YMTHE, Volume 29

Supplemental Information

CRISPR/Cas9-Mediated Gene Correction in Newborn

Rabbits with Hereditary Tyrosinemia Type I

Nan Li, Shixue Gou, Jiaowei Wang, Quanjun Zhang, Xingyun Huang, Jingke Xie, Li Li, Qin Jin, Zhen Ouyang, Fangbing Chen, Weikai Ge, Hui Shi, Yanhui Liang, Zhenpeng Zhuang, Xiaozhu Zhao, Meng Lian, Yinghua Ye, Longquan Quan, Han Wu, Liangxue Lai, and Kepin Wang

Figure S1. Sanger sequencing chromatograms of RFFs electroporated with sgRNA1–4 and SpCas9 expressing vectors.

Heterozygous	Heterozygous	No. of	Genotypes of offspring			
rabbits	rabbits	offspring	WT	Heterozygote	Homozygote	
FAH-hetero-Male-1#	FAH-hetero-Female-1#	FAH1-1, 2, 3, 4, 5, 6, 7, 8	FAH1-5, 7, 8	FAH1-1, 2, 3, 4	FAH1-6	
	FAH-hetero-Female-2#	FAH2-1, 2, 3, 4, 5, 6, 7	FAH2-2, 5	FAH2-1,4 6, 7	FAH2-3	
	FAH-hetero-Female-3#	FAH3-1, 2, 3, 4, 5, 6, 7, 8	FAH3-3, 4	FAH3-1, 5, 7	FAH3-2, 6,8	
	FAH-hetero-Female-4#	FAH4-1, 2, 3, 4, 5	FAH4-3, 5	FAH4-1, 4	FAH4-2	

Figure S2. Summary of one heterozygous $FAH^{\Delta 10/+}$ male rabbit mating with four $FAH^{\Delta 10/+}$ female rabbits.

Figure S3. Body weight analysis. (**A**) Body weight of wild-type, HT1 rabbits after injection with AAV or PBS 69 days. (**B**) Body weight of HT1 rabbits after injection with AAV or PBS 131 days.

	WT			AAV-		AAV+			
	WT1	WT2	WT3	FK1	FK2	FK3	FA1	FA2	FA3
ALT (IU/L)	23.00	20.00	22.00	46.00	32.00	50.00	22.00	20.00	23.00
AST (IU/L)	16.00	17.00	14.00	144.00	459.00	630.00	10.00	12.00	16.00
SA (μmol/L)	0.50	0.50	0.50	10.00	5.60	6.20	0.50	0.50	0.50
Tyr (μmol/L)	83.23	57.75	75.73	85.05	2600.54	2587.87	89.76	94.40	83.23
TBIL (g/L)	1.00	0.80	0.90	30.20	1.80	2.50	1.80	1.70	1.00
D-BIL (g/L)	0.30	0.30	0.10	5.90	1.00	1.20	0.70	0.70	0.30
BUN (mmol/L)	7.83	8.16	5.17	26.11	27.70	27.52	8.23	9.83	7.83
CREA (µmol/L)	59.00	65.00	40.00	279.00	269.00	276.00	71.00	77.00	59.00
TG (μmol/L)	1.64	0.85	1.46	14.93	1.91	1.90	3.73	2.58	1.64
CHOL (mmol/l)	4.01	3.40	3.22	11.48	5.77	5.33	2.19	2.04	4.01

В

Ε

Figure S4. The efficacy analysis of CRISPR/Cas9-mediated gene therapy of HT1 rabbits. (A) Detailed information of blood biochemical indexes, including ALT, AST, SA, Tyr, TBIL, D-BIL, BUN, CREA, TG, and CHOL. (B) and (C) TG (B) and CHOL (C) analysis of wild-type, AAV-treated and untreated HT1 rabbits. Error bars, mean \pm SD. ns, not significant. (D) Picture of blood samples from wild-type, AAV-treated and untreated HT1 rabbits. (E) The intact (top) and dissected (bottom) kidneys of wild-type, AAV-treated and untreated HT1 rabbits.

Α

	Target (Cop	-Editing officionay	
	A2-Cas9	A3-gRNA-donor	
FA1#-L1	1360	3320	6.74%
FA1#-L2	496	4260	9.13%
FA1#-L3	976	3130	11.80%
FA1#-L4	712	7840	7.95%
FA1#-L5	4320	7040	9.17%
FA1#-L6	2600	5200	8.20%
FA2#-L1	2306	5920	10.85%
FA2#-L2	1292	2316	7.42%
FA2#-L3	1648	14820	8.06%
FA2#-L4	3080	7400	8.65%
FA2#-L5	1408	9240	6.47%
FA2#-L6	856	11400	5.81%
FA3#-L1	7580	2212	13.92%
FA3#-L2	17300	4000	12.76%
FA3#-L3	7240	13380	15.04%
FA3#-L4	7460	1852	13.41%
FA3#-L5	6100	2386	10.97%
FA3#-L6	15220	5360	13.40%

Figure S5. The detailed information of copy numbers of AAV vectors in 100ng whole DNAs extracted from FA1#-L1–L6, FA2#L1–L6, and FA3#L1–L6.

DAPI

Figure S6. Fluorescence staining by anti-mCherry antibodies in the liver (A), heart, kidney, lung, and spleen (B) of AAV-treated HT1 rabbits. Scale bar, 50 μ m.

Figure S7. Schematic views (A) and pictures of agarose gel electrophoresis (B) of the PCR products with specific HDR-F and HDR-R primers in the livers and kidneys of AAV-treated HT1 rabbits.

Figure S8. The results of amplicons deep sequencing of AAV-treated adult HT1 rabbits. (A) The detailed efficiencies of different mutation patterns of each detected tissues of AAV-treated adult rabbits. (B) Histogram of the deep sequencing results analysis, including 3N+1 bp insertion (I3N+1), 3N+2 bp insertion (I3N+2), 3N bp insertion (I3N), 3N+1 bp deletion (D3N+1), 3N+2 bp deletion (D3N+2), 3N bp deletion (D3N), SNP (In the sgRNA) and HDR. (C) Histogram of efficiencies of HDR-mediated precise gene correction and I3N+1 and D3N+2-mediated out-of-frame to in-frame gene correction in each detected tissues.

Figure S9. Diagrams analyzed indels length distribution of FA1#-L1–L6, FA2#L1–L6, and FA3#L1–L6 at sgRNA4 targeting site.

	KO	SNP (In gRNA)	13N	I3N+1	I3N+2	D3N	D3N+1	D3N+2	HDR
FA01-L1	88.31%	1.32%	0.11%	2.35%	0.39%	0.49%	2.71%	0.66%	3.67%
FA01-L2	80.83%	8.18%	0.18%	3.11%	0.43%	0.53%	4.03%	1.00%	1.71%
FA01-L3	90.78%	1.24%	0.13%	2.06%	0.42%	0.48%	2.28%	0.56%	2.04%
FA01-L4	88.22%	1.47%	0.17%	2.25%	0.57%	0.41%	2.90%	0.71%	3.32%
FA01-L5	85.47%	2.47%	0.23%	2.63%	0.36%	0.50%	3.48%	0.74%	4.13%
FA01-L6	89.52%	1.71%	0.16%	2.01%	0.34%	0.53%	2.40%	0.63%	2.69%
FA02-L1	88.59%	1.24%	0.18%	2.51%	0.43%	0.46%	2.81%	0.81%	2.97%
FA02-L2	87.46%	1.70%	0.21%	2.60%	0.52%	0.69%	3.26%	0.81%	2.75%
FA02-L3	89.20%	1.36%	0.16%	2.57%	0.43%	0.38%	2.67%	0.77%	2.46%
FA02-L4	87.95%	3.02%	0.16%	2.47%	0.41%	0.34%	2.96%	0.72%	1.97%
FA02-L5	84.95%	2.88%	0.25%	3.17%	0.73%	0.65%	3.42%	1.04%	2.90%
FA02-L6	90.02%	1.49%	0.10%	1.93%	0.27%	0.47%	2.14%	0.58%	3.01%
FA03-L1	81.39%	2.76%	0.15%	3.18%	0.49%	0.98%	4.26%	1.35%	5.44%
FA03-L2	82.90%	1.75%	0.22%	3.72%	0.61%	0.74%	4.30%	1.20%	4.57%
FA03-L3	85.96%	1.46%	0.32%	3.22%	0.64%	0.69%	3.52%	0.94%	3.24%
FA03-L4	82.72%	1.36%	0.18%	3.50%	0.54%	0.71%	4.11%	1.07%	5.83%
FA03-L5	81.07%	6.64%	0.14%	3.24%	0.43%	0.69%	4.07%	1.10%	2.64%
FA03-L6	86.15%	1.88%	0.15%	2.81%	0.46%	0.52%	3.33%	1.06%	3.63%

Α

Figure S10. The results of amplicons deep sequencing of newborn HT1 rabbits with one week AAV treatment. (A) The detailed initial efficiencies of different mutation patterns of each detected tissues of newborn HT1 rabbits with one week AAV treatment. (B) Histogram of initial efficiencies by analysis of the deep sequencing data. (C) Histogram of initial efficiencies of HDR-mediated precise gene correction and I3N+1 and D3N+2-mediated out-of-frame to in-frame gene correction.

Figure S11. Analysis of up-regulated and down-regulated genes. (A) and (B) The number genes of up-regulated (A) and down-regulated (B) in the wild-type and AAV-treated (FA1, FA2, and FA3) rabbits (Venn diagram). The overlap corresponds to the genes commonly upregulated or downregulated in the wild-type and AAV-treated rabbits. (C) and (D) Gene ontology (GO) analysis of commonly up-regulated (C) and down-regulated (D) differentially genes in wild-type (n=3) and AAV-treated (n=3) rabbits vs PBS-treated (n=3) HT1 rabbits.

Primer	5'-3'
FAH-gRNA1-F	CACCGGGCCAGGCTGCCTGGAAGG
FAH-gRNA1-R	AAACCCTTCCAGGCAGCCTGGCCC
FAH-gRNA2-F	CACCGCCTCCTTCCAGGCAGCC
FAH-gRNA2-R	AAACGGCTGCCTGGAAGGAGGC
FAH-gRNA3-F	CACCGCAAAACTTGCTGTCTGC
FAH-gRNA3-R	AAACGCAGACAGCAAGTTTTGC
FAH-gRNA4-F	CACCGCGCTCTCGCCTCCTTCC
FAH-gRNA4-R	AAACGGAAGGAGGCGAGAGCGC
FAH-HDR-F1	GGGGACCCCTCTAGCATAGGA
FAH-HDR-R1	CGCGTCTTTCCACGCTGCTTGCCCGAGGCCCATGAAGCTGTTGAGAG
FAH-HDR-F2	CCTCGGGCAAGCAGCGTGGAAAGACGCGAGAGCGCTGCTGCAAAACT
FAH-HDR-R2	GCAGGATCCATGCAGACCATC
FAH-F	CAGGTCTCAGGTTACAGAGC
FAH-R	AGGTGCATCGTGGCAACAGC
HDR-F	CGGGCAAGCAGCGTGGAAAG
HDR-R	TCGTGGCAACAGCCTGAGAG
OT1-F	GCACCTGCACCTCTAATGCT
OT1-R	GGCCAGGCCTTAAGAGTCTG
OT2-F	ATGCAACCAATGTGCAAACA
OT2-R	CACTTCTGTGTCGCCTGTGA
OT3-F	GAGGGAAGGAGAAAGGCTCG
OT3-R	GCTCGGTACTCCACGCTC
OT4-F	AGTTCTCACTCGCATGCACA
OT4-R	AGCCGTTTAAGGAGCTGCTT
OT5-F	CAAGGCCTCTCACTGGACTG
OT5-R	ATAGACCCTTCACGCCTCCT
OT6-F	TCTCCATCCGTCCGGTAGAG
OT6-R	GCTTTAGGTTTGCCTTGGCC
OT7-F	GGTTTCGTAGTCGCACGGTA
OT7-R	CAGGACCCTGCTCAGCTTC
OT8-F	CTGCGAGTGTAAGACGGAGG
OT8-R	TGGATTGGATATGGAGCCGC
OT9-F	GAAAGGGAGGGAGACAGGGA
OT9-R	TGTAGTGCAGCAGGTTAGGC
OT10-F	CAGAGCCTGCCTGGGATTAG

Table S1. Primers used in this study