Supplemental Material for:

Meteoritic Evidence for a Ceres-sized Water-rich Carbonaceous Chondrite Parent Asteroid

V. E. Hamilton, C. A. Goodrich, A. H. Treiman, H. C. Connolly, Jr., M. E. Zolensky, and M. H. Shaddad

	Amphi	bole	Serpen	tine 1	Serpen	tine 2	Clinocl	nlore	Magne	tite*	Diopsi	ide	Olivir	пе	Phosphate**
SiO2	avg (24) 57.5	std dev 0.6	avg (11) 40.8	std dev 1.4	avg (12) 37.2	std dev 1.4	avg (22) 35.3	std dev 1.1	avg (47) 0.15	std dev 0.17	avg (4) 54.3	std dev 0.8	avg (37) 37.3	std dev 0.5	(1) 3.1
TiO2	0.03	0.03	bdl		bdl		bdl		0.45	0.07	bdl		bdl		0.12
Al2O3	0.32	0.13	2.94	0.45	3.11	0.33	10.8	0.6	0.02	0.01	0.26	0.18	bdl		0.08
Cr2O3	0.05	0.02	0.38	0.26	0.35	0.07	0.75	0.26	0.67	0.71	0.23	0.08	0.03	0.01	1.30
V2O3	na		na		na		na		bdl		na		na		na
FeO	4.2	0.3	8.0	0.7	6.4	0.5	7.3	0.4	30.1	0.5	3.9	0.2	28.6	0.3	14.0
Fe2O3									66.9	1.1					
NiO	0.06	0.04	0.11	0.05	0.10	0.02	0.12	0.03	0.16	0.06	0.04	0.02	0.12	0.02	0.11
MnO	0.18	0.04	0.11	0.03	0.07	0.02	0.06	0.02	0.11	0.03	0.20	0.01	1.33	0.09	0.03
MgO	22.5	0.4	33.4	1.7	30.3	1.4	31.9	0.8	0.42	0.24	17.5	0.7	33.8	0.5	0.43
CaO	12.5	0.6	0.09	0.07	0.16	0.14	0.20	0.08	0.15	0.21	23.0	1.1	0.05	0.10	42.3
Na2O	0.80	0.34	0.17	0.13	0.35	0.18	0.10	0.06	na		0.14	0.03	bdl		bdl
K2O	bdl		bdl		bdl		0.17	0.14	na		bdl		na		bdl
F	bdl		bdl		bdl		bdl		na		na		na		bdl
Cl	bdl		0.03	0.01	0.05	0.01	bdl		na		na		na		0.01
P2O5	bdl		bdl		bdl		bdl		na		bdl		na		30.7
SO3	bdl		0.08	0.10	0.07	0.03	bdl		na		bdl		na		0.18
Total	98.2	0.7	86.2	3.9	78.1	3.3	86.8	1.6	99.1	0.6	99.6	1.0	101.3	0.7	92.3
Mg#	90.6		88.2		89.4		88.6				88.9		67.8		
Wo											45.7				
ions															
normalization															
method	13 cations ¹	ł	<u>9 anions</u>		<u>9 anions</u>		<u>36 anions</u>		<u>4 oxygen</u>		<u>24 oxygen</u>		<u>24 oxygen</u>		
Si	7 862		1 920 -		1 634		6 760		0.006		7 968		5 957 -		
Ti	0.002		1.520	-2 000	1.054	- 1 800	0.700	- 8 000	0.000		7.500	- 8 000	5.557	5 960	
AI	0.005		0.080	2.000	0 161	1.000	1 240	0.000	0.013	1 990	0.032	0.000		_ 5.900	
Al	0.051		0.083		0.101		1,193		0.001	- 1.550	0.013		-	5	
Fe3+	0.326		0.000						1.948		0.010				
Cr	0.020		0.014		0.012		0.114		0.020		0.026		0.003		
Fe2+	0.149		0.316		0.234		1.166		0.974		0.477		3.822		
Ma	4.576		2.352		1.984		9.104		0.024	1.010	3.816				
Mn	0.021		0.005	2.800	0.003	2.269	0.009	11.710	0.004		0.024	> 8.020	8.054	12,100	
Ca	1.837		0.004		0.007		0.041	<u> </u>	0.006		3.615		0.009		
K							0.040								
Na	0.212		0.016		0.029		0.037				0.040				
Р															
Ni											0.015 -				
OH***	2.000		4.409 -		6.458		16.600								

Supplementary Table 1. Average compositions of minerals in AhS 202 from EMP analyses by wt% oxide and ion calculation

*Magnetite analyses re-calculated under the assumption that molar $Fe^{2+}/Fe^{3+} = 2/3$.

Detection limits: F - 0.04; Na2O - 0.02; K2O - 0.01; CaO - 0.01; SO3 - 0.03; Cl - 0.004; P2O5 - 0.03; TiO2 - 0.02; NiO 0.02.

bdl = below detection limit; na = not analyzed.

**Small phosphate inclusion in magnetite. This analysis includes significant overlap with surrounding magnetite, therefore calculation of a cation mineral formula is not appropriate.

*** For serpentines and chlorite, cations calculated assuming wt.% $H_2O = 100$ -(analytical total from EMPA).

†Amphibole recalculated using method of Locock (2014). See Table S2 for complete calculation.

	Tremolite (AhS 202)	Tremolite (WAR-0979)	Ti-pargasite (HS-177.4B)	Richterite (ASU-03)	Magnesio- hastingsite (HS-115.4B)			
SiO ₂	57.50	56.76	41.63	54.72	44.97			
TiO ₂	0.03	0.01	2.89	0.32	0.29			
AI_2O_3	0.32	0.16	13.58	2.00	11.17			
Cr_2O_3	0.05							
MnO	0.18	0.12	0.06	0.11	0.06			
FeO	4.20	3.63	14.23	2.32	7.14			
NiO	0.06							
MgO	22.50	21.98	11.36	22.55	17.28			
CaO	12.50	12.86	11.59	9.21	12.33			
Na ₂ O	0.80	0.39	1.76	4.15	2.24			
K ₂ O	0.00	0.17	1.61	1.34	0.83			
Total	98.16	96.08	98.71	96.72	96.31			

Supplementary Table 2. Compositions in wt.% of amphiboles from EMP analyses

Non-AhS 202 amphibole analyses are from Christensen et al. [2000].

Formula Assignments	Tremolite (AhS 202)	Tremolite (WAR-0979)	Ti-pargasite (HS-177.4B)	Richterite (ASU-03)	Magnesio- hastingsite (HS-115.4B)	
т						
Si	7.862	7.946	6.102	7.652	6.527	
Al	0.051	0.026	1.898	0.330	1.473	
Ti	0.003	0.001		0.019		
Fe ³⁺	0.083	0.026				
T Total	7.999	7.999	8.000	8.001	8.000	
С						
Ti			0.319	0.015	0.032	
Al			0.447		0.438	
Cr	0.005					
Mn ³⁺						
Fe ³⁺	0.243	0.059	0.372	0.176	0.188	
Ni	0.007					
Mn ²⁺	0.021	0.014	0.007	0.013		
Fe ²⁺	0.149	0.340	1.372	0.096	0.604	
Mg	4.576	4.587	2.482	4.701	3.739	
C Total	5.001	5.000	4.999	5.001	5.001	
В						
Mn ²⁺					0.007	
Fe ²⁺					0.075	
Mg						
Ca	1.837	1.929	1.820	1.380	1.917	
Na	0.163	0.071	0.180	0.620		
B Total	2.000	2.000	2.000	2.000	1.999	
Α						
Ca						
Na	0.049	0.035	0.320	0.505	0.630	
К		0.030	0.301	0.239	0.154	
A subtotal	0.049	0.065	0.621	0.744	0.784	
O (non-W) W	22.000	22.000	22.000	22.000	22.000	
ОН	2.000	2.000	2.000	2.000	2.000	
F						
Cl						
0						
W Total	2.000	2.000	2.000	2.000	2.000	

Supplementary Table 3. Amphibole formula assignments for the samples in Table S2 using the method of Locock (2014).

*All Fe calculated as Fe²⁺ in EMP analyses.

Supplementary Figure 1. (Left) Focused ion beam (FIB) slice from matrix serpentine in AhS 202 showing fine- and coarse-grained textures. FIB section is ~15 µm across. (Right) TEM image from coarse-grained region of FIB slice showing chrysotile structure with ~0.74 nm lattice fringes.

Supplementary Figure 2. Modeled pressure-temperature relations for the reaction serpentine + diopside = tremolite + olivine + H2O (see Methods) for the mineral compositions in AhS 202. Formation of tremolite is hindered by sluggish kinetics at temperatures below ~400-425° C, implying minimum pressures of 0.5-2.0 kbar.

Supplementary Figure 3. Calculated parent body sizes as a function of material density for normalized depths to the target pressures shown (see Methods), where a normalized depth of 0.0 is at the surface and 1.0 is at the core. For the most reasonable depths (0.2 - 0.5) and material density (2.2 g/cm³), AhS 202 parent body diameters range from 640 - 1800 km, encompassing the diameter of Ceres (~940 km).