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A. Convex Optimization 
   Convex optimization solvers, including CVX, employ a multitude of algorithms to solve optimization problems 
formulated as being convex. Interior point methods are famous algorithms used to solve convex optimization 
problems in general and second-order cone programs (SOCP) in particular [1]. These methods define a so-called 
“barrier function” that basically transforms constrained optimization problems into unconstrained ones. These 
methods impose a condition on the goal function of the transformed unconstrained optimization problem, that it 
cannot result in solutions that do not satisfy the constraints of the original optimization problem by penalizing 
solutions that get close to the constraint boundary (in limit penalizing solutions on the constraint boundary by 
infinity), hence creating a barrier that does not let the solution to pass which ensures the satisfaction of the 
constraint.  How SOCP problems are tackled can be found in great details in [2]. The details of these algorithms 
have been well studied and practiced in the literature and given the limited space we have in the paper and our 
primary focus on the source imaging applications in this paper, and the wide use of these techniques and solvers in 
the optimization field, we refer the interested reader to the optimization literature for further reading and 
investigation [1], [2]. 
 

B. Time-courses of Activity 

    Refer to Fig. S1 and Fig. S2.  
 

C. Practical Considerations 

In this section, some considerations regarding the implementation of the beamformers in general and its robust 
version in particular will be discussed. The accuracy of the covariance estimation plays a crucial role in the ultimate 
performance of the beamformers. On the other hand, the empirical estimation can poorly represent the true 
covariance matrix, if the number of data points is not sufficiently large. To address this issue, many techniques have 
been developed to regularize and purify the estimation [3]. In this study, a technique based on shrinkage models [3] 
was used to estimate the covariance matrices of the measurements, noise and uncertainty regions.   

Another issue that requires attention is the size of the uncertainty region for each voxel with respect to the size of 
the lead field column. The uncertainty ellipsoid should not be too large to include the origin; otherwise, the 
constraint in (8) becomes infeasible, which in turn makes the problem unsolvable. On the other hand, a non-
conservative inflation of the uncertainty ellipsoid can degrade the performance. This issue is pronounced even more 
in a fixed orientation model as is the case of this study, since in such a model orientations may vary drastically 
within each region depending on the size and location of the uncertainty region. Therefore, a constricting 
mechanism is required to ensure that each uncertainty ellipsoid does not grow larger than necessary. To this end, we 
defined the parameter ߚ for each voxel as the ellipsoid radius along the direction ݇/‖݇	‖ normalized by ‖݇‖. This 
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parameter, which measures the size of the ellipsoid with respect to the distance of its center from the origin, can be 
calculated as: 
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Each uncertainty ellipsoid can then be rescaled such that its ߚ-parameter is no larger than a cut-off value. The 

threshold can be determined either upfront or in an automated manner such as the mean of all ߚ-parameters that are 
less than 1 (of the ellipsoids that do not contain the origin). In this study, the latter approach was used. Fig. S3 (A), 
which plots the histogram of the ߚ-parameters, provides information regarding the distribution of the mentioned 
parameter for all voxels as well as the position of the cut-off value in this distribution. In Fig. S3 (B), the parameter 
  of all voxels versus the standard deviation (STDev) of the angles within the uncertainty region (not correctedߚ
by	ߚ) is plotted. This plot shows that the higher the variance in the orientation of the dipoles within the uncertainty 
region (due to the convoluted cortex), the larger its size will be. When there is a higher degree of variance among the 
lead field vectors in the neighborhood of a point, the uncertainty region has to be large enough to encompass all such 
points; which inadvertently results in a higher parameter	ߚ. Thus to relieve the situation different remedies can be 
applied; one is to look at smaller neighborhoods around any given point to calculate the covariance. This will result 
in less variance but the sample size will also decrease, and consequently the estimation will be less accurate. 
Another approach is to use a rotational model and not fix the dipole orientation, which makes the problem size 
larger by a factor of three and can deviate from biophysical models regarding the generation of M/EEG signals from 
pyramidal cells. Finally, the objective approach can be taken (as we have here), which is to make sure for each 
constraint in the optimization problem to be feasible by limiting the value of ߚ (and hence the inflation) with a 
statistical means. 
 

D. The Effect of Normalization on Bias Removal 

    As explained in the Linearly Constrained Minimum Variance (LCMV) section, normalization acts as a tool to 
remove the inherent bias of adaptive beamformers toward deeper locations. In order to investigate this issue, Fig. S4 
plots the DLE for the aforementioned beamformers with respect to the depth of source activity (SNR is set to 5 dB). 
Depth in this figure is defined as the distance between each active node in a source configuration and the nearest 
electrode (see Fig. S5, which provides some sense about the depth of different brain regions). The plots in Fig. S4 
display the localization error over 5 depth intervals. According to this figure, while error is generally expected to 
increase as activities become deeper (since SNR decreases with depth) the LCMV and RMVB act worse in 
localizing superficial activities for high levels of noise. Although, the trend for LCVM-ND-DN and RMVB-ND-DN 
is as expected (higher errors for deeper sources). This observation reflects the mentioned inherent bias of the LCMV 
and RMVB towards deeper sources and the fact that normalization is quite successful in dealing with this depth-bias 
issue. Furthermore, it can be observed that once superficial sources are removed from the set of simulated sources, 
the RMVB results become slightly superior to the LCMV-ND-DN and comparable to the RMVB-ND-DN. 

 

E. The Effect of Correlated Activities 

Correlation between distinct sources is known to affect the performance of ESI techniques and particularly 
beamformers in a negative way. In order to investigate this issue, the third scenario was designed with 100 three-
node source configurations, which were highly correlated. Fig. S6 (A) and (B) display the results of this scenario in 
terms of DLE and output SNR, respectively. It can be seen that correlated activity can degrade the performance 
mostly in terms of SNR. Although, its effect on DLE is not so severe. Besides, it can be seen that neither 
normalization and denoising nor the robust modeling of the uncertainty can help to alleviate this condition. 
Therefore, dealing with correlated activity calls for a separate strategy. It should also be mentioned that the spatially 
distinct sources are less likely to be maximally correlated [4]. Besides, based on the results of this study, the perfect 
correlation between the sources that are also spatially coherent (i.e., the dipoles that have the same time-course of 
activity within the extended sources simulated in the fourth scenario), do not negatively affect the performance in a 
severe manner. Given the scope of this work, the full investigation of this issue can be the topic of a separate study. 
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F. Beamformers with Diagonal Loading  
    In beamformers with diagonal loading, the covariance matrix of the measurements is replaced with a regularized 
version in which a constant factor (ߣ) of the unity matrix is added to the measurements covariance matrix. While 
 be ߣ can determine the ultimate quality of reconstruction, its optimal value is unknown. It is proposed in [1] that	ߣ
set to 10ߪଶ where ߪଶ is the variance of noise. In this study, we have simulated LCMV with diagonal loading 
(LCMV+DL) using this factor as well as two other values, namely,	ߪଶ and	100ߪଶ. The variance of noise in our 
simulation is calculated by averaging over the diagonal elements of the noise covariance matrix which is determined 
using baseline. Fig. S7 and Fig. S8, which show the statistical results of LCMV+DL in the second and fourth 
scenarios, suggest that diagonal loading can improve the reconstruction compared to conventional LCMV. 
Although, the performance is overall worse than other beamformers introduced in this study. More specifically, it 
can be observed that RMVB outperforms LCMV+DL based on all metrics and in almost all situations. The only 
exception is when the noise level is high (SNR=5dB) and the brain activities are focal. In this case, by setting the 
diagonal loading factor to a high value (100ߪଶ), one can improve the performance in the sense of output SNR. 
Although, RMVB still works better than LCMV+DL according to other metrics and in all other situations. It should 
also be noted that the mentioned improvement of output SNR is obtained at the cost of losing spatial resolution in 
the solution of LCMV+DL. Furthermore, RMVB-ND-DN outperforms LCMV+DL in all situations and based on all 
metrics.  
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Fig. S1. The time-course assigned to each dipole in the single-node 
source scenario. 
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A. C. 

B. D. 

Fig. S2. The time-courses and correlation diagrams in the second and third scenarios. (A) The time-courses assigned to each node in the 3-node 
uncorrelated source scenario and (B) the corresponding correlation coefficients among the nodes. As it can be seen, the correlation coefficient 
between different nodes is small in this scenario. (C) The time-courses assigned to each node in the 3-node correlated source scenario and (D) the 
corresponding correlation coefficients among the nodes. Unlike the second scenario, nodes are highly correlated in this case. 
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Fig. S3. The histogram of the parameter ߚ and its correlation with angle standard deviation within a region. (A) Plots the histogram of the 
parameter ߚ and provides information regarding the distribution of the mentioned parameter for all voxels.  Red vertical line marks the position 
of the cut-off value in this distribution. (B) Parameter	ߚ of all voxels versus the standard deviation (STDev) of the angle between the center and 
the neighbors’ orientations in each uncertainty region. 
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A. B. 

C. D. 

Fig. S4. The DLE results versus depth for the three-node uncorrelated source scenario. The plots display the median DLE along with the error 
bars over five depth intervals for (A) LCMV, (B) RMVB, (C) LCMV-ND-DN and (D) RMVB-ND-DN. SNR in this figure is set to 5dB and 
depth is defined as the distance between each active node in a source configuration and the nearest electrode in a standard 128-cahnnel BioSemi 
cap. 
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Fig. S5. The color-coded depth of different locations in the brain. Depth in this diagram is defined as the distance to the nearest electrode in a 
standard 128-cahnnel BioSemi cap. 
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A. B. 

Fig. S6. The Monte Carlo simulation statistics for the three-node correlated source scenario. (A) The median DLE results for SNRs of 5dB and 
20dB and for four types of beamformers namely, LCMV, RMVB, LCMV-ND-DN and RMVB-ND-DN. The error bars mark the first and third 
quartiles (of DLE distribution). (B) The median output SNR results along with the first and third quartile error bars for the same configuration. 
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A. B. 

Fig. S7. The Monte Carlo simulation statistics for the three-node uncorrelated source scenario. (A) The median DLE results for SNRs of 5dB and 
20dB and for diagonal loading beamformer with three factors namely,		ߪଶ	10ߪଶ and 100ߪଶ. The error bars mark the first and third quartiles (of 
DLE distribution). (B) The median output SNR results along with the first and third quartile error bars for the same configuration. 
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Fig. S8. The Monte Carlo simulation statistics for the extended source 
scenario. The median MCC results along with the first and third 
quartile error bars for diagonal loading beamformer with three factors 
namely, ߪଶ, 10ߪଶ and 100ߪଶ and for SNR of 20 dB.  
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