
GigaScience

HTSlib - C library for reading/writing high-throughput sequencing data
--Manuscript Draft--

Manuscript Number: GIGA-D-20-00368R1

Full Title: HTSlib - C library for reading/writing high-throughput sequencing data

Article Type: Technical Note

Funding Information: Wellcome Trust
(206194)

Not applicable

Abstract: Background

Since the original publication of the VCF and SAM formats, an explosion of software
tools have been created to process these data files. To facilitate this a library was
produced out of the original SAMtools implementation, with a focus on performance
and robustness. The file formats themselves have become international standards
under the jurisdiction of the Global Alliance for Genomics and Health.

Findings

We present a software library for providing programmatic access to sequencing
alignment and variant formats. It was born out of the widely used SAMtools and
BCFtools applications. Considerable improvements have been made to the original
code plus many new features including newer access protocols, the addition of the
CRAM file format, better indexing and iterators, and better use of threading.

Conclusion

Since the original Samtools release, performance has been considerably improved,
with a BAM read-write loop running 5 times faster and BAM to SAM conversion 13
times faster (both using 16 threads, compared to Samtools 0.1.19).

Widespread adoption has seen HTSlib downloaded over a million times from GitHub
and conda. The C library has been used directly by an estimated 900 GitHub projects
and has been incorporated into Perl, Python, Rust and R, significantly expanding the
number of uses via other languages. HTSlib is open source and is freely available from
htslib.org under MIT / BSD license.

Corresponding Author: Andrew Whitwham
Wellcome Sanger Institute
Cambridge, UNITED KINGDOM

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Wellcome Sanger Institute

Corresponding Author's Secondary
Institution:

First Author: James K. Bonfield

First Author Secondary Information:

Order of Authors: James K. Bonfield

John Marshall

Petr Danecek

Heng Li

Valeriu Ohan

Andrew Whitwham

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Thomas Keane

Robert M. Davies

Order of Authors Secondary Information:

Response to Reviewers: Submission ID: GIGA-D-20-00368
Title: HTSlib - C library for reading/writing high-throughput sequencing data

Response to Reviewers

We would like to thank the editor and reviewers for careful review of our manuscript.
Their suggestions and
comments were helpful for us to refine this paper. Please see the list of revisions and
our responses
highlighted below.

Sincerely,
Andrew Whitwham et al.

Reviewer #1: Although not directly involved in this work, I have witnessed major events
leading to current C library of HTSlib. As indicated by the authors, there was a strong
demand in the genomic community to unify various short-read alignment formats and
to code genome variation. As the accumulation of genome sequencing data is still
accelerating, an efficient solution in both space and time is required. Currently this
library is maintained and further developed by experts at the front and various new
features are being introduced to meet new demands. I am glad that this library is freely
available for commercial and non-commercial use, which is vital for the field. Here are
a few minor suggestions.
1) Starting from VCF format, small variation is essentially the major category among
many to drive the improvement. There were attempts to code structural variants as
multiple breakpoints, contradicting current one line one variant practice. More complex
structural variation will emerge when pacbio HiFi is applied, especially in cancer
studies. Although this issue is not yet possible to solve right now, the procedure about
how HTSlib team interacts with broader genomics community to discuss and absorb
ideas could be described.

Thank you for the suggestion. The Discussion section briefly mentions the expected
structural variation changes in VCF. Since there is an overlap between VCF
specification maintainers and HTSlib maintainers, and GA4GH is an implementation-
lead organisation we expect to be implementing this once the specification becomes
more concrete. To make this clearer, we updated the relevant part of the Discussion to
read:
"Over the years various improvements and modifications have been made to the
specifications. Together these have been and will continue to be a driving force for
continued development."

2) In certain performance tests, a RAM disk is used. Although this does provide
theoretical throughput and mimics data flow from a pipe, it might not be what regular
users would experience in their daily data processing. Thus, perhaps all the tests could
be unified with SSD as the storage device.

Thank you for the suggestion, this is a good suggestion. We did consider adding such
tests, however, because I/O limits of the hardware are highly variable with many
different possible configurations, we choose to present the theoretical best
performance. In order to aid spotting the likely I/O bottlenecks we also now report
figures in megabytes per second, with colouring for typical HDD and SDD bandwidth
limits.

3) It is wonderful that HTSlib includes remote data transfer protocols and I
personally consider it particularly powerful once network speed enables stream

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

computing. However, current speed tests are for local data only. It will be great if
performance of remote data transfer protocols could be demonstrated in the
supplementary material.

Similarly to the previous point, the performance over network is also highly variable
and very hard to measure in a robust way, therefore we choose not to include such
tests. Network performance is typically dominated by a mix of total data volume and
the number of seeks, which will become separate network round-trips. These numbers
are reported in tables S6 and S7.

Reviewer #2: Solid summary article for a great piece of infrastructure. Just a few nits:

Background: The reported timing of HTSlib's creation is inconsistent: the end of the
second paragraph refers to the 2013 addition of CRAM to HTSlib (and later, the first
Discussion sentence, regarding 100-fold reduction in sequencing costs, refers to a
2008-09 starting point), but the fourth paragraph refers to the library's creation in 2014.
The text should be edited to more clearly distinguish the proto-HTSlib component of
SAMtools from the dedicated 2014- library.

Thank you for pointing out these inconsistencies. We updated the text to clarify these
apparent discrepancies, clarifying both the project start and first official release dates.

Figures 2, 4, and S9 are bar charts with log-scale y-axes; this is not a great
combination, since bar charts encourage comparison of bar areas.

Thank you for the suggestion. We updated the graphs as log-scale y-axis is not really
necessary.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

HTSlib - C library for reading/writing high-throughput

sequencing data

Authors: James K. Bonfield
†, John Marshall†, Petr Danecek

†, Heng Li, Valeriu Ohan, Andrew

Whitwham*, Thomas Keane, Robert M. Davies

(† contributed equally)

ORCID IDs:

James K. Bonfield: 0000-0002-6447-4112; John Marshall: 0000-0002-1216-5457; Petr Danecek: 0000-

0002-4159-1666; Heng Li 0000-0003-4874-2874; Andrew Whitwham: 0000-0001-8117-400X; Thomas

Keane: 0000-0001-7532-6898; Robert M. Davies: 0000-0002-9983-1378;

*Corresponding Author. Address: Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,

Cambridgeshire, CB10 1SA. UK. Phone: +44 (0)1223 834244. Email: samtools@sanger.ac.uk

Abstract

Background

Since the original publication of the VCF and SAM formats, an explosion of software tools have been

created to process these data files. To facilitate this a library was produced out of the original SAMtools

implementation, with a focus on performance and robustness. The file formats themselves have become

international standards under the jurisdiction of the Global Alliance for Genomics and Health.

Findings

We present a software library for providing programmatic access to sequencing alignment and variant

formats. It was born out of the widely used SAMtools and BCFtools applications. Considerable

improvements have been made to the original code plus many new features including newer access

protocols, the addition of the CRAM file format, better indexing and iterators, and better use of threading.

Manuscript Click here to access/download;Manuscript;HTSlib paper
revision GS.docx

mailto:samtools@sanger.ac.uk
https://www.editorialmanager.com/giga/download.aspx?id=110590&guid=1d6b0ae8-6e3a-4343-a873-2fcc63ee1460&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=110590&guid=1d6b0ae8-6e3a-4343-a873-2fcc63ee1460&scheme=1

Conclusion

Since the original Samtools release, performance has been considerably improved, with a BAM read-write

loop running 5 times faster and BAM to SAM conversion 13 times faster (both using 16 threads, compared

to Samtools 0.1.19).

Widespread adoption has seen HTSlib downloaded over a million times from GitHub and conda. The C

library has been used directly by an estimated 900 GitHub projects and has been incorporated into Perl,

Python, Rust and R, significantly expanding the number of uses via other languages. HTSlib is open source

and is freely available from htslib.org under MIT / BSD license.

Background

When the 1000 Genomes Project [1] was launched in early 2008, there were many short-read aligners and

variant callers. Each of them had its own input or output format for limited use cases and interoperability

was a major challenge. Users were forced to implement bespoke format converters to bridge tools, and

since formats encoded different information, this was time consuming, laborious and sometimes

impossible. This fragmented ecosystem hampered the collaboration between the participants of the project

and delayed the development of advanced data analysis algorithms.

In a conference call on 21st October, 2008, the 1000 Genomes Project analysis subgroup decided to take

on the issue by unifying a variety of short-read alignment formats into the Sequence Alignment/Map format

or SAM for short. Towards the end of 2008 the subgroup announced the first SAM specification, detailing a

text-based SAM format and its binary representation, the BAM format [2]. SAM/BAM quickly replaced all

the other short-read alignment formats and became the de facto standard in the analysis of high-throughput

sequence data. In 2010, a Variant Call Format (VCF) was introduced for storing genetic variation [3]. Later,

in 2011, as the number of sequenced samples grew and the text format proved too slow to parse, a binary

version BCF [see Additional file, Figure S1] was developed[4].

https://paperpile.com/c/tRX3y3/C3ta
https://paperpile.com/c/tRX3y3/DUIh
https://paperpile.com/c/tRX3y3/Td1r
https://paperpile.com/c/tRX3y3/cq2S

The SAM/BAM format originally came with a reference implementation, SAMtools [2][5], and VCF/BCF with

VCFtools [3] and BCFtools (then part of the SAMtools package)[6]. Numerous other tools have been

developed since then in a wide variety of programming languages. For example, HTSJDK is the Java

equivalent [7] and is used extensively in Java applications; Sambamba [8] is written in the D language and

focuses primarily on efficient multi-threaded work; Scramble [9] has BAM and SAM capability and is the

primary source for experimental CRAM [10,11] development; and JBrowse [12] implements read-only

support for multiple formats in JavaScript.

While the original implementation of SAMtools and BCFtools provided application programming interfaces

(APIs) to parse the files, it mixed these APIs with application code. This did not guarantee long-term

stability and made it difficult to interface in other programs. To solve this, in 2013 the decision was taken to

separate the API from the command line tools and to produce HTSlib as a dedicated programming library

that processes common data formats used in high-throughput sequencing]. Support for the European

Bioinformatics Institute’s CRAM format was added and in 2014 the first official release (1.0) was made.

This library implements stable and robust APIs that other programs can rely on. It enables efficient access

to SAM/BAM/CRAM, VCF/BCF, FASTA, FASTQ, block-gzip compressed data and indexes. It can be used

natively in C/C++ code and has bindings to many other popular programming languages, such as Python,

Rust and R, boosting the development of sequence analysis tools.

HTSlib is not merely a separation; it also brought numerous improvements to SAMtools, BCFtools and

other third-party programs depending on it. HTSlib is linked into approximately 900 GitHub projects [see

Additional file, Section S2], and HTSlib itself has been forked more than 300 times. HTSlib has been

installed via bioconda over 1 million times, and there are around 10,000 GitHub projects using it via Pysam.

The library is freely available for commercial and non-commercial use (the MIT / BSD compatible license)

from htslib.org and GitHub [13].

https://paperpile.com/c/tRX3y3/DUIh
https://paperpile.com/c/tRX3y3/Td1r
https://paperpile.com/c/tRX3y3/lig3
https://paperpile.com/c/tRX3y3/txU1
https://paperpile.com/c/tRX3y3/rEO1
https://paperpile.com/c/tRX3y3/Mke1+8qvj
https://paperpile.com/c/tRX3y3/zCy3

Findings

Implementation

Figure 1: Htslib design

The main purpose of HTSlib is to provide access to genomic information files, both alignment data (SAM,

BAM and CRAM formats) and variant data (VCF and BCF formats). The library also provides interfaces to

access and index genome reference data in FASTA format and tab-delimited files with genomic

coordinates.

Given the typical file sizes of genomic data, compression is necessary for efficient storage of data. HTSlib

supports a GZIP-compatible format BGZF (Blocked GNU Zip Format) which limits the size of compressed

blocks, thus allowing indexing and random access to the compressed files. HTSlib includes two standalone

programs that work with BGZF; bgzip is a general purpose compression tool while tabix works on tab

delimited genome coordinate files (e.g. BED and GFF) and provides indexing and random access. BGZF

compression is also used for BAM, BCF and compressed FASTA files. The CRAM format uses column-

specific compression methods including gzip, rANS[14], LZMA and bzip2. The CRAM implementation in

HTSlib learns the best performing compression method on the fly [see Additional file, Section S3].

The HTSlib library is structured as follows: the media access layer (Figure 1a) is a collection of low-level

system and library (libcurl, knet) functions, which facilitate access to files on different storage environments

(disk, memory, network) and over multiple protocols to various online storage providers (AWS S3, Google

Cloud, GA4GH htsget [15]; Figure 1b). This functionality is transparently available through a unified low-

level stream interface hFILE (Figure 1c). All file formats (Figure 1d-e) are accessible through a higher-level

file-format agnostic htsFILE interface, which provides functions to detect file types, set write options and

provides common code for file iterators. Building on this layer are specialisations for alignment (SAM, BAM

and CRAM) and variant (VCF and BCF) files and various auxiliary functions (Figure 1f-g).

https://paperpile.com/c/tRX3y3/C53D
https://paperpile.com/c/tRX3y3/V7Sk

This API (Figure 1f-g) can be roughly divided into several classes:

1. The File Access API has basic methods for opening and closing alignment and variant files, as well

as reading and writing records to a file. HTSlib automatically determines the input file type by its

contents and output type by filename. Further explicit control is provided for format, data layout (in

CRAM) and file compression levels. Data sorted in genomic order may also be indexed at the time

of writing (for alignment data) or at a later post-writing stage.

2. The Header API is a collection of methods that enables extensive control of SAM and VCF

headers, including reading, writing and parsing the header, accessing and updating individual tags,

adding and removing header lines.

3. The Data API provides methods for parsing, updating and retrieving information from individual

record fields on both alignment and variant data. The library also includes the ability to read multiple

VCF and BCF files in parallel, transparently merging their contents, so that the reader can easily

process records with matching genomic positions and alleles.

4. The Index / Iterator API offers the ability to extract information from the various index formats

specific to genomic data (BAI, CSI, CRAI, TBI), and to create iterators for genomic files. The original

BAI and TBI indices were limited to 512 Mbases and were replaced by CSI allowing up to 244 bases.

Both sequence alignment and variant call formats have millions of records which can be indexed by

genomic location. An iterator groups a list of target genomic regions into a list of file offsets and

contains the stepping and filtering logic to allow the file reader to extract only the information of

interest. Additionally, the library provides the regidx API which allows to efficiently search and

intersect regions from arbitrary row-oriented text formats.

5. The Mpileup API performs a data pivot. Alignment data in SAM, BAM and CRAM is retrieved in

row-oriented format, record by record. Data rotation (merging one or more input files) presents the

sequence data in a column-oriented form per reference position. This information can be used for

SNP and indel calling, consensus generation and to make alignment viewers. Mpileup can also

optionally calculate base alignment quality scores (BAQ) for each read [16]. The BAQ scores can be

used to reduce false-positive SNP calls by lowering the confidence scores at locations where the

read alignment may be incorrect.

https://paperpile.com/c/tRX3y3/qEmT

6. HTSlib also includes various utility convenience functions such as hash tables, string manipulation,

linked lists, heaps, sorting, logging, and ensures portability between big- and little-endian platforms.

Many of these originate from Klib[17]. A thread pool interface is provided for general multi-threading.

Benchmarks of sequence alignment formats

Given the widespread use of the library, performance and low memory requirements are paramount, which

means even relatively small improvements can lead to time and energy savings when analyzing large

amounts of data.

To test maximum throughput for alignment data, elapsed times were obtained for each file type using both

1 main thread and also 16 additional worker threads. Not all tools supported indexing of all formats, and

only in more recent HTSlib versions is there support for indexing and random access of BGZF compressed

SAM files. Full benchmarks are in Additional File, Table S5 , with a summary for BAM shown here in

Figure 2.

The tests were performed on a RAM disk (/dev/shm) so represent maximum I/O rates for this system.

Figure 2: BAM elapsed read/write times, with up to 16 threads available.

Figure 2: Read and write elapsed timings for the BAM format on chromosome 1 of ENA accession

ERR3239276. Note “samtools 2013” refers to SAMtools version 0.1.19 and not the current SAMtools

release. Other tool versions are HTSlib 1.10.2-32-ga22a0af, HTSJDK 2.22.0, Sambamba 0.7,1 and

Scramble 1.14.13. These use up to 16 threads, but the HTSJDK times are with only one additional thread

per file. SAMtools 0.1.19 has multi-threaded writing only, so the speed is limited by the reading portion.

https://paperpile.com/c/tRX3y3/fNcW

[See Additional file, Section S4 for full single-threaded and multi-threaded timings, along with benchmarks

for the SAM and CRAM formats.]

HTSlib was the only tool tested capable of multi-threaded SAM decoding and encoding, which is important

when processing output from a fast multi-threaded aligner. The use of the faster compression library

libdeflate[18] over Zlib[19] is also a major contributing factor in BAM performance, meaning BAM to BAM

transcoding with 16 threads is 5 times faster than the original SAMtools 0.1.19 and BAM to SAM is 13 times

faster.

File sizes also differ slightly for BAM, due to differing Deflate implementations (Zlib, Libdeflate and Intel

deflate). HTSlib’s CRAM size is 24% smaller than HTSJDK, while being 4 times faster (with a single

thread), although the files remain compatible [see Additional file, Table S5].

To compare the random access capabilities of HTSlib we chose gene and exon regions from the Ensembl

database across chromosome 1 and measured the time and I/O statistics to retrieve all alignments

overlapping those regions. HTSlib, HTSJDK and Sambamba all support a multi-region iterator that is able

to optimise I/O for many regions, reporting alignments that overlap multiple regions once only. SAMtools

0.1.19 and Scramble have no such feature, hence regions that overlap will report some records multiple

times and the same block may be read more than once.

The exon list had 58,160 regions (many overlapping each other) covering 5.5% of the chromosome. Figure

3 shows the random access efficiency, in both time and number of bytes read, for the exon list with BAM

input. HTSlib is the fastest and requires less I/O to retrieve the same records.

Figure 3: Time and Megabytes of data read, for exon list in BAM

Figure 3: Single threaded performance to read the records overlapping Ensembl exons from chromosome

1.

https://paperpile.com/c/tRX3y3/0rnR
https://paperpile.com/c/tRX3y3/lTdv

Benchmarks of variant formats

The only common format supported between current HTSlib / BCFtools and HTSJDK is BGZF compressed

VCF. Figure 4 shows the time to read and read/write this format on a 929 sample test set [20] [see

Additional file, Section S8]. Only single thread times are shown as currently multi-threading is sub-optimal

in BCFtools and not available HTSJDK.

Figure 4: VCF.gz and BCF Read and Read/Write Times, 929 samples.

Figure 4. Time in seconds to read and read/write BGZF compressed VCF and BCF. Source file is

hgdp_wgs.20190516.full.chr20.vcf.gz, aligned and called from ENA PRJEB6463.

HTSlib also supports the BGZF compressed BCF format, a binary variant of VCF. This is considerably

more performant than the compressed VCF, being 5 times faster to decode and nearly 3 times faster to

encode. [See Additional file, Tables S10 and S11 for details and more complete results.]

Discussion

Over the lifetime of HTSlib the cost of sequencing has decreased by approximately 100-fold with a

corresponding increase in data volume [21]. New sequencing technologies have also been developed that

produce much longer reads. The alignment and variant file formats have moved on from being group led

research to being maintained by the File Formats subgroup of the Global Alliance for Genomics and

Health[22]. Over the years various improvements and modifications have been made to the specifications.

Together these have been and will continue to be a driving force for continued development.

https://paperpile.com/c/tRX3y3/B1lE
https://paperpile.com/c/tRX3y3/pYF3
https://paperpile.com/c/tRX3y3/FYhS

Since HTSlib 1.0, there have been 11 major releases and over 1600 code commits, more than doubling the

number of lines of C code [15]. It has gained support for the CRAM file format, better indexing, extended

APIs, more transfer protocols (S3, Google Cloud, Htsget) and improved threading and speed. Through the

use of automated tests, static analysis tools and fuzz testing it has been made much more reliable [see

Additional file, Section S12].

Some of the existing limitations in HTSlib come from the design of the underlying file formats, for example

BAM, CRAM and BCF limit the maximum reference length to 2 Gbases [see Additional file, Section S13].

We expect future standards development to include improvements leading to better scaling of many-

sample VCF; additional support for structural variation; better handling of very long sequencing reads; large

genomes; and support for base modifications. Further plans include speeding up both the VCF parser and

mpileup, improved documentation, and better support for BED files.

Availability of supporting source code and requirements

Project name: HTSlib

Project home page: https://www.htslib.org, https://github.com/samtools/htslib

Operating system(s): Platform independent

Programming language: C

License: A mix of Modified 2-Clause BSD (CRAM) and MIT/Expat (everything else).

RRID: SCR_002105

biotools:htslib

Data Availability

The data set supporting the benchmarking results of this article is available in the European Nucleotide

Archive, [ERR3239276 and PRJEB6463], and via FTP [23]. Snapshots of the code are also available via

the GigaScience GigaDB repository [24].

https://www.htslib.org/
https://github.com/samtools/htslib

Editors Note

An accompanying paper describing the latest versions of SAMtools and BCFtools is published alongside

this article [25].

Additional Files

Additional File, Figure S1: Binary BCF vs VCF format

Additional File, Section S2: Estimated number of HTSlib source code clones

Additional File, Section S3: CRAM Compression Algorithm

Additional File, Section S4: Performance of HTSlib's SAM, BAM, CRAM implementations

Additional File, Table S5: Read and Read/Write timings for tools and file formats

Additional File, Table S6: Random access times and data volumes, single thread

Additional File, Table S7: Random access times and data volumes, 8 threads

Additional File, Section S8. Performance of HTSlib's VCF, BCF implementations

Additional File, Figure S9: VCF and BCF read and read/write speeds

Additional File, Table S10: Multi-sample VCF and BCF performance

Additional File, Table S11: Single-sample VCF and BCF performance

Additional File, Section S12: Automatic testing

Additional File, Section S13: The format size limitations

Abbreviations

API: Application Programming Interface; BAM: Binary sequence Alignment/MAP; BAQ: Base Alignment

Quality; BCF: Binary variant Call Format; BGZF: Blocked GNU Zip Format; SAM: Sequence

Alignment/Map; VCF: Variant Call Format.

Competing Interests

The authors declare they have no competing interests.

Authors' contributions

J.B., P.D., R.D., H.L., J.M., V.O., and A.W. wrote the software. R.D., T.K., and J.M. supervised the project.

J.B., P.D., R.D., and A.W. wrote the original draft of the manuscript with all authors reviewing.

Funding

This work was supported by the Wellcome Trust grant [206194].

References

1. The 1000 Genomes Project Consortium. A global reference for human genetic variation.

Nature. 2015;526: 68–74.

2. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence

Alignment/Map format and SAMtools. Bioinformatics. 2009;25: 2078–2079.

3. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call

format and VCFtools. Bioinformatics. 2011;27: 2156–2158.

4. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and

population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:

2987–2993.

5. SAMtools (2020). SAMtools (Version 1.1)

https://github.com/samtools/samtools/releases/tag/1.11

http://paperpile.com/b/tRX3y3/C3ta
http://paperpile.com/b/tRX3y3/C3ta
http://paperpile.com/b/tRX3y3/DUIh
http://paperpile.com/b/tRX3y3/DUIh
http://paperpile.com/b/tRX3y3/Td1r
http://paperpile.com/b/tRX3y3/Td1r
http://paperpile.com/b/tRX3y3/cq2S
http://paperpile.com/b/tRX3y3/cq2S
http://paperpile.com/b/tRX3y3/cq2S
https://github.com/samtools/samtools/releases/tag/1.11

6. SAMtools (2020). BCFtools (Version 1.1)

https://github.com/samtools/bcftools/releases/tag/1.11

7. SAMtools (2020). HTSJDK. (Version 2.23.0). https://github.com/samtools/htsjdk [cited 4 May

2020]

8. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS

alignment formats. Bioinformatics. 2015;31: 2032–2034.

9. Bonfield JK. The Scramble conversion tool. Bioinformatics. 2014;30: 2818–2819.

10. Hsi-Yang Fritz M, Leinonen R, Cochrane G, Birney E. Efficient storage of high throughput

DNA sequencing data using reference-based compression. Genome Res. 2011;21: 734–740.

11. CRAM homepage (2020). https://www.ga4gh.org/cram/ [cited 6 Nov 2020]

12. Buels R, Yao E, Diesh CM, Hayes RD, Munoz-Torres M, Helt G, et al. JBrowse: a dynamic

web platform for genome visualization and analysis. Genome Biology. 2016.

doi:10.1186/s13059-016-0924-1

13. SAMtools (2020). HTSlib. (Version 1.11) https://github.com/samtools/htslib/releases/tag/1.11

14. Duda J. Asymmetric numeral systems: entropy coding combining speed of Huffman coding

with compression rate of arithmetic coding. 2013. https://arxiv.org/abs/1311.2540

15. Kelleher J, Lin M, Albach CH, Birney E, Davies R, Gourtovaia M, et al. htsget: a protocol for

securely streaming genomic data. Bioinformatics. 2019;35: 119–121.

16. Li H. Improving SNP discovery by base alignment quality. Bioinformatics. 2011;27: 1157–

1158.

17. Li H (2013). Klib. https://github.com/attractivechaos/klib [cited 27 Nov 2020]

18. Biggers E (2020). libdeflate (Version 1.7). https://github.com/ebiggers/libdeflate [cited 6 Nov

https://github.com/samtools/bcftools/releases/tag/1.11
https://github.com/samtools/htsjdk
http://paperpile.com/b/tRX3y3/txU1
http://paperpile.com/b/tRX3y3/txU1
http://paperpile.com/b/tRX3y3/rEO1
http://paperpile.com/b/tRX3y3/Mke1
http://paperpile.com/b/tRX3y3/Mke1
https://www.ga4gh.org/cram/
http://paperpile.com/b/tRX3y3/zCy3
http://paperpile.com/b/tRX3y3/zCy3
http://paperpile.com/b/tRX3y3/zCy3
http://paperpile.com/b/tRX3y3/zCy3
https://github.com/samtools/htslib/releases/tag/1.11
http://paperpile.com/b/tRX3y3/C53D
http://paperpile.com/b/tRX3y3/C53D
https://arxiv.org/abs/1311.2540
http://paperpile.com/b/tRX3y3/V7Sk
http://paperpile.com/b/tRX3y3/V7Sk
http://paperpile.com/b/tRX3y3/qEmT
http://paperpile.com/b/tRX3y3/qEmT
https://github.com/attractivechaos/klib
https://github.com/ebiggers/libdeflate

2020].

19. Deutsch P, Gailly J-L. ZLIB Compressed Data Format Specification version 3.3. 1996.

doi:10.17487/rfc1950

20. Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q, Danecek P, et al. Insights into human

genetic variation and population history from 929 diverse genomes. Science. 2020;367:

eaay5012.

21. NHGRI (2020). DNA Sequencing Costs: Data. https://www.genome.gov/about-genomics/fact-

sheets/DNA-Sequencing-Costs-Data [cited 23 Sep 2020].

22. Birney E, Vamathevan J, Goodhand P. Genomics in healthcare: GA4GH looks to 2022.

bioRxiv. 2017. 203554; https://doi.org/10.1101/203554

23. Source file for hgdp_wgs.20190516.full.chr20

ftp://ngs.sanger.ac.uk/production/hgdp/hgdp_wgs.20190516/hgdp_wgs.20190516.full.chr20.v

cf.gz [cited 27 Nov 2020]

24.` Bonfield JK, Marshall J, Danecek P, Li H, Ohan V, Whitwham A, Keane T, Davies RM (2021):

Supporting data for "HTSlib - C library for reading/writing high-throughput sequencing data"

GigaScience Database. http://dx.doi.org/10.5524/100867

25. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy

SA, Davies RM, Li H (2021): Twelve years of SAMtools and BCFtools. GigaScience 2021;

doi:10.1093/gigascience/giaaxxx

http://paperpile.com/b/tRX3y3/lTdv
http://paperpile.com/b/tRX3y3/lTdv
http://dx.doi.org/10.17487/rfc1950
http://paperpile.com/b/tRX3y3/B1lE
http://paperpile.com/b/tRX3y3/B1lE
http://paperpile.com/b/tRX3y3/B1lE
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://doi.org/10.1101/203554
ftp://ngs.sanger.ac.uk/production/hgdp/hgdp_wgs.20190516/hgdp_wgs.20190516.full.chr20.vcf.gz
ftp://ngs.sanger.ac.uk/production/hgdp/hgdp_wgs.20190516/hgdp_wgs.20190516.full.chr20.vcf.gz

Figure 1 Click here to access/download;Figure;figure1-htslib.v0.4.pdf

https://www.editorialmanager.com/giga/download.aspx?id=110234&guid=5c6331e6-e83c-442e-91d5-892c9090ce77&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=110234&guid=5c6331e6-e83c-442e-91d5-892c9090ce77&scheme=1

10

20

30

40

50

60

70

ht
sli

b

sa
m

to
ols

 2
01

3

ht
sjd

k

sa
m

ba
m

ba

sc
ra

m
ble

R
ea

d
T

im
e

(s
)

6.6

64.3

60.2

5.7
4.1

50

100

150

200

250

300

350

400

ht
sli

b

sa
m

to
ols

 2
01

3

ht
sjd

k

sa
m

ba
m

ba

sc
ra

m
ble

R
ea

d
/ W

rit
e

T
im

e
(s

)

28.1

136.9

375.1

57.5

27.4

Figure 2 Click here to access/download;Figure;figure2-
htslib-bam-speed.pdf

https://www.editorialmanager.com/giga/download.aspx?id=110222&guid=6d07942e-f5c8-4b31-9d8a-ff67920d2328&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=110222&guid=6d07942e-f5c8-4b31-9d8a-ff67920d2328&scheme=1

0

10

20

30

40

50

60

70

ht
sli

b

ht
sjd

k

sa
m

ba
m

ba

T
im

e
(s

)

15.7

67.2

34.5

0

500

1000

1500

2000

ht
sli

b

ht
sjd

k

sa
m

ba
m

ba

B
yt

es
 R

ea
d

(M
B

)

1494

2046 2054

Figure 3 Click here to access/download;Figure;figure3-
htslib-bam-io.pdf

https://www.editorialmanager.com/giga/download.aspx?id=110223&guid=c46cb37a-747f-41e9-a229-4d4895cf9e1e&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=110223&guid=c46cb37a-747f-41e9-a229-4d4895cf9e1e&scheme=1

500

1000

1500

2000

2500

3000

3500

4000

4500

ht
sli

b
BCF

ht
sli

b
VCF.g

z

ht
sjd

k V
CF.g

z

vc
flib

 V
CF.g

z

R
ea

d
T

im
e

(s
)

68
338

1345

4369

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

ht
sli

b
BCF

ht
sli

b
VCF.g

z

ht
sjd

k V
CF.g

z

vc
flib

 V
CF.g

z
R

ea
d

/ W
rit

e
T

im
e

(s
)

461

1235

3259

11074

Figure 4 Click here to access/download;Figure;figure4-
htslib-vcf-speed.pdf

https://www.editorialmanager.com/giga/download.aspx?id=110235&guid=7335a7a5-5290-4d64-b6ca-32e411b20a36&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=110235&guid=7335a7a5-5290-4d64-b6ca-32e411b20a36&scheme=1

Supplementary Material

Click here to access/download
Supplementary Material

Additional File.docx

https://www.editorialmanager.com/giga/download.aspx?id=110225&guid=c3741784-c91c-4f9f-9383-7f6cdd5a2567&scheme=1

