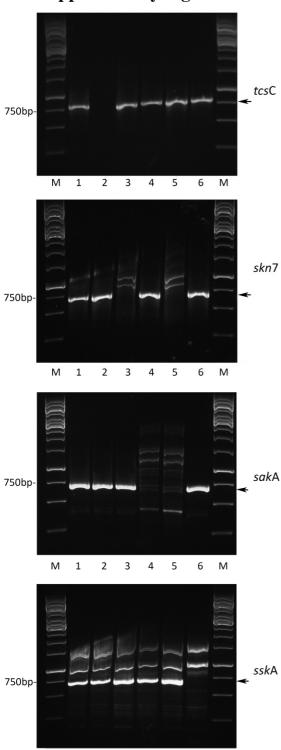
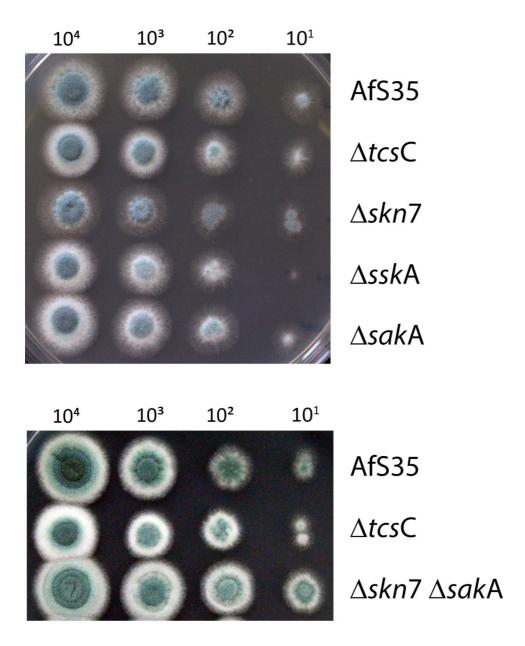
## - Supplementary Files -


The response regulator Skn7 of Aspergillus fumigatus is essential for the antifungal effect of fludioxonil.

Sebastian Schruefer<sup>1#</sup>, Isabella Böhmer<sup>1#</sup>, Karl Dichtl<sup>2</sup>, Anja Spadinger<sup>1</sup>, Christoph Kleinemeier<sup>1</sup>, Frank Ebel<sup>1</sup>

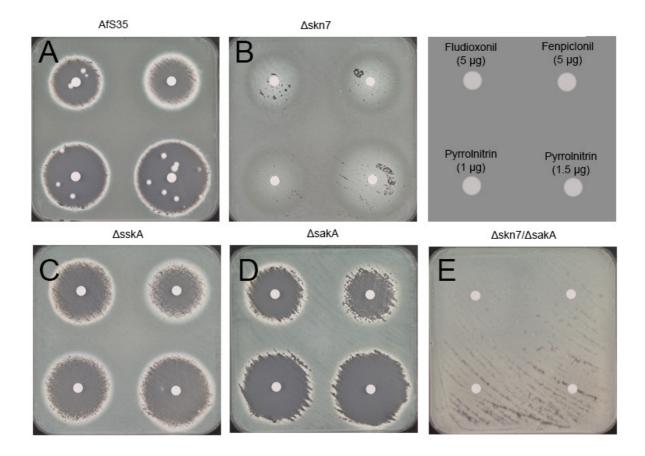
1: Institute for Infectious Diseases and Zoonoses, Faculty of Veterinary Medicine, LMU Munich, Germany

2: Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany


#### **Supplementary Figure 1:**

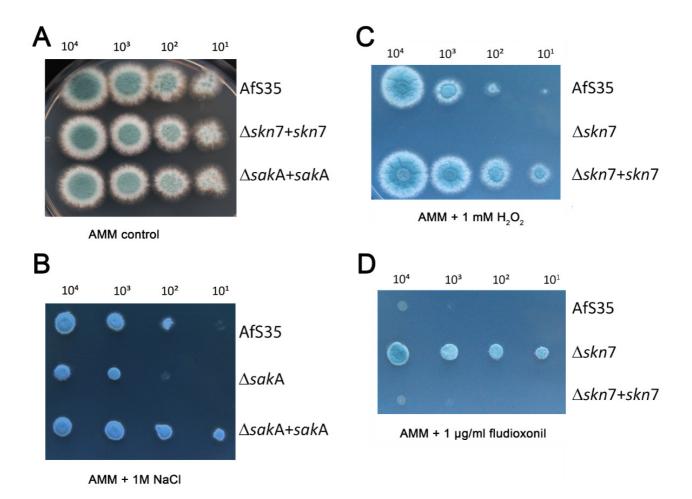


6


PCR analysis of the different strains used in this study. We have amplified fragments of approximately 700 bp of the genes indicated on the right margin from chromosomal DNA of the different strains using oligonucleotides that are specified in Suppl. Table 1. M = marker; 1 = AfS35; 2 =  $\Delta tcs$ C; 3 =  $\Delta skn$ 7; 4 =  $\Delta sak$ A, 5 =  $\Delta skn$ 7  $\Delta sak$ A; 6 =  $\Delta ssk$ A. The specific amplicons are indicated by arrows.

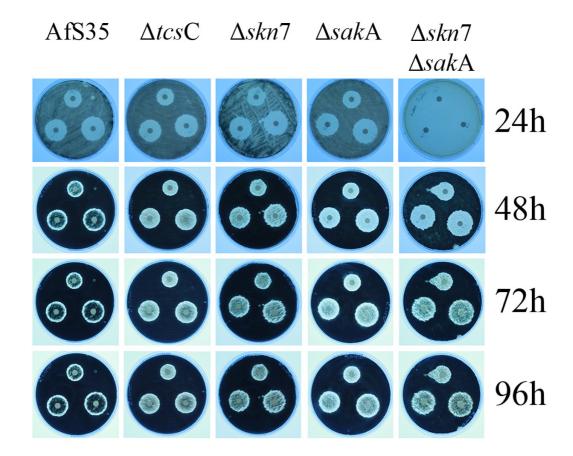
## **Supplementary Figure 2:**




Growth of the *A. fumigatus* HOG pathway mutants on AMM agar. The drop dilution assays were incubated at 37°C for 48h. The strains and the number of conidia that were applied per drop are indicated.

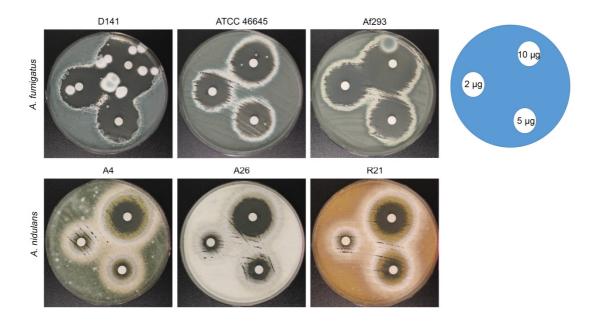
#### **Supplementary Figure 3:**




Comparison of the sensitivities of the indicated mutants to fludioxonil, fenpiclonil and pyrrolnitrin. Paper disks containing 5  $\mu$ g fludioxonil, 5  $\mu$ g fenpiclonil and 1 and 1.5  $\mu$ g pyrrolnitrin were placed on plates that were inoculated with conidia of the following strainsd: AfS35 (A),  $\Delta skn7$  (B),  $\Delta sskA$  (C),  $\Delta sakA$  (D) and  $\Delta skn7$   $\Delta sakA$  (E). The plates were incubated at 37°C and images were taken after for 48h.

#### **Supplementary Figure 4:**




Functional complementation of the  $\Delta sak$ A and the  $\Delta skn$ 7 mutant. Panel A: Drop dilution assay on an AMM plate without supplements demonstrating a normal growth for the two complemented mutants. Panel B: The  $\Delta sak$ A+sakA strain shows a wild type-like resistance to high salt stress on AMM containing 1 M NaCl. Panels C and D: Drop dilution assays on AMM plates containing 1 mM H<sub>2</sub>O<sub>2</sub> (C) or 1  $\mu$ g/ml fludioxonil demonstrate the functional complementation of the  $\Delta skn$ 7 mutant (D).

#### **Supplementary Figure 5:**



The HOG mutants show a reduced trailing growth on plates with paper disks containing 2.5  $\mu$ g (top), 10  $\mu$ g (left) or 20  $\mu$ g (right) caspofungin. The AMM plates were inoculated with resting conidia and incubated at 37°C for the times indicated. Note that the trailing growth in the inhibition zones is most prominent for the wild type strain AfS35. This is also the only strain that sporulated well in the inhibition zone.

### **Supplementary Figure 6:**



A. fumigatus strains are more susceptible to fludioxonil than A. nidulans strains. Sabouraud plates were inoculated with resting conidia of the A. fumigatus strains D141, ATCC 46645 and Af293 or the A. nidulans strains R21, A26 and A4. Paper disks with the indicated amounts of fludioxonil were then placed on the plates and images were taken after an incubation of 48h at 37°C.

# Supplementary Table 1: Oligos used in this study

| Designation              | Sequence                                         | Experiment                                    |
|--------------------------|--------------------------------------------------|-----------------------------------------------|
| SakA-1000bp-up-<br>FOR   | TTGATTTCTCCTCTAAGCCCG                            | deletion of sakA up-stream                    |
| SakA-1000up-<br>REV-SfiI | GCGGCCTGAGTGGCCTTTGGATAGTGTGGGTGG                | deletion of sakA up-stream                    |
| SakA-1000do-<br>FOR-SfiI | GCGGCCATCTAGGCCAAGTGGTCACCATGTGCA                | deletion of sakA down-stream                  |
| SakA-1000bp-do-<br>REV   | AACACGATACAATGGGGTCTC                            | deletion of sakA down-stream                  |
| SakA-FOR                 | ATGGCCGAGTTCGTGCGT                               | complementation of ΔsakA                      |
| SakA-REV                 | TTATGCATAGTTTTGTTG                               | complementation of ΔsakA                      |
| SskA-1000bp-up-<br>FOR   | ATGTTTTTCAGAGAGCGCCA                             | deletion of sskA up-stream                    |
| SskA-1000up-<br>REV-SfiI | GCGGCCTGAGTGGCCGATGAGGATCCACCACAG                | deletion of sskA up-stream                    |
| SskA-1000do-<br>FOR-SfiI | GCGGCCATCTAGGCCCCAGTTGCACTTTCTGCA                | deletion of sskA down-stream                  |
| SskA-1000bp-do-<br>REV   | AACGCAAGAGACTCGCCAAGG                            | deletion of sskA down-stream                  |
| Skn7-1000up-For          | GCGTTAGGACTTGGGACC                               | deletion of skn7 up-stream                    |
| Skn7-1000up-REV-<br>SfiI | GC <u>GGCC</u> TGAGT <u>GGCC</u> CGTGGGCTAGATGGG | deletion of skn7 up-stream                    |
| Skn7-1000do-FOR-<br>SfiI | GT <u>GGCC</u> ATCTA <u>GGCC</u> GGTGAGAACAGTCGA | deletion of skn7 down-stream                  |
| Skn7-1000do-REV          | ACCTCGGGCGGTCAGCGA                               | deletion of skn7 down-stream                  |
| Skn7-ATG-FOR             | ATGGAGGGTGGCCAGACC                               | complementation of Δskn1                      |
| Skn7-REV                 | TTAGCCACTTCGAGTAGC                               | complementation of Δskn1<br>P <sub>gpdA</sub> |
| Skn7-Pro-PstI-FOR        | GACTGCAGCTGAGGACGATCATAATGCA                     | complementation of Δskn1 P <sub>skn7</sub>    |
| SakA-FOR                 | ATGGCCGAGTTCGTGCGT                               | PCR detection of sakA                         |
| SakA-700-REV             | AATACATGGTTAGCGTTC                               | PCR detection of sakA                         |
| SskA-FOR                 | ATGCCTGACCGCCGCCTG                               | PCR detection of sskA                         |
| SskA-700-REV             | GCACGCTGGAATTTTCTC                               | PCR detection of sskA                         |
| Skn7-ATG-FOR             | ATGGAGGGTGGCCAGACC                               | PCR detection of skn7                         |
| Skn7-700-REV             | CTTGCTGTTCGCTCTGAA                               | PCR detection of skn7                         |
| TcsC-His-FOR             | GCGAATTCAACCTATGATTTCAAATAC                      | PCR detection of tcsC                         |
| Tco1-REV                 | TTCTCATACGGCCTTTGGAGAGCG                         | PCR detection of tcsC                         |