
  
 

Supplemental Materials: 

PBMC and BMMC isolation 

Mouse PBMC were isolated by standard procedure of Ficoll gradient centrifugation (Ficoll-Paque 

Premium 1.084, Cat#17-5446-02, GE Healthcare). Residual red blood cells were removed using red blood 

cell lysing buffer (R7757, Sigma-Aldrich). Bone marrow was obtained from tibias and femurs by flushing 

the marrow cavities with 3ml PBS (containing 2% FBS and 2mM EDTA). BMMC were isolated by Ficoll 

gradient centrifugation using the same protocol described for mouse PBMC. Human PBMC were isolated 

by Ficoll-Paque PLUS (Cat#17-1440-03, GE Healthcare) using SepMate tubes (Stemcell) to accelerate 

the procedure. Other steps were largely the same as the mouse protocol. 

The isolated cells were cryopreserved and thawed for analysis according to the 10x Genomics protocol 

(1). Briefly, PBMC were resuspended in 0.5ml resuspension medium (40% FBS in DMEM) and 0.5ml 

freezing medium (40% FBS + 30% DMSO in DMEM) in a 1:1 ratio. BMMC were resuspended in 1ml 

freezing media (90% FBS + 10% DMSO). Cells were chilled in CoolCell (Corning) in -80 overnight and 

transferred to liquid nitrogen. Cryopreserved vials were thawed in the water batch at 37°C, removed from 

water bath when a tiny ice crystal remained and then transferred to a 50ml conical tube after thawing was 

complete. A milliliter of thawing medium (PBMC: 10% FBS in DMEM; BMMC: 20% FBS in PBS) was 

added dropwise (5 sec/drop), followed by 2ml, 4ml, 8ml, 16ml thawing medium at ~ 1-min intervals. 

After this, the cells were washed and resuspended in calcium and magnesium free buffer (PBMC: PBS 

with 0.04% BSA; BMMC: PBS with 10% FBS) for cDNA library preparation. 

Cell staining for flow cytometry 

Fresh mouse BMMC isolated by Ficoll centrifugation from control and T/HS (6hr) were stained for flow 

cytometry, 2 mice/groups. Transcription Factor Staining Buffer Set from eBioscience was used for 
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intracellular staining of IRF8. Experiment was repeated for three times. Analysis was performed on by 

flow cytometer (LSR-15) and analyzed with FlowJo software. The CD45+ live cells in the monocyte 

lineage were defined by 2 gating strategies: (1) Lin-CD115+Ly6G- and (2) Lin-Ly6C++Ly6G-. Multi-

dimensional protein data of Lin-Ly6C++Ly6G- gated monocytes were also visualized by Matlab/Cyt3 (2). 

The compensated data (fcs files) of gated populations were taken as the input and Arcsinh transformed. 

The cells from each mouse were down-sampled to 3000 cells for visualization. 

Doublet and low-quality cell removal 

Different cell types have different number of expressed genes. Eg. monocytes have more expressed genes 

compared with lymphocytes. One hard cutoff was not be applicable for all cell types. Thus, in initial 

quality control, we used a relatively low threshold to include more potential high-quality cells. In the 

analysis of a specific population, doublets and low-quality cells were more distinguishable at the higher 

resolution, usually forming small isolated clusters. Doublets were identified based on the biological 

knowledge, e.g. co-expressing both T and B cell markers. Low-quality cell clusters were identified by: (1) 

Most top genes were still mitochondria genes after initial quality control or (2) The number of expressed 

genes was extremely lower than other clusters and in the absence of cluster-specific genes. Thus, doublet 

and low-quality cell removal was an iterative process. 

Regulon detection and PCA projection 

For motif references (from https://resources.aertslab.org/cistarget/), “mm10__refseq-

r80__500bp_up_and_100bp_down_tss.mc9nr.feather” and “mm10__refseq-

r80__10kb_up_and_down_tss.mc9nr.feather” RcisTarget databases were downloaded for mouse regulon 

detection. “hg38__refseq-r80__10kb_up_and_down_tss.mc9nr.feather” and “hg38__refseq-

r80__500bp_up_and_100bp_down_tss.mc9nr.feather” were downloaded for human regulon detection. 
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Regulons were projected onto PCA 2D space largely following the published methods (3, 4). Each single 

cell had a coordinate for each PC and was assigned an AUC (area under curve) value for each regulon by 

SCENIC. Pearson’s correlation was calculated between AUC values and PC coordinates. Finally, each 

regulon was plotted on PCA 2D space based on the correlation coefficients with corresponding two PCs, 

respectively. 

Cell cycle phase assignment 

Cell cycle phases were computed by the cyclone() function from scran R package (v1.8.2). The UMI count 

matrix was taken as the input. The pre-defined classifiers provided with the scran package were used to 

assign cell cycle phases. 

RNA velocity computation 

RNA velocity of myeloid progenitors was computed by velocyto (5) (v0.17). The mouse specific 

reference, “mm10_rmsk.gtf”, was downloaded from UCSC genome browser as expressed repeats 

annotation. “genes.gtf” was generated by cellranger mkref as a genome annotation file. The cellranger 

count output was taken as the input to generate a loom file for each sample. Loom files from different 

samples were merged using the loompy python package. Finally, RNA velocity was estimated using the 

velocyto R package (v0.6). 

Hierarchical clustering  

Ward clustering was performed using hclust() function in R with the agglomeration method set as 

“ward.D2” (6). The distance matrix was 1 minus Pearson’s correlation. Hierarchical clustering was used 

to identify gene or patient clusters. 

Generation of customized signatures 
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(1) Circulating monocyte markers (Supplemental Figure 2B): To roughly estimate the developmental 

relationship among mouse circulating monocytes, GSE95702 (7) was used to generate this signature. The 

monocyte development referenced in this paper is MDP (monocyte-macrophage DC progenitors) → 

cMoP (common monocyte progenitors) → BM Ly6C+ → blood Ly6C+ → blood Ly6Cint → blood 

Ly6Clow. We identified the genes that were up-regulated in circulating monocytes compared with the 

monocyte progenitors and Ly6C+ monocytes in BM. DEGs were computed using the limma R package 

(v3.36.3) on the log2 transformed expression values with Benjamini-Hochberg adjusted p-value = 10-4 as 

the cutoff. 

(2) Monocyte differentiation associated genes (Supplemental Figure 4B): To validate the pseudotime of 

the monocyte lineage, we extracted the genes which are positively or negatively correlated with monocyte 

differentiation in bone marrow from the published dataset GSE95702 (7). First, PCA was performed on 

the samples of MDP, cMop and BM Ly6C+ monocytes. PC1 largely represented the differentiation process 

of monocytes in bone marrow, with the above 3 populations aligning from the left, middle and to the right. 

For each gene, we computed Pearson’s correlation between the log2 transformed expression value and 

PC1 coordinates. Benjamini-Hochberg adjusted p-value ≤ 0.05 was used as the cutoff to define the genes 

which are significantly associated with PC1. Among these genes, the ones with positive Pearson’s 

correlation coefficient are the genes which are gradually down regulated along monocyte differentiation 

(signature name: Diff down), and those with negative Pearson’s correlation coefficient were gradually up 

regulated along monocyte differentiation (signature name: Diff up). 

(3) MDSC signatures (Supplemental Figure 7A): To evaluate immunosuppressive potential, signatures for 

MDSC from 5 different sources were extracted from the published dataset GSE21927 (8). Generally, 

different sources of MDSC were compared with the CD11b+ counterparts isolated from healthy spleen 

from the same species. DEGs were computed using the limma R package (v3.36.3) on the expression 
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values (already log2 transformed). The genes that were significantly up-regulated in MDSC were used to 

identify MDSC signatures. The cutoff was set as Benjamini-Hochberg adjusted p-value = 10-3 for BM-

derived MDSC and 10-5 for tumor-derived MDSC. 

Data processing of GEO microarray data 

RNA microarray data of inflammatory diseases and platform information tables were downloaded from 

the GEO database. For each dataset, the workflow is generally as follows: 

(1) The expression matrix was log2 transformed for untransformed data.  

(2) PCA was performed to evaluate the data quality. The trauma dataset displayed 2 obvious batches. 

These 2 batches align on the opposite sides of PC1 which represents 51% of the variation as shown in the 

figure below. We double checked the meta data, all samples from batch 2 were annotated as either the 

samples with low RNA quality or with incomplete time points. Thus, we excluded batch 2 and only used 

the batch 1 for validation. The other data sets did not show obvious batch effects.  

(3) For each probe, the log2 transformed expression matrix was z-score transformed across all the samples 

for signature score calculation. 

Clinical annotations of trauma dataset 

In the trauma dataset, trauma patient outcomes were originally classified as an uncomplicated when time 

to recovery (TTR) was <5 days, intermediate when TTR was ≥ 5 and ≤ 14 days and complicated when 
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TTR was >14 days or the patient died within 28 days. TTR was defined as the number of days following 

the trauma event until organ dysfunction had resolved (9). For the analysis of this data set, we pooled 

intermediate and uncomplicated cases together and classified the patients into either complicated (TTR 

>14 days or death) or non-complicated (TTR ≤ 14 days) categories (Figure 10C). All clinical annotations 

were downloaded from http://www.gluegrant.org/. 

Deconvolution of cell composition 

To prepare the input of the array data, CEL files were downloaded from GSE36809 and then processed 

by CEL_to_mixture.R provided by CIBERSORT. For the input of signature matrix, we used the signature 

matrix of LM22, which is CIBERSORT provided and contains 22 functionally defined human immune 

subsets. We used the deconvoluted results for the 1st time points of 167 trauma patient and added the 

neutrophil + monocyte percentage into the cox regression model shown in Figure 11D. 

Signature score calculation in details 

(1) For mouse single-cell RNA sequencing data, the average of Seurat (v2.3.4) (10) scaled values (stored 

in @scale.data slot which are normalized, scaled, log and z-score transformed) was the signature score for 

each cell. (2) For GEO datasets, the expression values in the matrix were log2 transformed (if this had not 

already been performed) and z-score transformed. Then, the average of the log2 and z-score transformed 

expression values was defined as the signature score for each subject.  

We noticed that MDSC signatures contains multiple cell cycle genes. In this case, cell cycle phases 

would become a significant cofounder, especially in the BM. Thus, MDSC signatures were calculated 

after removal of all the cell cycle genes based on  the GO term annotation 

(http://www.informatics.jax.org/go/term/GO:0007049). 

Entrez ID – gene symbol and mouse – human homolog gene exchange 
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Genome wide annotation for mouse (org.Mm.eg.db, v3.6.0) and for human (org.Hs.eg.db, v3.6.0) were 

installed. Entrez ID – gene symbol exchange was performed by AnnotationDbi R package (v1.42.1). The 

HomoloGene data file was downloaded from ftp://ftp.ncbi.nlm.nih.gov/pub/HomoloGene/current. Mouse 

entrez IDs were mapped to human homolog entrez IDs using annotation Tools R package (v1.58.0)  
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Supplemental Figures: 

 

Supplemental Figure 1. Overview of transcriptomic changes of PBMC at 6hrs after T/HS. Related 

to Figure 1-2. (A) t-SNE plot of PBMC as shown in Figure 1B. The expression of representative markers 

is shown. (B) Changes in the fractions of major cell types in PBMC after T/HS. (C) The number of DEG 

detected in each cell type (adjusted p-value < 0.05). (D-E) The number of molecules (UMI: unique 

molecular identifier) (D) and detected genes (E) are shown by cell types + groups. Each dot represents a 

cell.  
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Supplemental Figure 2. Overview of transcriptomic changes of monocytes at 6hrs after T/HS. 

Related to Figure 1-2. (A) Top markers for each monocyte cluster as shown in Figure 1C. Cells (columns) 

are ordered by clusters. (B) Schema describing the workflow for how monocyte circulating markers were 

extracted from GSE95702 dataset (Supplemental Methods). (C) Visualization of the expression of 

extracted monocyte circulating markers in monocyte subsets characterized in GSE95702 dataset, which 

confirms the extracted signatures are indeed the genes up-regulated in circulating monocytes. 
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Supplemental Figure 3. Overview of transcriptomic changes of paired BMMC + PBMC at 6hrs 

after T/HS. Related to Figure 3-5. (A) t-SNE plot of paired BMMC + PBMC as shown in Figure 3B. 

Expression of representative markers are shown. (B) Changes in the fractions of major cell types in 

BMMC after T/HS. (C) PCA plot shows circulating monocytes from this batch color coded by groups. 

PC2 largely represents the changes after T/HS. Selected enriched GO terms of PC2-associated genes by 
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GSEA are shown. Thus, the circulating monocytes from this batch reproduced the major changes from 

the first experiment as shown in Figure 2A-2B. (D) PCA (PC1 vs. PC2) plot of BM myeloid cells, 

including HSC/MPP + myeloid progenitors, color coded by groups. PC1 vs. PC3 is shown in Figure 4A. 

Expression of lineage markers are shown in (E). (F) Projection of the regulons on the PCA 2D space as 

shown in (D-E) (Supplemental Methods). Well-established TFs (e.g. Cebpe ~ neutrophils (11), Irf8 ~ 

monocytes (11), Sox4 ~ stem cells (12)) largely overlay with the known corresponding lineages, 

supporting the reliability of the computed regulons. (G) Lineage markers used to distinguish major cell 

types or lineages. (H) Enrichment analysis is performed between mP_C2 and each gene module identified 

from the BM monocyte and neutrophil lineages, demonstrating that the features of mP_C2 are preserved 

in the downstream lineages. Hypergeometric p-value was computed and then adjusted by Benjamini-

Hochberg methods. Black vertical dash line annotated where adjusted p-value is equal to 0.05. 
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Supplemental Figure 4. Characterization of transcriptomic changes in the BM monocyte lineage at 

6 hrs after T/HS. Related to Figure 6-7. (A) Expression of representative markers are shown in the PCA 

plot as Figure 6B. (B) To validate the computed pseudotime, we extracted genes positively and negatively 

associated with BM monocyte differentiation from the GSE95702 dataset (Supplemental Methods). 

Signature scores were calculated for each single cell shown in PCA plot in Figure 6B and plotted along 

pseudotime. Smoothing lines were fitted by Loess regression. (C) Extraction of the major differences 

between groups from the PC1 as shown in Figure 6B. Ward clustering yielded three gene modules 
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(MonoPC1_C1~C3) of PC1-associated genes (Pearson’s correlation: adjusted p-value < 0.05 and |r| ≥ 0.3). 

(D) Summary of the three gene modules identified in (A). (E) Enrichment analysis between the three gene 

modules and mP/monocyte/neutrophil gene modules identified at 6 hrs in mouse BM. Relationships are 

colored by binned number of overlapping genes. Only the relationship with ≥5 overlapping genes are 

visible. Mono_C1-C6 were characterized in Figure 6-7, Neu_C1-C4 in Supplemental Figure 6 and 

mP_C1-C8 in Figure 5. (F) Visualization of the signature scores in the t-SNE plots as shown in Figure 

3B. 
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Supplemental Figure 5. Validation of transcriptomic changes in the BM monocyte lineage at 6 hrs 

after T/HS by flow cytometry. The results from one experiment (2 mice/group) are shown, which has 

been repeated for two extra times. (A) FlowJo analysis. (B) Matlab/Cyt3 analysis of Lin-Ly6C++Ly6G- 

monocytes (C: Ctrl; T: T/HS, 6hr).    
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Supplemental Figure 6. Characterization of transcriptomic changes in the BM neutrophil lineage 

at 6 hrs after T/HS. (A) PCA plot of BM neutrophil lineage including all myeloid progenitors as shown 

in the 4th panel of Figure 3B, and expression of representative markers are shown in (B). (C) RNA profile 

of the BM neutrophil lineage is built upon pseudotime associated genes computed by Monocle 2. Cells 

(columns) are ordered first by groups, then by states identified using Monocle2 and lastly by pseudotime 

(from progenitors to committed cells). Genes (rows) are clustered by Ward clustering into four gene 

modules (Neu_C1~C4). (D) Enrichment analysis between the four gene modules and regulons. 

Hypergeometric p-value was computed. Only the relationships with Benjamini-Hochberg adjusted p-

value < 0.05 with fold enrichment (FE) ≥ 2 and the number of overlapping genes ≥ 15 are shown. 

Relationships are color coded by top enriched gene modules (highest FE). (E) Summary of the four gene 

modules. (F) Expression of the four gene modules, (G) critical regulons and (H) corresponding TFs along 

pseudotime color coded by groups. Smoothing lines were fitted by Loess regression. (I) Trajectories 

constructed by Monocle2 are color coded by states and wrapped by groups. (J) Expression of Neu_C2 

along pseudotime color coded by states. 
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Supplemental Figure 7. Simultaneous initiation of inflammatory and features of myeloid-derived 

suppressor cells (MDSC) during emergency myelopoiesis. (A) Development of MDSC gene signatures 

(Supplemental Methods). (B-C) MDSC signatures are up-regulated in BM monocytes after T/HS (B) and 

in BM neutrophil stimulated state (state 2) (C) along pseudotime. A smoothing line was fitted by Loess 
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regression. (D) MDSC signatures are up-regulated in circulating monocytes after T/HS. Cumulative 

frequencies of signature scores (CDF curves) are shown. (E) Enrichment analysis between MDSC 

signatures and each gene module identified from BM monocyte and neutrophil lineages at 6hrs after T/HS. 

Hypergeometric p-value was computed. Relationships are color coded by binned number of overlapping 

genes. Only relationships with ≥5 overlapping genes are visible. The MDSC signatures were significantly 

enriched in the inflammatory modules (Mono_C2 and Neu_C2, Cebpb regulon associated), especially 

Mono_C2. (F-G) RNA expression of some functional markers associated with MDSC in BM monocytes 

(F) and BM neutrophils (G) after T/HS. In general, transcripts for functional markers (13) (S100a8, 

S100a9, Il4ra) and TFs (13) (­Cebpb, ­Stat3, ­Stat5 and ¯Irf8) associated with MDSC also increased 

after T/HS (Figure 4C, 7B-7D, Supplemental Figure 6G-6H). These observations indicate that in addition 

to pro-inflammatory changes, features associated with MDSC are also initiated in the new trajectory.  
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Supplemental Figure 8. Characterization of transcriptomic changes in the BM monocyte and 

neutrophil lineages at 3 hrs and 24 hrs after T/HS. (A) Experimental design of isolating paired BMMC 

+ PBMC at 3 hrs and 24 hrs for scRNA-seq. (B-J) Analysis of BM monocyte lineage at 3hrs and 24hrs 

after T/HS. (B) PCA plot of BM monocyte lineage. The changes induced by T/HS are represented by PC2. 

(C) Top 10 hallmark pathways enriched in the positive side of PC2 by GSEA. (D) RNA profile was built 

upon PC2-associated genes (Pearson’s correlation: |r| ≥	0.2 and adjusted p-value ≤ 0.05). Cells (columns) 

are ordered first by groups then by pseudotime. Cell cycle stages are also labeled. Genes (rows) are 

clustered into 5 gene modules, Mono_C1~C5 (3 & 24 hr). (E) Enrichment analysis between identified 

gene modules and regulons. Regulons were computed based on the myeloid cells including HSC/MPP 

and myeloid progenitors at 3hrs and 24hrs. Hypergeometric p-value was computed. Only the relationships 

with adjusted p-value < 0.05 and fold enrichment (FE) ≥	2 and the number of overlapping genes ≥	15 are 

shown. (F) Map the gene modules identified at 3 & 24 hrs to the ones at 6 hrs (enrichment analysis). 

Relationships are colored by binned number of overlapping genes. (G) The gene modules derived from 

the 6hr time point were largely recapitulated at 3hrs and 24hrs. (H-J) Expression of each gene module (H), 

critical TF (I) and corresponding regulon (J) along pseudotime. Smoothing lines were fitted by Loess 

regression. (K-M) Analysis of BM neutrophil lineage at 3hrs and 24hrs after T/HS. (K) PCA plot of BM 

neutrophil lineage. Although BM neutrophils did not show obvious global transcriptomic changes 3 & 

24hrs, the critical TFs (L) and corresponding regulons (M) followed a similar trend to those seen at 6hrs 

shown in Supplemental Figure 6. 
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Supplemental Figure 9. Summary of the overlapping features: The human and mouse data are 

generally consistent in the monocyte compartment before and after trauma. (A) Enrichment analysis 

between six human signatures (C1-C6) and the monocyte/neutrophil modules identified from mouse BM 

(Mono_C1-C6 & Neu_C1-C4) at 6hrs after T/HS. Hypergeometric p-value was computed and adjusted 

by Benjamini-Hochberg method. Relationships are colored by binned number of overlapping genes. Only 

relationships with ≥ 5 overlapping genes are visible. Correlation of monocyte DEG identified from mouse 

BM vs. human PBMC (B) or from mouse PBMC vs. human PBMC (C). FC: fold change.  

The human and mouse data are generally consistent in the monocyte compartment before and after trauma. 

The six human monocyte signatures can be mapped to mouse bone marrow gene modules. Human 

monocyte signatures C2 and C3 overlap with mouse inflammatory modules Neu_C2 and Mono_C2. 

S100A8 and S100A9, both neutrophil-associated genes, are contained in human C1. Human C4 (IFN 

signaling) and C5 (MHCII signaling) correspond to mouse steady-state modules Mono_C5 (Irf8, Irf7) and 

Mono_C1 (lymphocyte activation, including CD74 and H2-Aa), respectively. Globally, shared DEG 

derived from human and mouse monocytes after trauma display an intermediate level of correlation 

(Spearman correlation: ρ > 0.6). 
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Supplemental Figure 10. Systemic characterization of the prognostic value for the six signatures. 

Related to Figure 11. (A) PCA was performed on the signature score matrix. Patients were color coded by 

the groups demonstrated in the original paper. Ellipses indicate 95% confidence interval. (B) The signature 

loadings on first three PCs are shown. The PCs representing the degree of separation between C1-C3 vs. 

C4-C6 among patients are highlighted in red blocks. (C) The prognostic values of the first three PCs were 

evaluated by a Cox model after adjustment of age, sex and severity (if available). The names of datasets 
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are labeled in the first column (Supplemental Table 3). No groups documented for burn dataset, so all the 

patients are in black. Sepsis SRS dataset do not provide time-to-event data. Thus, clustering results are 

shown instead. 
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Supplemental Figure 11. Correlation between IDS and the PC highlighted in red blocks shown in 

Supplemental Figure 10. 

  



 25 

 

Supplemental Figure 12. Similarity between the new trajectory of monocytes after T/HS and the G 

pathway characterized by Yanez et al (14). (A) Introduction of the major points in the paper from Yanez 

et al. (B) Gene expression matrix was downloaded from GSE88982 GEO dataset. PCA was performed on 

the six subsets involved in monocyte development. This is largely consistent with Figure 3A in the original 

paper. (C) Signature scores of MonoPC1_C1-C3 (characterized in Supplemental Figure 4, C to E) were 

calculated for each sample shown in (B). Monocyte subsets are color coded by the corresponding pathways 

they demonstrated. Similar to the changes in BM monocytes after T/HS, the G pathway shows increase in 

MonoPC1_C2-C3 and decrease in MonoPC1_C1 compared with the M pathway. GMP: granulocyte-

monocyte progenitors; MP: monocyte-committed progenitors; G-mono: G pathway-derived monocytes; 

MDP: monocyte-dendritic cell progenitors; cMoP: common monocyte progenitors; M-mono: M pathway-

derived monocytes. 
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Supplemental Figure 13. Interpretation of sepsis subtypes using our findings. (A) Expression of the 

six signatures in sepsis Mars subtypes compared with healthy control. Base on Figure 13G, Mars4 displays 

an endotoxemia-like response. (B) IDS distribution among four sepsis Mars subtypes. (C) IDS distribution 

between two sepsis SRS subtypes. 
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Supplemental Tables: 

Supplemental Table 1. Trauma Patient Clinical Characteristics 

Patient 

ID 
ISS Age Sex Injury 

Admission chemistry 

SBP HR GCS BD Lactate 

MM3001 22 21 Male MVC/motorcycle 71 127 15 12 4.8 

MM3005 22 35 Male MVC/PED 60 112 3 15 7 

MM3008 19 26 Male Penetrating 70 110 15 12 6.9 

MM3009 13 71 Male Fall 88 130 15 5 5.8 

MM3012 17 56 Male MVC 125 111 14 NA 3.7 

MM3015 38 21 Male Fall 45 74 3 17 3.4 

MM3016 18 32 Male MVC 127 148 15 19 2.4 

MM3020 27 78 Male Fall 83 51 8 11 NA 

MM3038 22 44 Female MVC 112 70 3 12 5.6 

MM3040 25 58 Male Fall/TBI/SDH 138 82 3 4 22 

Abbreviations:  

ISS: Injury severity score; HR: Heart rate; GCS: Glasgow Coma Scale/Score; BD: Base deficit; MVC: Motor vehicle collision; 

PED: Pedestrian; TBI: Traumatic brain injury; SDH: Subdural hematoma; NA: Not available 
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Supplemental Table 2. Six signatures derived from human CD14+ monocytes 

Signature 

Names 
Genes 

C1 CLU, NKG7, S100A8, S100A9, LGALS1, S100A12, CTSD, RETN, RNASE2, PLAC8, PLBD1, FOLR3, 

JUN, ALOX5AP, HP, EGR1 

C2 NAMPT, ACSL1, IL1R2, SOCS3, CD63, PIM1, CXCL8, VCAN, SLC2A3, AGFG1, CD55, SLC11A1, 

SAMSN1, MCEMP1, GCA, FKBP5, BCL2A1, SERPINB1, SLC25A37, CYP1B1, MCTP2, CCND3, 

ADM, G0S2 

C3 FTH1, THBS1, EREG, MARCKS, SRGN, CD300E, TIMP1, CTSL, HMOX1, LITAF, CD163, GK, 

GLUL, HLA-DQA1, ASPH, AREG, IL1B, GK5, AQP9, PHC2, PLSCR1, GPR183, ETS2, CEBPB, 

CXCL2, SAP30, MAFB, FCGR1A, DDIT4, TPM4, MAP3K8, HIF1A, HLA-DRB5, ID2 

C4 OAS2, EPSTI1, IFIT1, RNF213, PARP14, IFIT3, IFI44, XAF1, LY6E, IFI44L, MX1, ISG15, IFI6, 

STAT1, OAS3, IFIT2, MX2, HERC5, EIF2AK2, SAMD9L, RSAD2, APOBEC3A, OAS1, TNFSF10, 

GBP1, IFITM3, LAP3, TMEM123, MT2A, SP110, STAT2 

C5 HLA-DRB1, HLA-DRA, HLA-DPA1, HLA-DPB1, FGL2, CD74, TXNIP, LGALS2, HLA-DMB, HLA-

DMA, HLA-DQB1, DUSP6, CPVL, ZFP36L2, AP1S2, TGFBI 

C6 NCF1, AHNAK, TAGLN2, CRIP1, JAML, RAB11FIP1, NUP214, LTA4H 
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Supplemental Table 3. Summary of human bulk microarray datasets used in this paper 

Datasets  Source Tissue 
Number of 

Patients 
Time Points 

Time-to-event 

data 
Platform 

The 

Inflammation 

and Host 

Response to 

Injury 

program: 

Trauma 

GSE36809 whole 

blood 

leukocyt

e RNA 

n = 167 

severely 

injured 

patients  

Within 12 h and at 1, 4, 

7, 14, 21, and 28 d after 

the injury. The first 

sampled time points (8.0 

± 3.4 hrs) were used for 

patient classification and 

model training. 
 

Time-to-recovery 

data were used and 

available from 

http://www.gluegra

nt.org/. 

Affymetrix 

U133 

The 

Inflammation 

and Host 

Response to 

Injury 

program: Burn 

GSE37069 whole 

blood 

leukocyt

e RNA 

n = 241 Multiple time points 

after burn. The first 

sampled time points 

(75.8 ± 118.0 hrs) were 

used for clustering and 

model validation. 
 

Time-to-death data 

were used and 

available from 

http://www.gluegra

nt.org/. 

Affymetrix 

U133 

Sepsis (Mars) GSE65682 Blood 

RNA 

Discovery 

cohort (n = 

263)  

Validation 

cohort (n = 

216) 

Only one time point: 

within 24h of ICU 

admission 

Time-to-death data 

were used and 

available from 

GSE65682. 
 

Affymetrix 

U219 

Sepsis (SRS) E-MTAB-

4421 

whole 

blood 

leukocyt

e RNA 

Discovery 

cohort (n = 

265) 

First available sample 

taken following ICU 

admission 

Time-to-event data 

were not available 

from public 

domain. 
 

Illumina 

Human-HT-12 

Expression 

BeadChips 

(v4) 
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Endotoxemia GSE3284 whole 

blood 

leukocyt

e RNA 

Healthy 

volunteers 

with LPS at a 

dose of 2 

ng/kg body 

weight (n = 4) 

or 0.9% NaCl 

(n = 4) 

Before endotoxin 

infusion (0 h) and 2, 4, 6, 

9 and 24 hrs after 

infusion. 

Not applicable Affymetrix 

U133 
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