, and α in
the growth model or β in the compartmental model, we can
predict the cumulative or new con�rmed cases at any future
time Tf by Monte Carlo simulation. Particularly, from time T+1to Tf , we sequentially generate

Ċ(u)t ∼ NB(g(Ct–1,Θ(u)),φ(u)), t = T + 1, . . . , Tf . (6)
Then, both short and long-term forecast can be made by sum-
marizing the (Tf – T)-by-U matrix of MCMC samples. For ex-ample, themean predictive number of cumulative and new con-
�rmed cases at time T + 1 are∑Uu=1 C(u)T+1/U and∑Uu=1 Ċ(u)T+1/U, re-spectively.

Software

This paper introduces a user-friendly interactive web ap-
plication (https://qiwei.shinyapps.io/PredictCOVID19/ with
Biotools ID: bayesepimodels_webapp and RRID: SCR_019292
) integrated with R Shiny package. Shiny is a web platform that
allows users to interact with real-time data and use a myr-
iad of visualization tools to analyze them. The web applica-
tion has been developed to help the general public assess both
short and long-term forecasts of COVID-19 across the U.S. at
both state and metropolitan level. The numbers of cumula-

https://qiwei.shinyapps.io/PredictCOVID19/
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Figure 5. The web interface of the COVID-19 trend analysis page. The green box highlights the input panel that allows users to choose di�erent mapping types
and levels for a region. The orange box highlights the visualizations for short-term forecasting as per the instructions of users. Other tabs o�er di�erent graphs
for summarizing the model performance, long-term forecasting, and county-level spatial maps.

tive or new daily con�rmed cases as well as deaths are pro-
jected by di�erent growth models and the SIR model under
the proposed Bayesian framework. Alongside the numerical
summaries, users can view and interpret the trends that cover
the same information. To validate the short-term forecasting,
numerical and graphical summaries of MAE and MAPE of the
predictions are provided for the more advanced users. Moving
on to the long-term forecasting, the models estimate the peak
number of cases and deaths as well as their respective dates.
Moreover, predictive estimates for the �nal size and date are
also o�ered. Finally, for the users keen on visualizing the cur-
rently observed cases at a geographical level, the website o�ers
county-level spatial maps.

Availability of source code and requirements

• Project name: BayesEpiModels
• Project home page: https://github.com/liqiwei2000/

BayesEpiModels
• Operating system(s): Windows and Linux
• Programming language: R (version 3.6.0.)
• Other requirements: Not applicable.
• License: GNU General Public License v3.0
• Biotools ID: bayesepimodels
• RRID: SCR_019291

Availability of supporting data and materials

The related R/C++ codes for model preparation and execution
are available on GitHub at https://github.com/liqiwei2000/
BayesEpiModels. The R Shiny web application is available
for users at https://qiwei.shinyapps.io/PredictCOVID19/. The
COVID-19 data repository is operated by the Johns Hopkins

University Center for Systems Science and Engineering (JHU
CSSE) and is freely available on GitHub at https://github.com/
CSSEGISandData/COVID-19/.
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AI: Arti�cial Intelligence, ARIMA: Autoregressive integrated
moving average, COVID-19: Coronavirus disease - 2019,
CV: Cross-validation, eSIR: extended susceptible-infectious-
removed, GGC: Generalized growth curve, GGM-GLM: Gen-
eralized growth model - Generalized logistic model, GLC:
Generalized logistic curve, GRC: Generalized Richards curve,
i.i.d.: independent and identically distributed, JHUCSSE: Johns
Hopkins University Center for Systems Science and Engi-
neering, MAD: Mean absolute deviations, MAPE: Mean ab-
solute percentage error, MCMC: Markov chain Monte Carlo,
NB: Negative Binomial, ODE: Ordinary di�erential equation,
RMSE: Root mean square error, ROCV: Rolling-origin cross-
validation, RWMH: Random walk Metropolis-Hastings, SARS-
Cov-2: Severe acute respiratory syndrome coronavirus 2, SEIR:
susceptible-exposed-infectious-removed, SEIS: susceptible-
exposed-infectious-susceptible, SIR: susceptible-infectious-
removed, SIRD: susceptible-infectious-recovered-deceased,
SIS: susceptible-infectious-susceptible, sMAPE: symmetric
Mean Absolute Percentage Error, U.S.: United States.
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