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Supplementary Figure 1 | Determination of zero-field critical temperature. (a) Resistance

curves of the six samples (Flat#1, Flat#2, Flat#3, Vicinal#1, Vicinal#2, and Vicinal#3) measured

in zero magnetic fields are plotted. The solid curves show the results of the fitting. (b) Zero-field

critical temperature (Tc0) plotted as a function of normal-state registance (Rn).
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Supplementary Figure 2 | Superconducting transition in in-plane magnetic fields. (a-f) Re-

sistance curves of the six samples (Flat#1, Flat#2, Flat#3, Vicinal#1, Vicinal#2, and Vicinal#3) in

in-plane magnetic fields.
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Supplementary Figure 3 | Superconducting transition in out-of-plane magnetic fields. (a-

f) Resistance curves (left) and the plots of the Ullah-Dorsey scaling analysis1,2 (right) of the six

samples (Flat#1, Flat#2, Flat#3, Vicinal#1, Vicinal#2, and Vicinal#3) in out-of-plane magnetic

fields. The axes of the scaling plot are X = |T − Tc|(BT )−1/2 and Y = (B/T )1/2.
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Supplementary Figure 4 | Accuracy in the sample alignment for in-plane magnetic fields.

The plot shows the typical angular dependence of the sheet resistance near the critical temperature.

Here, Rsheet was measured at T = 2.8 K in B = 5 T. The sample angle θ was determined from the

signal of the Hall sensor attached on the rotatable sample stage. The parallel sample configuration

was found from the minimum of the curve by changing θ at an accuracy of ∼0.05◦ for each sample.
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Supplementary Figure 5 | Comparison of calculations using Quantum ESPRESSO and

OpenMX. (a,b) Band splitting and spin polarisation direction of
√

7 ×
√

3-In calculated with

(a) Quantum ESPRESSO and (b) OpenMX. (c,d) Fermi velocity calculated with (c) Quantum

ESPRESSO and (d) OpenMX.
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Supplementary Figure 6 | Spin polarizaton direction on the Fermi surface. Spin orientation

relative to the in-plane direction is displayed as a function of energy splitting. The results are

obtained using (a) Quantum ESPRESSO and (b) OpenMX. θ = 0◦ corresponds to the in-plane

direction while θ = 90◦ the out-of-plane direction (see the inset of a).
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Supplementary Note 1 | Fitting analysis of zero-field data

The zero-field critical temperature Tc0 and the normal-state residual resistance Rn were deter-

mined by fitting a function of the form3,

1
Rsheet

=
1

Rn + cT a +
1
R0

T
T − Tc0

(1)

to the resistance curves (Supplementary Figure 1a) for T > Tc0. Here, the first term represents

normal-state conductance; a and c represent phonon contribution; the second term represents the

fluctuation effect characteristic to 2D superconductors4; and R0 is the temperature-independent

parameter. As presented in Supplementary Figure 1b, Tc0 is found to be a monotonic decreasing

function of Rn, being order-of-magnitude consistent with the theoretical behaviour of supercon-

ducting films containing non-magnetic impurities5. This consistency suggests that the atomic steps

work as non-magnetic scatterers in the present condition, while it serves as Josephson junctions

when the supercurrent density approaches the critical value6,7. The weak dependence of Tc0 on Rn

indicates that the s-wave pairing is dominant.

Supplementary Note 2 | Analysis of pair-breaking mechanism in out-of-plane fields

The linear B dependence of Tc observed for out-of-plane fields (Fig. 5d, which was obtained

from the scaling analysis shown in Supplementary Figure 3) is consistent with the Ginzburg-

Landau (GL) theory8. We estimate the extrapolated value of GL coherence length, ξ, by fitting the

following function valid near Tc0,

B =
Φ0

2πξ2

(
1 −

Tc

Tc0

)
(2)

where Φ0 = h/(2e) is the flux quantum. As presented in Table 1, ξ ranges between 29-43 nm,

which are consistent with the radii of vortices (36-47 nm) reported in STM studies7. This indicates

that the perpendicular critical field is limited by the orbital pair-breaking effect, i.e., penetration of

vortices.

Supplementary Note 3 | The influence of the static effect of the Rashba-type SOC

The static effect of the spin-momentum locking due to the Rashba-type SOC is known to en-

hance the in-plane critical field Bc2|| by a factor of 2 from the Pauli limit. This effect is likely to be
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weakened by electron scattering and mixing between different spin states. Since we do not know

the degree of such an effect, we assume the worst case and estimate the upper limit of error in τs

in the following.

In the absence of spin-orbit coupling, the B dependence of Tc near Tc0 is given by

1 −
Tc

Tc0
=

7ζ(3)
4π2 ·

(µBB)2

(kBTc0)2 . (3)

With the static spin-momentum locking due to Rashba SOC, the expression changes to9

1 −
Tc

Tc0
=

1
2
·

7ζ(3)
4π2 ·

(µBB)2

(kBTc0)2 . (4)

Here the addition of the factor 1/2 in Eq. (4) means that B is replaced with an effective magnetic

field Beff = (1/
√

2)B in Eq. (3). This is the origin of the enhancement of Bc2 by a factor of
√

2 due to the static locking effect of Rashba SOC. The effect of non-magnetic disorder on a

Rashba superconductor can be estimated using this effective magnetic field. By substituting B

with Beff = (1/
√

2)B in the following equations (taken from Eqs. (3) and (6) in the main text; only

the paramagnetic contribution is considered here),

α(B) = cPB2 (5)

and

cP =
3τsµ

2
B

2~
. (6)

We see that τs value is doubled for the same experimental data α(B). With the τs values obtained

previously (see Table 1) in the manuscript, we can estimate that the lower limit of τel/τs is 0.25-0.5.

These values are still much higher than 1/60-1/1000 for thin In films, which is due to the atomistic

spin-orbit scattering mechanism. Therefore, the result is not attributable only to the conventional

mechanism, and our conclusion remains the same.

Supplementary Note 4 | The role of the Zeeman-type SOC in the Bc2 enhancement

The distribution of spin polarisation direction was obtained from our DFT results (Supplemen-

taray Figure 6a). It clearly shows that the spins align in the in-plane directions for the most of

energy regions. This means that Rashba SOC is dominant over Zeeman SOC mostly. The spins

tend to tilt toward the out-of-plane direction below 30 meV, but the off-angle is about 45◦ at most.
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Namely, there is no region where Zeeman SOC is dominant. This result was also reproduced by

the calculations using OpenMX (Supplementaray Figure 6b).

This non-dominant Zeeman SOC confined to small area of the Fermi surface can barely en-

hance Bc2. This is because enhancement factor is determined by an average over the whole Fermi

surface. The critical temperature in the presence of magnetic field B, Tc(B), is given by the fol-

lowing equations10,11,

ln
(
Tc(B)
Tc0

)
= 2

〈
|ψ(k)|2 f

(
1(k) · B
πTc|1(k)|

)〉
k

(7)

and

f (x) = Re
∞∑

n=1

(
1

2n − 1 + ix
−

1
2n − 1

)
, (8)

where Tc0 ≡ Tc(B = 0), k is the wavevector on the Fermi surface, ψ(k) is the spin-singlet gap

function, 1(k) is a vector determining the spin polarisation at each k, and 〈. . .〉k denotes taking an

average over the Fermi surface. Bc2 is given by B that satisfies Tc(B) = 0. For example, when

magnetic field is applied parallel to the Rashba-split Fermi surface, spins in some regions point

nearly perpendicular to the field (see the figure (a) below). This is analogous to the Zeeman SOC

case (see the figure (b) below), but the enhancement factor is limited to 2 because of the averaging

over the whole Fermi surface. This clearly shows that, even if Zeeman SOC coexists in the present

system and tilts some of the spins toward the out-of-plane direction, its effect is limited.

If the dynamics of spins is considered, the effect of the Zeeman-type SOC can be suppressed

even more. Since our system is characterised by dominant Rashba-type SOC, the polarisation

axis of the spins strongly depends on momentum. This means that electron scattering between

different momenta effectively induce a spin flipping and therefore out-of-plane spin component

is not conserved through elastic scattering. We note that a different situation takes place for an

ultrathin layer of TMDC with Zeeman-type SOC12,13. Here, since all the spins around one of the

valleys are polarised in the same out-of-plane direction, dominant intravalley scatterings cannot

cause spin flipping14. By contrast, this mechanism does not apply to our Rashba-type SOC case

because of the presence of frequent spin flipping.

Base on all these facts, we conclude that strong enhancement of Bc2 due to Zeeman SOC is

extremely unlikely in the present system.
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Schematic illustration of the Fermi surface splitting due to (a) Rashba SOC and (b) Zeeman SOC.

Supplementary Note 5 | Computational condition for OpenMX

We performed DFT calculations using OpenMX to confirm the reproducibility of the com-

putational results. OpenMX is based on the optimised pseudo-atomic orbitals (PAO)15, and we

selected from the “Precise” sets from the PAO database (2019) in the OpenMX website16. We

chose LSDA-CA17,18 for the exchange-correlation functional. The crystal structure of
√

7×
√

3-In

was modeled by a repeated slab consisting of an In bilayer, nine Si bilayers, a H layer for termi-

nation, and a vacuum region of 4.5 nm. We set the cutoff energy to 300 Ry and the k-point mesh

to 6 × 8 × 1. The geometry optimisation was performed without SOC until the maximum force on

each atom became less than 1 × 10−5 Hartree·Bohr−1. The band calculation was carried out using

the optimised structure by including SOC. The spin texture was analysed by using kSpin code19.
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