Supporting Information

Explicit Representation of Cation- π Interactions in Force Fields with $1/r^4$ Non-bonded Terms

Aysegul Turupcu, Julian Tirado-Rives, and William L. Jorgensen*

Department of Chemistry, Yale University, New Haven, Connecticut, 06520-8107, United States

Contents

Computatioal Methods – DFT Calculations	S2
Table S1. Ab initio and DFT Interaction Energies for the Benzene - K^+ Complex	S2
Table S2. Calculated and Experimental Interaction Energies (kcal/mol) at 0 K	S3
Table S3. OPLS/2020 Non-Bonded Parameters for Cations	S3
Figure S1. Pmfs for the interaction of K^+ with benzene and heterocycles	S4
Cartesian Coordinates of the Complexes In Figure 2	S 5
References	S8

Computational Methods – DFT Calculations

The Gaussian16 package¹ was used for the ab initio and DFT calculations for the cation- π complexes. Geometry optimizations were carried out with B3LYP/6–311 ++ G(d, p) followed by rigid PES scans with ω B97X-D/6-311++G(d,p).²⁻³ The distance between the cation center and ring center was scanned at 0.1 Å intervals. Counterpoise correction^{5,6} was used to offset basis set superposition errors (BSSE) for all interaction energies.

Method	Basis Set	ΔE (kcal/mol)	Ref ^a
CCSD(T)	6-31G(d,p)	-15.0	
MP2	6-311G+(d,p)	-13.5	
MP2	6-311G++(d,p)	-16.6	
MP2	6-311G++(2df, 2pd)	-18.0	
MP2	6-311G++(3df, 3pd)	-18.8	
ωB97X-D	6-311G++(d,p)	-18.2	
ωB97X-D	6-311G++(2df, 2pd)	-18.4	
ωB97X-D	6-311G++(3df, 3pd)	-19.0	
CCSD(T)	CBS	-20.1	Feller ⁷
MP2	aug-cc-pVDZ	-18.6	
MP2	aug-cc-pVTZ	-19.7	
MP2	aug-cc-pVQZ	-20.4	
MP2	CBS	-20.8	
CCSD(T)	def2-TZVPPD	-16.9	Ferretti ⁸
ωB97X-D	def2-TZVPPD	-17.9	
M062X	def2-TZVPPD	-19.3	
PBE0	def2-TZVPPD	-16.5	
B3LYP	def2-TZVPPD	-15.6	
M06	6-311G++(d,p)	-16.3	Davis ⁹
M06	6-31G++(d,p)	-20.3	
CCSD(T)	6-311G++(2d,2p)	-16.5	Marshall ¹⁰
B3LYP	6-31G(d,p)	-15.5	Reddy ¹¹
B3LYP	6-311G++(d,p)	-15.2	

Table S1. Ab initio and DFT Interaction Energies for the Benzene - K⁺ Complex

^a This work except as noted.

Cation- benzene	Exp ^a	ωB97X-D/ 6-311++G(d,p)	CCSD(T)/ CBS ^b	MP2(full)/ 6-311+G(2d,2p) ^a
Li ⁺	-38.5 ± 3.2	-38.2	-36.1	-34.2
Na ⁺	-22.1 ± 1.4	-24.7	-24.4	-21.4
K ⁺	-17.5 ± 0.9	-18.3	-20.0	-17.1
\mathbf{NH}_{4}^{+}	-19.3 ^c	-18.8	-21.4 ^d	-18.6
Rb ⁺	-16.4 ± 0.9	-13.3	-16.3	-12.7
Cs +	-15.4 ± 1.1	-11.6	-12.4	-11.4

Table S2. Calculated and Experimental Interaction Energies (kcal/mol) at 0 K

^a Ref 12. ^b Ref 7. ^c Ref 13, at 298 K. ^d Ref 14.

Table S3. OPLS/2020 Non-Bonded Parameters for Cations^a

atom	d (e .)	σ (Å)	ε (kcal/mol)	к
Li +	1.0	2.87	0.0005	0.45
Na ⁺	1.0	4.07	0.0005	0.70
K ⁺	1.0	5.17	0.0005	0.95
Rb ⁺	1.0	5.60	0.0005	0.70
Cs ⁺	1.0	6.20	0.0005	0.75
NH_4^+ - N	-0.40	3.48	0.290	1.00
$\mathrm{NH_4^+}$ - H	0.35	0.0	0.0	0.0
$MeNH_3^+$ - N	-0.30	3.48	0.290	1.00
$MeNH_3^+$ - H_N	0.33	0.0	0.0	0.0
$MeNH_3^+$ - C	0.13	3.50	0.066	0.0
$MeNH_3^+$ - H_C	0.06	2.50	0.030	0.0
Me ₄ N+ - N	0.0	3.48	0.290	1.00
Me ₄ N+ - C	-0.05	3.50	0.066	0.0
Me_4N+ - H_C	0.10	2.50	0.030	0.0
Gdm^+ - N	-0.80	3.25	0.170	0.25
Gdm ⁺ - H	0.46	0.0	0.0	0.0
Gdm^+ - C	0.64	3.55	0.050	0.0
$MeGdm^{\scriptscriptstyle +} \text{ - } N_{Me}$	-0.70	3.25	0.170	0.25
$MeGdm^+$ - H_{NMe}	0.44	0.0	00	0.0
$MeGdm^+$ - C_{Me}	0.20	3.50	0.066	0.0
$MeGdm^+$ - H_{Me}	0.06	2.50	0.030	0.0

^a From Refs. 15-17 and the present work.

Figure S1. Pmfs for the interaction of K⁺ with benzene and heterocycles using OPLS-AA (black) or OPLS/2020 (red), which includes the $1/r^4$ terms for cation- π interactions.

	(A)Benzene-NH4 ⁺ (bidendate)				(B) Benzene-NH4 ⁺ (monodendate)			
С	-1.2	0	-0.709	С	-1.2	0	-0.709	
С	-1.214	0	0.684	С	-1.214	0	0.684	
С	-0.014	0	1.393	С	-0.014	0	1.393	
С	1.2	0	0.709	С	1.2	0	0.709	
С	1.214	0	-0.684	С	1.214	0	-0.684	
С	0.014	0	-1.393	С	0.014	0	-1.393	
Н	-2.158	0	1.217	Н	-2.158	0	1.217	
Н	-0.025	0	2.477	Н	-0.025	0	2.477	
Н	2.133	0	1.26	Н	2.133	0	1.26	
Н	2.158	0	-1.217	Н	2.158	0	-1.217	
Н	0.025	0	-2.477	Н	0.025	0	-2.477	
Н	-2.132	0	-1.26	Н	-2.132	0	-1.26	
Ν	0	-2.9	0	Ν	0	-3	0	
Н	0.412	-3.493	0.73	Н	0.833	-3.342	0.492	
Н	-0.412	-3.493	-0.73	Н	0.01	-3.342	-0.968	
Н	-0.73	-2.307	0.412	Н	-0.843	-3.342	0.475	
Н	0.73	-2.307	-0.412	Н	0	-1.973	0	
	(C) Ind	ole-NH ₄ ⁺ π 6			(D) Ind	ole-NH ₄ ⁺ π 5		
С	0	0	0	С	0	0	0	
С	0	0	1.434	С	0	0	1 434	
	0	-				0	1.404	
С	1.19	0	2.185	С	1.19	0	2.185	
C C	1.19 2.393	0 -0.117	2.185 1.483	C C	1.19 2.393	0 -0.117	2.185 1.483	
C C C	1.19 2.393 2.415	0 -0.117 -0.167	2.185 1.483 0.064	C C C	1.19 2.393 2.415	0 -0.117 -0.167	2.185 1.483 0.064	
C C C C	1.19 2.393 2.415 1.234	0 -0.117 -0.167 -0.149	2.185 1.483 0.064 -0.678	C C C C	1.19 2.393 2.415 1.234	0 -0.117 -0.167 -0.149	2.185 1.483 0.064 -0.678	
C C C C	1.19 2.393 2.415 1.234 -1.37	0 -0.117 -0.167 -0.149 0.029	2.185 1.483 0.064 -0.678 -0.418	C C C C C	1.19 2.393 2.415 1.234 -1.37	0 -0.117 -0.167 -0.149 0.029	2.185 1.483 0.064 -0.678 -0.418	
C C C C C C	1.19 2.393 2.415 1.234 -1.37 -2.137	0 -0.117 -0.167 -0.149 0.029 0.069	2.185 1.483 0.064 -0.678 -0.418 0.73	C C C C C C	1.19 2.393 2.415 1.234 -1.37 -2.137	0 -0.117 -0.167 -0.149 0.029 0.069	2.185 1.483 0.064 -0.678 -0.418 0.73	
C C C C C H	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272	C C C C C H	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272	
С С С С С Н Н	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177 3.328	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034	C C C C C H H	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177 3.328	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034	
С С С С С С Н Н Н	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177 3.328 3.366	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034 -0.444	C C C C C H H	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177 3.328 3.366	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034 -0.444	
С С С С С С С Н Н Н Н	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177 3.328 3.366 1.26	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309 -0.229	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034 -0.444 -1.763	С С С С С С Н Н Н Н	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177 3.328 3.366 1.26	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309 -0.229	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034 -0.444 -1.763	
С С С С С С Н Н Н Н Н	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177 3.328 3.366 1.26 -1.751	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309 -0.229 0	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034 -0.444 -1.763 -1.43	С С С С С С С Н Н Н Н	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177 3.328 3.366 1.26 -1.751	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309 -0.229 0	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034 -0.444 -1.763 -1.43	
С С С С С С С Н Н Н Н Н Н Н	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177 3.328 3.366 1.26 -1.751 -1.633	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309 -0.229 0 -0.229 0	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034 -0.444 -1.763 -1.43 2.793	С С С С С С С Н Н Н Н Н Н	$\begin{array}{c} 1.19\\ 2.393\\ 2.415\\ 1.234\\ -1.37\\ -2.137\\ 1.177\\ 3.328\\ 3.366\\ 1.26\\ -1.751\\ -1.633\end{array}$	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309 -0.229 0 -0.229 0	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034 -0.444 -1.763 -1.43 2.793	
С С С С С С Н Н Н Н Н Н Н Н N	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177 3.328 3.366 1.26 -1.751 -1.633 -1.312	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309 -0.229 0 -0.229 0 -0.002 0.08	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034 -0.444 -1.763 -1.43 2.793 1.838	С С С С С С С Н Н Н Н Н Н П	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177 3.328 3.366 1.26 -1.751 -1.633 -1.312	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309 -0.229 0 -0.229 0 -0.002 0.08	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034 -0.444 -1.763 -1.43 2.793 1.838	
С С С С С Н Н Н Н Н Н Н Н	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177 3.328 3.366 1.26 -1.751 -1.633 -1.312 -3.212	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309 -0.229 0 -0.229 0 -0.002 0.08 0.08	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034 -0.444 -1.763 -1.43 2.793 1.838 0.848	СССССНННННИ	$\begin{array}{c} 1.19\\ 2.393\\ 2.415\\ 1.234\\ -1.37\\ -2.137\\ 1.177\\ 3.328\\ 3.366\\ 1.26\\ -1.751\\ -1.633\\ -1.312\\ -3.212\end{array}$	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309 -0.229 0 -0.229 0 -0.002 0.08 0.08	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034 -0.444 -1.763 -1.43 2.793 1.838 0.848	
С С С С С Н Н Н Н Н N Н N	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177 3.328 3.366 1.26 -1.751 -1.633 -1.312 -3.212 1.025	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309 -0.229 0 -0.229 0 -0.002 0.08 0.08 0.08 -2.062	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034 -0.444 -1.763 -1.43 2.793 1.838 0.848 0.846	СССССНННННКК	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177 3.328 3.366 1.26 -1.751 -1.633 -1.312 -3.212 -1.015	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309 -0.229 0 -0.229 0 -0.002 0.08 0.08 0.08 -1.963	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034 -0.444 -1.763 -1.43 2.793 1.838 0.848 0.747	
ССССНННННИКИ	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177 3.328 3.366 1.26 -1.751 -1.633 -1.312 -3.212 1.025 0.543	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309 -0.229 0 -0.229 0 -0.002 0.08 0.08 0.08 -2.062 -2.397	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034 -0.444 -1.763 -1.43 2.793 1.838 0.848 0.846 0.024	СССССНННННИКИ	$\begin{array}{c} 1.19\\ 2.393\\ 2.415\\ 1.234\\ -1.37\\ -2.137\\ 1.177\\ 3.328\\ 3.366\\ 1.26\\ -1.751\\ -1.633\\ -1.312\\ -3.212\\ -3.212\\ -1.015\\ -0.078\end{array}$	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309 -0.229 0 -0.229 0 -0.002 0.08 0.08 -1.963 -2.326	$\begin{array}{c} 2.185\\ 1.483\\ 0.064\\ -0.678\\ -0.418\\ 0.73\\ 3.272\\ 2.034\\ -0.444\\ -1.763\\ -1.43\\ 2.793\\ 1.838\\ 0.848\\ 0.747\\ 0.642\end{array}$	
ССССННННИМИН	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177 3.328 3.366 1.26 -1.751 -1.633 -1.312 -3.212 1.025 0.543 0.498	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309 -0.229 0 -0.229 0 -0.002 0.08 0.08 -2.062 -2.397 -2.312	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034 -0.444 -1.763 -1.43 2.793 1.838 0.848 0.846 0.024 1.671	СССССНННННКНХНН	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177 3.328 3.366 1.26 -1.751 -1.633 -1.312 -3.212 -1.015 -0.078 -1.592	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309 -0.229 0 -0.229 0 -0.002 0.08 0.08 -1.963 -2.326 -2.297	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034 -0.444 -1.763 -1.43 2.793 1.838 0.848 0.747 0.642 -0.012	
ССССНННННИНИНН	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177 3.328 3.366 1.26 -1.751 -1.633 -1.312 -3.212 1.025 0.543 0.498 1.116	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309 -0.229 0 -0.229 0 -0.002 0.08 0.08 -2.062 -2.397 -2.312 -1.057	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034 -0.444 -1.763 -1.43 2.793 1.838 0.848 0.846 0.024 1.671 0.796	СССССНННННИКНИНН	1.19 2.393 2.415 1.234 -1.37 -2.137 1.177 3.328 3.366 1.26 -1.751 -1.633 -1.312 -3.212 -1.015 -0.078 -1.592 -0.989	0 -0.117 -0.167 -0.149 0.029 0.069 -0.011 -0.172 -0.309 -0.229 0 -0.229 0 -0.002 0.08 0.08 -1.963 -2.326 -2.297 -0.954	2.185 1.483 0.064 -0.678 -0.418 0.73 3.272 2.034 -0.444 -1.763 -1.43 2.793 1.838 0.848 0.747 0.642 -0.012 0.732	

Cartesian Coordinates of the Complexes In Figure 2

(E) Benzene-TMA ⁺			(F) Benzene-(Gdm⁺ (T-shap	ed)		
С	0.005	-0.476	1.332	С	0	0	0
С	0.001	-1.392	0.254	С	0	0	1.395
С	0.003	0.916	1.078	С	1.208	0	2.092
С	-0.003	-0.916	-1.078	С	2.416	0	1.395
С	-0.002	1.392	-0.254	С	2.416	0	0
С	-0.005	0.476	-1.332	С	1.208	0	-0.697
Н	0.048	-0.843	2.359	Н	-0.952	0	-0.55
Н	0.042	-2.465	0.45	Н	-0.952	0	1.945
Н	0.046	1.622	1.909	Н	1.208	0	3.192
Н	0.034	-1.622	-1.91	Н	3.368	0	1.945
Н	0.037	2.465	-0.45	Н	3.368	0	-0.55
Н	0.031	0.842	-2.36	Н	1.208	0	-1.797
Ν	-4.424	-0.003	0	С	1.415	-4.031	0.827
С	-5.952	-0.007	0.004	Ν	1.531	-5.354	0.782
С	-3.914	1.099	-0.931	Ν	0.788	-3.429	1.833
Н	-6.296	-0.8	0.674	Ν	1.92	-3.262	-0.131
Н	-6.301	0.968	0.357	Н	1.147	-5.93	1.509
Н	-6.302	-0.191	-1.016	Н	2.005	-5.809	0.022
Н	-2.82	1.085	-0.916	Н	0.7	-2.429	1.867
Н	-4.293	2.059	-0.567	Н	0.386	-3.958	2.586
Н	-4.29	0.899	-1.939	Н	2.404	-3.659	-0.916
С	-3.908	-1.359	-0.49	Н	1.832	-2.262	-0.097
С	-3.906	0.253	1.418				
Н	-2.814	-1.334	-0.484				
Н	-4.285	-1.525	-1.503				
Н	-4.28	-2.134	0.187				
Н	-2.812	0.251	1.391				
Н	-4.278	-0.544	2.069				
Н	-4.283	1.224	1.751				

	(G) Benzene-Gdm ⁺ (Stacked)			Indole-Gd	lm⁺π6 (Stack	(ed)	
С	0	1.4	0	С	0	0	0
С	0	0.695	-1.22	С	0	0	1.434
С	0	0.694	1.219	С	1.19	0	2.185
С	0.002	-0.714	-1.223	С	2.393	-0.117	1.483
С	0.001	-0.716	1.218	С	2.415	-0.167	0.064
С	0.001	-1.419	-0.003	С	1.234	-0.149	-0.678
Н	-0.039	2.48	0.001	С	-1.37	0.029	-0.418
Н	-0.039	1.236	-2.156	С	-2.137	0.069	0.73
Н	-0.039	1.233	2.156	Н	1.177	-0.011	3.272
Н	-0.037	-1.253	-2.159	Н	3.328	-0.172	2.034
Н	-0.037	-1.256	2.153	Н	3.366	-0.309	-0.444
Н	-0.037	-2.5	-0.004	Н	1.26	-0.229	-1.763
С	3.526	0	0.005	Н	-1.751	0	-1.43
Ν	3.535	0.678	-1.146	Н	-1.633	-0.002	2.793
Н	3.503	0.216	-2.046	Ν	-1.312	0.08	1.838
Н	3.516	1.689	-1.179	Н	-3.212	0.08	0.848
Ν	3.547	0.658	1.167	С	1.352	2.422	0.662
Н	3.529	1.668	1.217	Ν	0.198	2.512	1.315
Н	3.525	0.18	2.059	Н	-0.677	2.547	0.822
Ν	3.53	-1.336	-0.007	Н	0.169	2.546	2.318
Н	3.507	-1.884	0.844	Ν	2.496	2.381	1.338
Н	3.497	-1.869	-0.866	Н	2.509	2.419	2.342
				Н	3.378	2.31	0.863
				Ν	1.363	2.373	-0.665
				Н	2.225	2.308	-1.177
				Н	0.509	2.401	-1.194

REFERENCES

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. *Gaussian16*, Revision C.01. Gaussian, Inc., Wallingford CT (2016).
- (2) Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652.
- (3) Hehre, W. J., Radom, L., Schleyer, P. V. R., Pople, J. A. Ab Initio Molecular Orbital Theory. Wiley, New York (1986).
- (4) Mardirossian, N.; Head-Gordan, M. ωB97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. *Phys. Chem. Chem. Phys.*, **2014**, *16*, 9904-9924.
- (5) Boys, S. F.; Bernardi, F. Calculation of Small Molecular Interactions by Differences of Separate Total Energies – Some Procedures with Reduced Errors. *Mol. Phys.*, **1970**, *19*, 553.
- (6) Simon, S.; Duran, M.; Dannenberg, J. J. How does basis set superposition error change the potential surfaces for hydrogen bonded dimers? *J. Chem. Phys.*, **1996**, *105*, 11024-31.
- (7) Feller, D.; Dixon, D. A.; Nicholas, J. B. Binding Enthalpies for Alkali Cation-Benzene Complexes Revisited. J. Phys. Chem. A 2000, 104, 11414–11419.
- (8) Ferretti, A.; D'ischia, M.; Prampolini, G. Benchmarking Cation-IIInteractions: Assessment of Density Functional Theory and Möller-Plesset Second-Order Perturbation Theory Calculations with Optimized Basis Sets (Mp 2 Mod) for Complexes of Benzene, Phenol, and Catechol with Na+, K+, Rb+, and Cs+. *J. Phys. Chem. A* 2020, *124*, 3445–3459.
- (9) Davis, M. R.; Dougherty, D. A. Cation-π Interactions: Computational Analyses of the Aromatic Box Motif and the Fluorination Strategy for Experimental Evaluation. *Phys. Chem. Chem. Phys.* 2015, *17*, 29262–29270.
- (10) Marshall, M. S.; Steele, R. P.; Thanthiriwatte, K. S.; Sherrill, C. D. Potential Energy Curves for Cation-π Interactions: Off-Axis Configurations Are Also Attractive. *J. Phys. Chem. A* 2009, *113*, 13628–13632.

- Reddy, A. S.; Sastry, G. N. Cation [M = H⁺, Li⁺, Na⁺, K⁺, Ca²⁺, Mg²⁺, NH4⁺, and NMe4⁺] Interactions with the Aromatic Motifs of Naturally Occurring Amino Acids: A Theoretical Study. *J. Phys. Chem. A* 2005, *109*, 8893–8903.
- (12) Amicangelo, J. C.; Armentrout, P. B. Absolute Binding Energies of Alkali-Metal Cation Complexes with Benzene Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory. J. Phys. Chem. A 2000, 104, 11420– 11432.
- (13) Deakyne, C. A.; Meot-Ner, M. Unconventional Hydrogen Bonds. 2. NH⁺...π-Complexes of Onium Ions with Olefins and Benzene Derivatives. *J. Am. Chem. Soc.* 1985, 107, 474-479.
- (14) Singh, N. J.; Min, S. K.; Kim, D. Y.; Kim, K. S. Comprehensive Energy Analysis for Various Types of π-Interaction. *J. Chem. Theory Comput.* 2009, *5*, 515–529.
- (15) Jensen, K. P.; Jorgensen, W. L. Halide, Ammonium, and Alkali Metal Ion Parameters for Modeling Aqueous Solutions. J. Chem. Theory Comput. 2006, 2, 1499–1509.
- (16) Jorgensen, W. L.; Gao. J. Monte Carlo Simulations of the Hydration of Ammonium and Carboxylate Ions. J. Phys. Chem. **1986**, 90, 2174-2182.
- (17) Duffy, E. M.; Kowalczyk, P. J.; Jorgensen, W. L. Do Denaturants Interact with Aromatic Hydrocarbons in Water? J. Am. Chem. Soc. **1993**, 115, 9271-9275.