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S1 Fig. Resting-state networks are modular over a wide range of community
detection parameter choices. Shown is a heat map of the mean modularity quality value
(referred to as Q in the main Methods text) of 150 runs of the dynamic community detection
algorithm for each parameter combination considered here. Color indicates the value of Q, which
ranges from -1 to 1, with a value of 0 indicating a lack of modular structure. While no cutoff exists
to identify “true” modular structure per se, higher non-zero positive values of QQ indicate more
pronounced modularity. Across the parameters considered here, the value of Q ranges from
approximately 0.11 to 0.15, indicating weak, but present, modular structure. Consensus partitions
are similar across these parameter choices and the networks analyzed here were weighted, undirected,
and dense; these factors explain the consistency of Q values.
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S2 Fig. Core community compositions are consistent across dynamic community
detection parameter choices. Shown are heat maps of the core community compositions for the
original (top) and follow-up (bottom) experiments. In each case, community compositions are
averaged over the set of parameter combinations which result in four communities being identified
(.8 <w < 1.5, v < 1.015). The compositions shown here are nearly identical to those shown in Fig.
3A, which is the core community composition identified at the standard parameter combination for
the dynamic community detection algorithm (w =~ =1).
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S3 Fig. Functional communities exhibit transient reorganization around the ovulatory
window over a range of dynamic community detection parameter values. Shown are the
consensus community partitions for a range of dynamic community detection algorithm parameters
(8<w>.9 1.05 <v>1.06). Y-axis values indicate node identity, x-axis values indicate the day of
experiment, and color indicates community membership. The partition outlined in black (bottom
middle) is the basis of the quantitative analysis in the main text and is shown in Fig. 4B. Ovulation
occurs on day 23 (black underline in bottom middle panel). In each case displayed here, a new
subcommunity with a consistent composition splits from the default mode core during the ovulatory
window but rejoins after day 25 at the latest, concurrent with a sharp decline in estradiol, LH, and
FSH (Fig. 6B). This indicates the presence of a stable, reliable solution to the dynamic community
detection algorithm in this parameter range.
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S4 Fig. Solutions to the dynamic community detection algorithm are similar and
reliable. Since the Louvain algorithm is non-deterministic, it is important to characterize the
stability /similarity of community detection solutions. To compare the consensus partition used for
analysis in the main text (illustrated in Figure 4) to results from each run of the dynamic
community detection algorithm, we used normalized mutual information (NMI) as a measure of
partition similarity and normalized variation of information (NVI) as a measure of partition distance,
per Meila et al. (2007). NMI ranges from 0 to 1, with a value of 0 indicating similarity between
partitions at no better than chance and 1 indicating a perfect match. NVI ranges from 0 to 1 as well,
but with an inverse interpretation (i.e. smaller distances indicate higher similarity). Pairwise NMI
and NVI values were calculated between the consensus partition and each output of the 150 runs of
the dynamic community detection algorithm. Pairwise NMI and NVI values were also calculated
between 100 repetitions of a null model consensus partition, which permuted node identities, and
each DCD output. This null model permutation preserves the flexibility trends and community sizes
across the experiment, but shuffles node identity to provide a baseline hypothesis against which to
test the significance of the true community detection results. The NMI and NVI distributions are
significantly higher and lower, respectively, than the null model comparison, indicating that the
consensus partition used in subsequent analysis is much better than what would be arrived at by
chance. The median NMI between the consensus partition and each DCD algorithm output is 0.72
and the median NVT is 0.09, indicating that the consensus partition is highly representative of each
individual output partition from the 150 runs. Therefore, the community detection solution is highly
stable and solutions are highly similar.




Correlation between flexibility, hormones, and mood
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S5 Fig. Network flexibility is significantly correlated with estradiol. Shown on the left is
a heat map of the Spearman correlation values between the flexibility and hormone curves shown in
Figure 6 of the main text. Color indicates correlation values and red outlines indicate statistical
significance at the p < .05 level after Bonferroni correction. All networks except the control, dorsal
attention, and visual networks have correlation values > 0.6 with estradiol, indicating that these
variables are tightly coupled. The visual network also had a statistically significant negative
correlation with progesterone, but this network was minimally flexible so the effect size was
negligible. No other hormone-flexibility relationships were significant, suggesting that estradiol is the
primary driver of flexibility. On the right, a heat map illustrates the minimal significant
relationships between sex hormones and mood variables, which were surveyed each day of the
experiment (see Pritschet et al., 2020). Flexibility and mood values were not significantly correlated
for any networks or mood variables.
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S6 Fig. Node identities from the Schaefer functional-anatomical atlas. Shown here are
the node identities for regions in the Control C and DMN B subnetworks. Control C nodes are
identified as being highly flexible over the entire course of the menstrual cycle. Within-network
connectivity between nodes in DMN B increases around the ovulatory window, resulting in a
transient bifurcation of the default mode core community (Fig. 5).
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S7 Fig. Functional-anatomic subnetworks have distinct flexibility profiles. Within
functional-anatomical networks, nodes belonging to different subnetworks exhibit different flexibility
trends. Specifically, Control C subnetwork nodes are the most likely to be highly flexible within the
Control network, suggesting a specific “integrator” role for this subnetwork.
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S8 Fig. Strong changes in functional connectivity during the ovulatory window are
localized to a default mode subnetwork. Shown here are the differences in edge weights
(magnitude-squared coherence values) between nodes on days 21 and 22, when reorganization took
place, with color indicating value. Positive values indicate an increase in edge weight from day 21 to
22. On the right, only the top 5% of changes by magnitude are displayed.




Nodal flexibility by phase
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S9 Fig. Highly flexible nodes are consistently flexible across the menstrual cycle, but
exhibit peak flexibility during the ovulatory window. Shown here are the flexibility values
of the 104 nodes with non-zero flexibility in each of the three menstrual cycle phases. Color indicates
functional-anatomical network membership. Spearman rank correlation coefficients between phases
are shown below the plot; all three phases exhibit moderate correlation with one another, indicating
that high and low flexibility nodes are consistently highly or less flexible, respectively, across the

menstrual cycle.
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S10 Fig. Network flexibility is reduced in a follow-up oral hormonal contraceptive
replication experiment. When endogenous hormone levels were modulated via oral contraceptive
administration in a replication experiment, flexibility levels did not increase concurrent with the rise
in estradiol normally associated with ovulation, as observed in the naturally-cycling condition
(Figure 6). Shown here are curves for the mean flexibility of each network calculated over a 5-day
sliding window for the parameter combination (w,y) = (0.9,1.055) (the same parameters used for
dynamic community detection in the main text). It should be noted that the experiment concluded
before estradiol levels subsided to baseline concentrations, so further experiments are needed to
validate this result.
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S11 Fig. Brain networks do not exhibit reorganization in an oral hormonal
contraceptive replication experiment. Shown here are the consensus partitions for a
replication experiment in which the same participant underwent a hormonal regimen via oral
contraceptive administration. Under this regimen, no large-scale reorganization events (like those
observed in Figure |3) occurred, strengthening the conclusion that coordinated sex hormone
fluctuations experienced across the menstrual cycle are responsible for the changes in connectivity
observed in the main experiment.
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S12 Fig. Dynamic community detection is less robust to correlation networks than
coherence networks. Shown here are the consensus partitions for the weighted, signed FC
networks using Pearson correlation as edge weights. These partitions were more fragmented and less
stable than those observed when using coherence as the FC measure (compare to Supplementary
Figure 3).
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S13 Fig. Dynamic community detection solutions are less similar in correlation
networks than coherence networks. Solutions to the dynamic community detection algorithm
are less consistent when using Pearson correlation as the FC measure, indicating poor community
detection algorithm performance (compare to Supplementary Figure 4).
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