
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

In this study, Urzua-Traslavina and his colleagues improved the prediction of gene-set membership of 

pre-defined gene sets using ICA-TC and GBA strategy. Technically, this work is well-written with 

promising results, but from biological perspective, it is not well-written and it is not so informative. 

Actually, in this paper, the authors just used of one biological example "DNA Repair" gene-set. 

 

I highly recommend; 

 

1- provide more information about the previous devised methods for gene function prediction, 

specially with focus on machine learning approaches. 

 

2- provide a list of gene-sets that the gene-set membership has been improved by the developed 

approach and show that, whether all of the gene-sets have been improved? if not, explain why? 

 

3- Did you also work with gene expression time-series data? If you excluded them, please explain 

why? I suppose they would be better data for the evaluation of the method. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

Summary: 

The manuscript by Urzua-Traslavina et al. is mostly well-written (it misses some important parts as 

mentioned below) and builds to a large extent on a previous highly-cited study by the senior author 

Dr. Fehrmann (Nature Genetics 2015, PMID 25581432). Here, Urzua-Traslavina et al. use 106,462 

samples from the Affymetrix HG{U133 Plus 2.0 platform to construct 523 transcriptional components 

(TCs) using a consensus independent component analysis (ICA)-based strategy. Based on the cICA 

mixing matrix they build “average transcriptional barcodes” for each of 23,372 genesets from the 

Human Phenotype Ontology, the Mouse Genome Informatics database and the Molecular Signatures 

database. They then correlate genes’ transcriptional barcodes with these genesets’ transcriptional 

barcodes to produce predictions on whether a given gene is associated with a given geneset. They 

make the predictions publicly available. They find that their ICA-TC framework outperforms a principal 

component analysis-TC-based framework. In general, their ICA-TC framework is highly valuable for 

more agonistic analyses of genes and their functions. 

 

Major comments: 

 

The focus on Affymetrix gene expression technology seems a bit outdated. Because more than 80% of 

all GWAS associations typically fall outside coding regions and because non-coding genes are 

understudied compared to protein-coding genes, it would be very useful if the ICA-TCs were computed 

based on large-scale RNA-seq data instead of microarray data. RNA-seq data could provide predictions 

for the much larger set of GENCODE genes, results that supposedly would be extremely valuable to 

better understand contributions of non-coding genes to complex traits and disease. Also, from a 

technical perspective, how much do their predictions increase when using state-of-the-art RNA-seq 

data? 

 

Besides the narrow focus on microarray data, another concern is that lack of single-cell RNA-seq data. 

Can their approach be applied on single-cell RNA-seq data which is typically sparse and where less 

plentiful compared to bulk expression data? Would be great if the authors, at least, could include 

examples on how their approach works when e.g. applied on all single-cell data from some of the 

large multi-organ and comprehensive brain atlases. For instance, will much few samples be needed 



because the data is much more specific than e.g. bulk microarray data? 

 

There is no mentioning of species. Are these human data or a mix between human, mouse and rat 

samples? What are the differences in their benchmarks between species? 

 

The authors state that “Some datasets that were not included in the article due to size constraints and 

the source code for the method are made available from the corresponding author on reasonable 

request”. To better facilitate that other research groups can use their framework (besides browsing 

the website) the authors should provide all code (for the microarray, and should they decide to do 

these analysis, the RNA-seq and single-cell RNA-seq parts) and all ICA-TCs (by-species and combined 

TCs) via a publicly accessible website (instead of “upon request”). 

 

 

Minor comments: 

 

P. 3: Spell out MSigDB 

 

P. 4: Mention examples on what it means that a “a gene is likely to play a role in that gene set”. 

 

P. 5: Table not properly described. For instance, it is not clearly stated that GENETICA is the method 

proposed by the authors. 

 

 

I would like to conclude by congratulating the authors on this important contribution and thank them 

for their work which will be highly relevant and useful to the community. 

 

My best 

 

Tune H Pers 



Urzua-Traslavina et al.: Improving gene function pre-

dictions using independent transcriptional components

(NCOMMS–20–18207)

We would like to thank the reviewers for their helpful comments. These constructive re-

marks have enabled us to improve our manuscript. Below, please find a point–by–point

rebuttal.

Referee 1

Remark #1:

“... from biological perspective, it is not well-written, and it is not so informative. Actually,

in this paper, the authors just used of one biological example ”DNA Repair” gene-set”

Reply: We agree with this reviewer that the manuscript lacked the biological perspec-

tive of our findings. To expand the biological perspective of the manuscript, we added

several additional analyses.

Firstly, we explore the predicted functional landscape according to the Hallmark gene set

collection for a subset of genes, particularly, chromosome open reading frame (Corf) genes

and uncharacterized loci (LOC) genes. Hierarchical clustering of the Hallmark gene–set

collection prediction scores of uncharacterized genes revealed several clusters with distinct

predicted biological processes, such as response to estrogen receptor activity and DNA re-

pair (Figure 6). We identified several uncharacterized genes for which the biological function

was experimentally demonstrated only recently and matched our predictions (Supplemen-

tary Data 4).



We added the following sentences to our Results section on Page 9, Line 23 :

“Genes that encode uncharacterized proteins are referred to as chromosome open reading

frames (Corfs) or uncharacterized loci (LOCs). Compared to the PCA-TC based method,

the ICA-TC based method generated higher prediction scores for both Corfs and LOCs

with the Hallmark gene-set collection (Area under the curve (AUC) calculated with Mann–

Whitney U test 0.76; Figure 6A). Hierarchical clustering of the ICA-TC based prediction

scores of 835 Corfs and LOCs based on the Hallmark gene–set collection resulted in 116

clusters when using a height cutoff of 0.8. Cluster 17 was captured 28 Corfs and LOCs that

were predicted to be members of the DNA repair Hallmark gene set (Figure 6B). Out of the

28 uncharacterized genes in this cluster, seven have been recently implicated in DNA repair

based on experimental work (Figure 6B, Supplementary Data 4). Cluster 84 consisted of

Corfs predicted to be involved in estrogen receptor signaling and response (Figure 6B). In

this cluster, C6orf141 has recently been suggested to be estrogen receptor alpha regulated

in breast cancer cells [1] (Supplementary Data 4). These results show that GENETICA can

predict the functionality of uncharacterized genes. ”

We added these analyses in a new Figure 6:



We added the following legend for Figure 6:

“Predicted functions for uncharacterized genes using the Hallmark collection.

A) Boxplot of ICA-TC based (blue) and PCA-TC based prediction scores (red) of Corf and

LOC genes, for the Hallmark gene set collection (x-axis). The vertical lines of boxes corre-

spond to the median prediction scores; hinges correspond to first and third quartiles of the

data; whiskers extend up to 1.5 times the interquartile range; outliers are plotted as dots.



B) Heatmap depicting hierarchical clustering of Corfs and LOC genes based on the ICA-TC

based prediction scores for the Hallmark gene set collection. Clusters were obtained with a

height cutoff of 0.8 resulting in 116 clusters with a median size of 5 members. Insets depict

two clusters containing Corfs and LOC genes predicted to be involved in DNA repair, and

estrogen receptor response. Genes marked with an asterisk have been recently implicated

in the predicted biological processes based on experimental work. ”

Secondly, we predicted the function of genes prioritized with CRISPR based genetic

screens in three additional biological contexts (Figure 8), namely the inflammatory response

to bacterial lipopolysaccharide, viral entry, and lysosome accumulation.

We added the following sentences to our Results section on Page 11, Line 11 :

“Additionally, we investigated three genome-wide CRISPR screens that aimed to capture

genes involved in the inflammatory response to bacterial lipopolysaccharide [2], lysosomal

accumulation [3], and viral entry [4].

A co-functionality network was built using all 111 hit genes of the response to bacterial

lipopolysaccharide (LPS) CRISPR screen performed on dendritic cells (Figure 8A) [2]. Two

clusters were observed. The first cluster showed high prediction scores for Immunological

Signatures gene sets defining the response to TREM-1, a receptor involved in amplifying the

cellular response to LPS, and gene sets defining the response to F. tularensis, a pathogen that

produces LPS (Figure 8A). In contrast, the second cluster showed a high prediction score for

an Immunological Signatures gene set defining reactive oxygen species-induced genes within

dendritic cells (Figure 8A). These results show the possibility to use a co-functionality

network to identify distinct biological processes that are related to the phenotype under

investigation in a CRISPR screen.

In the genome-wide CRISPR–knockout screen identifying 16 genes essential for lysosomal

integrity, a network was built with GO Biological Process and KEGG gene set collections [3].

The ICA-TC based prediction scores of the 16 genes for KEGG lysosome gene set ranged

from 0.8 to 2.6, indicating that the ICA-TC method did not confidently predict these genes



to play a role in lysosome-related processes (Figure 8B). Reassuringly, the ICA-TC based

method still generated higher prediction scores than the PCA-TC method for the KEGG

lysosome gene set. This suggests that this particular CRISPR screen identified genes that

either have unique expression patterns that are incompatible within a guilt-by-association-

strategy.

The third genome-wide screen, studying genes involved in Ebola virus infection prior-

itized 13 genes [4]. Within the original publication, GNPTAB, a gene encoding a protein

normally involved in the production of mannose-6-phosphate, was subsequently validated.

Concordantly, GNPTAB showed the highest ICA-TC-based prediction score (Prediction

score = 6.4) for negative regulation of viral transcription by the host in the GO biological

Process gene set collection (Figure 8C). The other 12 genes showed prediction scores rang-

ing from 0.7 to 2.6 for the respective gene set, demonstrating how ICA-TC-based prediction

scores can be used to prioritize genes for further validation. ”

These data are now added in a new Figure 8:



We added the following legend for Figure 8:

“GENETICA predictions for other CRISPR based screens. A) Co–functionality

network generated with 111 genes prioritized in a CRISPR screen investigating the inflam-

matory response to bacterial lipopolysaccharide. Two clusters were formed that showed

enrichment for predicted involvement in an inflammatory response (right cluster) and ox-

idative stress response in dendritic cells (left cluster). Predictions in this co-functionality



network were based on the Immunological Signatures gene set collection. Only genes with

a co-functionality above a threshold of R > 0.5 are shown in the network. B) Scatterplots

of ICA-TC based (y-axis) and PCA-TC based (x-axis) prediction scores of all genes for the

KEGG lysosome gene set. The orange and blue colored dots designate the membership

of genes to the respective KEGG lysosome gene set, red dots designate genes identified in

the CRISPR–screen mentioned in the text. C) Scatterplots of ICA-TC based (y-axis) and

PCA-TC based (x-axis) prediction scores of all genes for the GO Biological Process gene

set Negative regulation of viral transcription by the host. The orange and blue color dots

designate the membership of genes to the respective GO Biological Process gene set, red

dots designate genes identified in the CRISPR screen mentioned in the text; the dot corre-

sponding to the GNPTAB gene is highlighted. ”

Remark #2:

“...provide more information about the previously devised methods for gene function predic-

tion, with special focus on machine learning approaches.”

Reply: We appreciate this recommendation and include a short overview of the meth-

ods of gene prediction in the discussion section of the manuscript (Page 14, Line 1 ).

“Many genes do not yet have a defined function. Therefore, gene function prediction

methods remain an important tool for researchers. The critical assessment of functional

annotation (CAFA) is a famous benchmark of methods that use protein sequence data to

predict gene functions via gene sets [5]. Other data such as gene cross-species homology,

protein-protein interaction, mRNA transcription, essentiality, and semantics can also be

used to predict gene functions [6–11]. One limitation of using mRNA expression data is

that some information about the gene function can only be found at the protein level using

expression, interaction, or sequence data. One advantage of mRNA expression data is the

greater amount of publicly available profiles than protein experiment data.



New methods such as embeddings and neural networks can identify complex relationships

from protein and mRNA expression data which serve to improve gene function predictions.

For example, autoencoders are a neural network architecture currently used to infer a la-

tent representation of the mRNA transcription patterns obtained from both bulk and single

cell samples [12, 13]. This representation can be used as a regulatory barcode to generate

gene function prediction scores within a guilt-by-association strategy. Convolutional neural

networks and deep neural networks have also been used to directly improve gene function

prediction from the protein sequences [14, 15]. The recently developed embedding technique

Uniform Manifold Approximation Projection (UMAP) has also been utilized to predict novel

protein interactions when processing mRNA expression of different gene knockout experi-

ments [16]. Predicted protein interactions can also be used to predict function predictions

by propagating the interacting partner functions. ”

Remark #3:

“provide a list of gene-sets that the gene-set membership has been improved by the developed

approach and show that, whether all of the gene-sets have been improved? if not, explain

why?”

Reply: To address this remark, we compared PCA-TC based median prediction scores

with ICA-TC based prediction scores for all gene sets and calculated a difference (delta)

Supplementary Data 1. This analysis revealed that only a minority (3.4%) of gene sets are

not improved and comprise a smaller set of genes than the improved gene sets (median gene

members is 23 and, 57 respectively.). Gene sets derived from one study (NIKOLSKY pre-

fix) were overrepresented in the top 20 PCA-improved subset. These gene sets represented

amplified genomic loci in breast cancer samples that were not associated with any biological

process in the original publication [17].

We added the following sentences to our Results section on Page 6, Line 7 :

“To explore if a subset of gene sets is better predicted with the PCA-TC based method



the differences between gene set prediction scores of both PCA and ICA methods were

calculated (delta). Gene sets with deltas higher than zero were defined as ICA-improved

and below zero as PCA-improved gene sets. We observed that 811/23,413 (3.4%) gene sets

belonged to the PCA-improved subset (Supplementary Fig. 1). Gene sets belonging to the

PCA-improved subset had fewer members (median = 23) than the ICA-improved subset

(median = 57). ”

We added Supplementary Fig. 1:

We added the following legend for Supplementary Fig. 1:

“Gene sets where the PCA–TC based method provided better median pre-

diction scores. A) Scatterplot of PCA-TC (x-axis) versus ICA-TC (y-axis) based median

prediction scores. The scatterplot only shows the 811/23,413 (3.4%) of gene sets for which

the PCA-TC based method produced better median prediction scores in comparison to the

ICA-TC based method. The size and color of dots represent the number of genes in a gene

set. The inset shows the scatterplot with all 23,413 gene sets. B) Difference between the

PCA-TC and ICA-TC based median prediction scores (y-axis) for the 811 gene sets that

show higher prediction scores for the PCA-TC based method. The gene sets are ranked

on the x-axis based on the difference and grouped according to gene set collections. The

legend shows each gene set collection and the percentage of gene sets from that collection



that showed better median prediction scores with the PCA-TC based method ”

Remark #4:

“Did you also work with gene expression time-series data? If you excluded them, please

explain why? I suppose they would be better data for the evaluation of the method.”

Reply: We did not evaluate whether the ICA-TC based method could be used to

predict the mRNA profile of a later timepoint using an earlier timepoint in time–series

experiments. This is because predicting temporal gene correlations is not an objective of

our study. We unbiasedly collected all samples processed with the Affymetrix HG U-133

Plus 2.0 microarray platform (GPL570). These samples correspond to a wide variety of

tissue and cell line experiments, of which a subset represents biological replicates measured

at different timepoints. The ICA-TC based method benefits from the inclusion of a wide

variety of mRNA expression profiles which are sometimes represented by the early and

later timepoints of a perturbation experiment. Therefore, studies with timepoints were not

purposefully excluded from the subsequent analysis.

To showcase that our analysis captured the transcriptional activity at different time-

points in time–series experiments we selected two studies from our input mRNA dataset.

In the first study (GSE67684) mRNA profiles of 210 blood or bone marrow biopsies were

generated before and 8 days after remission induction therapy in children with de-novo

acute lymphoblastic leukemia [18]. In the second study (GSE12548) triplicate mRNA pro-

files of ARPE-19 cells were generated at different timepoints before and after combined

treatment with TGF-beta and TNF-alpha [19]. Using UMAP to visualize the weights in

the independent components corresponding to the patient samples reveals that their tran-

scriptional profiles tend towards a common center after remission induction therapy (Peer

Review Fig. 1A) [20]. Similarly, ARPE-19 cell replicates consistently showed changes in

expression that shift their position in the embedded space (Peer Review Fig. 1B).



Peer Review Figure 1: UMAP embedding of two time series experiments. A)
Linked scatterplot of 2D UMAP embedding coordinates of cancer patient biopsies before and
after 8 days of treatment (GSE67684). UMAP was performed on the independent component
weights corresponding to these samples. Color corresponds to timepoint. Transparency of
point and line corresponds to Euclidean distance traveled by the biopsy transcriptional
profile between timepoints. B) Scatterplot of 2D UMAP embedding coordinates for ARPE-
19 replicates at different timepoints of TGF-TNF treatment (GSE12548). Color corresponds
to timepoint.



Referee 2

We did not receive any comments from the second invited reviewer.

Referee 3

We would like to thank the reviewer for the acknowledgement that the manuscript is mostly

well-written and that the reviewer finds our ICA-TC framework highly valuable for unbiased

analyses of genes and their functions. We are also happy with his congratulations on this

important contribution and his belief that our work will be highly relevant and useful to the

community.

Remark #1:

“The focus on Affymetrix gene expression technology seems a bit outdated. More than 80%

of all GWAS associations typically fall outside coding regions and non-coding genes are

understudied compared to protein-coding genes. Therefore, it would be very useful if the

ICA-TCs were computed based on large-scale RNA-seq data instead of microarray data.

RNA-seq data could provide predictions for the much larger set of GENCODE genes, results

that supposedly would be extremely valuable to better understand contributions of non-coding

genes to complex traits and disease. Also, from a technical perspective, how much do their

predictions increase when using state-of-the-art RNA-seq data?.”

Reply: We thank the reviewer for this recommendation and completely agree that it

would greatly improve the impact of our method. To address this remark we downloaded

and generated gene–level counts (n = 58, 433) for quality–controlled samples (n = 29, 138)



provided in the GeneNetwork Assisted Diagnostic Optimization manuscript [8]. We kept all

parameters and gene set collections consistent with the microarray version of our framework

except the explained variance set to 85% for computational restrictions. Using RNA-seq

data did not improve the average prediction scores in most gene set collections when apply-

ing the PCA-TC based method (Figure 9A). By contrast, average prediction scores improved

when applying the ICA-TC based method (Figure 9B). This new version of our framework

is now also available at http://www.genetica-network.com.

We added the following sentences to our Results section on Page , Line :

“RNA–seq experiments measure more genes and have a higher dynamic range of measure-

ment than mRNA microarray experiments. However, the amount and diversity of publicly

available microarray experiments still surpasses publicly available RNA–seq experiments. To

evaluate whether RNA–seq profiles may improve upon the prediction scores generated using

microarray data, the ICA-TC and PCA-TC based methods were applied to a large set of pub-

licly available RNA–seq samples (n = 29, 138) (See Supplementary Notes). Using RNA–seq

data did not improve the average prediction scores in most gene set collections when apply-

ing the PCA-TC based method (AUC range: 0.12 - 0.41, p-values < 2.6×10−4)(Figure 9A).

By contrast, average prediction scores improved in most gene set collections when applying

the ICA-TC based method (AUC range: 0.54 - 0.95, p-values < 2.04 × 10−2) (Figure 9B).

The PCA-TC method had comparable multifunctionality association when using RNA–seq

and microarray input data for most gene set collections and improved in the case of the

Oncogenic Signatures collection (AUC 0.21, p–value 7.08× 10−22) (Figure 9C). Predictions

obtained using the ICA-TC based method had a lower association to multifunctionality

for the microRNA Targets gene set collection when using RNA–seq data as input in com-

parison with microarray data (AUC 0.12, p–value 5.1 × 10−40)(Figure 9D). Predictions

obtained using the ICA-TC based method had a higher association to multifunctionality for

the Immunological signatures gene set collection when using RNA–seq data as input (AUC

0.59, p–value 6.6 × 10−58). The subset of gene set median prediction scores improved by



microarray data in comparison to RNA–seq data when using ICA-TC based method was

14.83%. These results show that the ICA-TC based method can leverage RNA–seq profiles

to improve the predictions in some gene set collections. The prediction scores based on the

RNA–seq dataset have also been made available at http://genetica-network.com. ”

These data are now added in a new Figure 9:

We added the following legend for Figure 9:

“Median prediction scores and multifunctionality association for RNA-seq

based predictions. A-B) Boxplot of median prediction scores (x-axis) calculated by ap-

plying the PCA–TC (A) or ICA-TC (B) based method to microarray and RNA-seq input



data for each of the 16 gene–set collections (y-axis). Median prediction scores are calculated

separately for each gene set using both RNA-seq and microarray input datases for member

genes. Prediction scores of PCA–TC based method tend to be higher when using the mi-

croarray input dataset. Prediction scores of ICA–TC based method tend to be higher when

using the RNA-seq input dataset. C-D) Boxplot of distance correlation between PCA-TC

(C) or ICA-TC (D) based gene–set prediction scores and the gene–set collection multi-

functionality score (y-axis) for each gene–set collection (x-axis). Predictions are calculated

using microarray and RNA-seq input datasets. The magnitude of correlation varies across

gene set collections and between gene sets in a collection. The PCA-TC and ICA-TC based

methods have comparable multifunctionality association when using RNA-seq and microar-

ray input data for most gene set collections. Predictions obtained using the ICA-TC based

method have a lower association to multifunctionality for the microRNA Targets and Cancer

Gene Neighborhoods gene set collections when using RNA-seq data as input. Hinges of boxes

represent second and third quartiles and whiskers extend by half that interquartile range. ”

We added the following sentences to our Supplementary Notes on Page 8, Line 19 :

“We downloaded and quality controlled the sample subset processed in the manuscript

by Deelen et al using the ftp link table provided in the Supplementary Notes of the original

publication [8]. We generated pseudocounts using Kallisto 0.46.0 [21] specifying default

parameters for paired-end data and the following additional settings for single-end data:

–single -l 200 -s 20 -bias. The following two genome files were merged and used to create

the Kallisto index:

ftp://ftp.ensembl.org/pub/release-101/fasta/homo_sapiens/cdna/Homo_sapiens.

GRCh38.cdna.all.fa.gz

ftp://ftp.ensembl.org/pub/release-101/fasta/homo_sapiens/ncrna/Homo_sapiens.

GRCh38.ncrna.fa.gz

In total 31,395 samples were successfully downloaded. For quality control, we dropped



samples with less than 70% of pseudoaligned reads and where the read count did not match

the count reported by the ftp link table, leaving us with 30,288 samples. For duplicated

samples with a correlation of > 0.9999, one was randomly selected and the others removed

which left 29,138 samples for our analysis. Next, transcripts that were not located on the

main chromosomes (1-22, X, Y, MT), but on scaffolds were removed, reducing the num-

ber of transcripts from 250,156 to 228,267. Another 965 transcripts with 100% identical

sequences were removed to avoid a double-mapping bias while randomly keeping one tran-

script. Transcripts with less than one non zero counts were dropped, ending up with 227,300

transcripts.

The transcript counts per sample were summed up to gene-level counts for each sam-

ple, which yielded 59,030 genes. Duplicated gene names ocurred in 14 instances and were

removed while keeping the newest version of each. At last, we removed genes expressed in

less than 1% of the samples, ending up with a final gene-count matrix of 58,433 genes and

29,138 samples. Finally, the gene counts were normalized using size factors and variance

stabilizing transformation from DESeq2 1.26.0 [22].

To map Ensembl gene IDs to entrez IDs from NCBI, a table containing both was down-

loaded from HGNC (https://pubmed.ncbi.nlm.nih.gov/30304474/) on 19.10.2020. Missing

NCBI IDs were filled with the newest non-curated ones, supplied directly by NCBI, ending

up with 38,381 genes identified with Ensembl gene IDs to entrez IDs mapping. ”

Remark #2:

“Besides the narrow focus on microarray data, another concern is that lack of single-cell

RNA-seq data. Can their approach be applied on single-cell RNA-seq data which is typically

sparse and where less plentiful compared to bulk expression data?. Would be great if the

authors, at least, could include examples on how their approach works when e.g. applied on

all single-cell data from some of the large multi-organ and comprehensive brain atlases. For

instance, will much few samples be needed because the data is much more specific than e.g.

bulk microarray data?”



Reply: We thank the reviewer for this observation. We agree that single cell data

captures a higher resolution of the mRNA expression of single cells and could potentially

improve gene predictions. However, single–cell profiles are currently very sparse with some-

times only 10% of genes with non–zero measurements. This complicates the application

of our method since more samples are required to have enough non–zero measurements to

calculate a complete gene–by–gene covariance matrix. Additionally, we have not yet deter-

mined which cross-study normalization procedure is the most appropriate preprocessing for

our method before the calculating the covariance matrix.

We believe that the biopsy variety of publicly available experiments is still higher in

bulk mRNA data. For example, we explored panglaoDB and extracted all human exper-

iments performed using 10x chromium technology (n = 239, cells = 397,071) [23]. The

majority of experiments were performed on lymphoid tissues, blood, prostate, testis, brain,

kidney and liver. In contrast, publicly available bulk mRNA experiments are obtained from

healthy, diseased and cancerous complex biopsies of many more tissues in addition to cell

line perturbation experiments. Since our method relies on the variety of mRNA states to

extract reliable transcriptional components with ICA, this hampers the attractiveness of

currently available single cell mRNA profiles for gene function prediction. Still, we cannot

rule out that single cell could enable better function predictions when more profiles and

future technologies become available.

Remark #3:

“There is no mentioning of species. Are these human data or a mix between human, mouse

and rat samples? What are the differences in their benchmarks between species?”

Reply: In our original analysis we only used samples generated with the Affymetrix

HU-113 Plus 2.0 platform (n = 106, 462), which is a human microarray. We did calculate

predictions for a mouse gene set collection (Mammalian Phenotypes) using the human or-

tholog mapped gene sets provided at the same resource (See Supplementary Notes). To

evaluate whether gene to gene set predictions differs across species we generated predictions



scores using the Affymetrix Mouse Genome 430 2.0 microarray platform (GEO accession

identifier: GPL1261). A subset of 10,974/14,589 (75.2%) mouse genes have a correlation

> 0.3 to their human orthologs based on their prediction scores for at least one of the

gene set collections (Supplementary Fig. 2). The mouse prediction scores are available at

genetICA-network.com.

We added the following sentences to our Results section on Page 8, Line 6 :

“In addition, ICA-TC based gene function predictions were generated for mouse microar-

ray samples (GPL1261 platform; n = 25, 585; genes = 18, 425), for 16 gene set collections

(n = 23, 128). We correlated the prediction scores between the unique ortholog mapping

genes (n = 14, 589) between human and mouse microarray datasets for every matching

gene set collection to investigate the concordance between prediction scores (Supplemen-

tary Fig. 2). A subset of 10,974/14,589 (75.2%) mouse genes have a correlation > 0.3 to

their human orthologs based on their prediction scores for at least one of the gene set collec-

tions. GO Cellular Component and Cancer Modules gene set collections showed the highest

median Spearman correlations (0.155 and 0.154, respectively). The low correlating gene pre-

dictions across species could be explained by the smaller number of samples (n = 25, 585)

and the more limited sample heterogeneity available in the mouse dataset compared to the

human microarray dataset (n = 106, 462). These results show that many genes may be

similarly regulated in both species. The mouse prediction scores have been made available

at http://www.genetica-network.com.

”

These data are added in Supplementary Fig. 2:



We added the following legend for Supplementary Fig. 2:

“Cross-species prediction score correlations. Histograms showing the distributions

of Spearman correlation coefficients between the ICA-TC and PCA-TC based prediction

scores of every mouse-human gene ortholog pair for 16 gene set collections. Median Spear-

man correlation between ortholog prediction scores ranged between 0 and 0.2 for every gene

set collection. The number of gene set perspective comparisons performed for each collection

is depicted in the y axis text. ”

We added the following sentences to our Supplementary Notes on Page 7, Line 2 :



“We downloaded mRNA expression profiles of all mouse samples available for the Affymetrix

Mouse Genome 430 2.0 microarray platform in their unprocessed CEL format (GPL1261).

To remove potential duplicates MD5 digests were calculated for all CEL files and one repli-

cate was retained. All CEL files were then transformed to gene–level normalized expression

values using the RMAExpress algorithm (1.20.0). To remove potential bad quality experi-

ments principal component analysis (PCA) was applied to the normalized expression matrix.

In microarray expression data principal component one (PC1) captures a platform–specific

signature that is shared by all samples. Samples that do not share this signature may repre-

sent bad quality experiments. All samples with a PC1 lower than the 80th percentile were

dropped ending up with 56,657 samples.

Using the same methodology used for the human microarray we subsequently applied

PCA again to whiten the normalized expression matrix and observed that the number of

components needed to capture 90% of the dataset variance was 753. We then applied in-

dependent component analysis to the whitened matrix targetting the acquisition of 753

components on 25 different runs. We retained sources present in at least 13 runs (Credibil-

ity index = 0.5) ending up with 614 consensus mouse ICA-TCs. As multiple probesets can

target a single gene on Affymetrix gene expression microarrays we utilized The R package

Jetset (version 3.4.0) to obtain one–to–one mapping between genes and the highest qual-

ity probesets for expression data generated with the Affymetrix Mouse Genome 430 2.0

microarray platform [24].

Creating mouse gene set collections based on Molecular Signal Database

human gene set collections

To generate gene sets in gmt-file format based on the human gene set collections from Molec-

ular Signatues Database v6.2, human gene entrez IDs were translated to mouse gene entrez

IDs using the annotations provided in the msigdbr R package (version 7.2.1). The msigdbr

package was built manually using the “msigdbr-prepare.R script”, that was available at

https://github.com/igordot/msigdbr/, to be able to collect Molecular Signatues Database

v6.2 gene sets: line 14 was modified (“msigdb version = ”6.2””). For Human Phenotype



Ontology and Mammalian Phenotypes gene set collections human entrez IDs were trans-

lated to mouse entrez IDs by using the BioMart datasets (ensembl) available through the

biomaRt R package (version 2.45.9).

”

Remark #4:

“The authors state that: Some datasets that were not included in the article due to size con-

straints and the source code for the method are made available from the corresponding author

on reasonable request. To better facilitate that other research groups can use their framework

(besides browsing the website) the authors should provide all code (for the microarray, and

should they decide to do these analysis, the RNA-seq and single-cell RNA-seq parts) and all

ICA-TCs (by-species and combined TCs) via a publicly accessible website (instead of upon

request)”

Reply: To address this remark, we deposited the prediction scores used in this manuscript

and input matrices in the download section at www.genetica-network.com and all figure data

at a Figshare repository.

We amended the data availability statement in Page 19, Line 1 :

“Prediction score tables, and corresponding input matrices for ICA and PCA based

prediction scores for all 16 gene set collections are available on the download section of

www.genetica-network.com Data associated with the main figures and mouse-human predic-

tion score correlations are available at Figshare: https://doi.org/10.6084/m9.figshare.13265159

”

Remark #5:

“P. 3: Spell out MSigDB”

Reply: We corrected the spelling in our manuscript.



Remark #6:

“Mention examples on what it means that: a gene is likely to play a role in that gene set”

Reply: We changed the following sentences in our Results section on Page 4, Line 19 :

“Strong positive correlation indicates that the transcriptional regulation of an individual

gene is similar to the average transcriptional regulation of members of the gene set. Gene

sets that capture biological processes with highly co-regulated genes generate consistent

regulatory barcodes. Therefore, genes with strong correlation have a high likelihood of be-

longing in those gene sets even if they are not currently members. For example, BRCA2

is a DNA repair protein with a strong co-regulation with the cell cycle KEGG gene set

(Prediction score = 15.53). Even though BRCA2 does not directly regulate the cell cycle,

progression through the G2–M checkpoint depends on the successful repair of all DNA dam-

aged during replication. Therefore, when viewed through co-regulation BRCA2 participates

in two biological processes namely, DNA repair and cell cycle progression. ”

Remark #7:

“Table not properly described. For instance, it is not clearly stated that GENETICA is the

method proposed by the authors”

Reply: We changed the following Table:



Table 1: Guilt by association methods

DEPICT and GADO GENETICA (ours)

Strategy
Guilt by association pre-
diction of gene functions
using gene sets

Guilt by association pre-
diction of gene functions
using gene sets

Transcriptional
Components

Principal component anal-
ysis

Independent component
analysis

Barcode

Comparison of eigenvector
scalars of member genes
and non–member genes
using Welch T-test

Average of all mixing ma-
trix weights of member
genes

Distance metric Pearson Correlation Distance Correlation
Permutation
test

No, parametric p–values
used

Yes, permutation p–values
used

Reference [7, 8] This study
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors addressed all my concerns and I have no further questions. I recommend this manuscript 

for publication in Nat. Comm. journal. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

I would like to thank the authors’ for addressing my comments, performing the additional analyses. 

 

If I understand the authors correctly, then their intention with the added RNA-seq data analysis was to 

compare the microarray-based ICA-TCs to the RNA-seq-based ICA-TCs. It would be useful if the 

authors also could compute the ICA-TC based on the RNA-seq data without matching/limiting this 

analysis to the microarray analysis. In the RNA-seq data there are many more genes and the TCs from 

that analysis will be of interest to many other groups and hence the constructions of these TCs and 

the co-functionality predictions should not be limited by the microarray data. 

 

Along the same lines and as previously noted, I think the ICA-based TCs will be of major use for 

several other groups. Therefore it would be great if the authors could make them available in a more 

FAIR (Findable, Accessible, Interoperable, Reusable) way. For instance, providing access to human 

and species-specific bulk download of all ICA-TCs (microarray-optimized and RNA-seq optimized; 

separate for each gene set databased on one combined across all databases), precise descriptions on 

the website how the given TC-dataset was constructed (in terms of samples, methods, version of gene 

sets etc) and provide the scripts used to generate the given set of TCs. 

 

Finally, from a technical perspective, would it be possible to extract ICA-TCs simultaneously based on 

the microarray and RNA-seq data? Again, the better the construction of, access to and documentation 

of the ICA-TCs the more useful the work would be to the field. 

 

Please note that the link to the figures etc. does not work 

(https://doi.org/10.6084/m9.%0Cgshare.13265159). 

 

To summarize, the work by Urzua-Traslavina et al. provides useful resources to the community, 

however, it would be of even greater value if the authors could provide access to RNA-seq-based and 

microarray-based TCS in a more FAIR way. 

 

Apologies for my delay in getting back to you. 

 

All the best 

 

Tune H. Pers 



Urzua-Traslavina et al.: Improving gene function pre-

dictions using independent transcriptional components

(NCOMMS–20–18207A)

We would like to thank both reviewers for their time invested in our response. Below, please

find a point–by–point reply.

Reviewer 1

Remark #1:

“The authors addressed all my concerns and I have no further questions. I recommend this

manuscript for publication in Nat. Comm. journal.”

Reply: We are glad that all the concerns of reviewer 1 were addressed. We are grateful

for the recommendation for publication in Nature Communications.

Reviewer 3

We would like to apologize for the lack of accessibility of our datasets in the website that

were stated to be there in the manuscript. We have corrected this oversight and provide

more details in this response.

Remark #1:

1



“If I understand the authors correctly, then the intention with the added RNA-seq data

analysis was to compare the microarray-based ICA-TCs to the RNA-seq-based ICA-TCs. It

would be useful if the authors also could compute the ICA-TC based on the RNA-seq data

without matching/limiting this analysis to the microarray analysis. ”

Reply: We completely agree some genes such as non-coding genes are only available for

the RNA-seq profiles. Obtaining predictions for these non-coding genes was also the main

goal of our analysis. We would like to reassure the reviewer that ICA-TC based gene predic-

tions obtained with the RNA-seq profiles were only subsetted to the microarray matching

subset for comparison purposes. By contrast, the website showcases all predictions gen-

erated for each input dataset. For example RNVU1-8 is a non-coding gene and only has

predictions available when using RNA-seq profiles. We would like to note that the gene per-

spective and gene-set perspective tabs in the website can be used to search the predictions

of non-coding genes only in RNA-seq version (Clicking RNA-seq version in the header of

the website).

We amended the following sentences in our Supplementary Notes on Page 9 line 20:

“To compare predictions obtained between RNA-seq and microarray datasets, Ensembl

gene IDs were mapped to entrez IDs.”

Remark #2:

“I think the ICA-based TCs will be of major use for several other groups. Therefore it would

be great if the authors could make them available in a more FAIR (Findable, Accessible,

Interoperable, Reusable) way. For instance, providing access to human and species-specific

bulk download of all ICA-TCs (microarray-optimized and RNA-seq optimized; separate for

each gene set databased on one combined across all databases), precise descriptions on the

website how the given TC-dataset was constructed (in terms of samples, methods, version

of gene sets etc) and provide the scripts used to generate the given set of TCs.”

2



Reply: Again, we apologize for an oversight that resulted in the download links not

being available in the website. We provide for the human microarray, mouse microarray

and RNA-seq profiles the following: metadata, independent components, mixing matrix,

gene set collections used to generate predictions, transcriptional barcodes for every gene set

and prediction score tables for every gene set collection. This is findable in the Support

Data tab in the website corresponding to the active dataset version selected in the website

header. Additionally, we provide in the About tab of the website a link to the executable

program used to run consensus independent component analysis and to generate prediction

scores. We provide a README that explains how to set up and reproduce our results.

We would like to warn that modern browsers may sometimes temporarily save a cache

of the nonupdated website which can prevent the display of the updated website with the

Support Data tab. To bypass this issue without waiting for a cache update, please clear the

cache of the browser or open the website on a different browser or computer that was not

previously used to open the nonupdated website.

Remark #3:

“Finally, from a technical perspective, would it be possible to extract ICA-TCs simultaneously

based on the microarray and RNA-seq data?”

Reply: It is technically possible to append samples from different platforms and per-

form independent component analysis on such hybrid dataset as long as the set of genes is

reduced to the matching subset between datasets. However, because the human microar-

ray (n = 106, 462) contains more samples than the RNA-seq dataset (n = 29, 138) this

could bias the gene-gene covariance matrix towards the microarray profiles and therefore

bias the determination of transcriptional components. Although this bias could potentially

be balanced by downsamplig the microarray dataset, the reduced sample size would miss

the goal of performing such joint analysis. Since the RNA-seq dataset provides comparable

prediction scores for more genes using only a third of the samples we believe that running a

3



RNA-seq microarray hybrid dataset would only provide marginal improvements in the best

case scenario.

Remark #4:

“Please note that the link to the figures etc. does not work ”

Reply: We apologize if this prevented access to our figure data. We assure the re-

viewer that the link is not broken or unresponsive concerning the Figshare service. We

suspect that the link address may become corrupted by the MTS since we cannot reproduce

the error ourselves. We are now sharing the Figshare link in the cover letter and in this

response to have multiple options in case one becomes broken. If all of the above fails,

please search for the co-author “Vincent Leeuwenburgh” in the Figshare search field. Our

dataset should appear first and is titled: “Improving gene function predictions using inde-

pendent transcriptional components - Raw Figure Data”. Here is the link for convenience:

https://doi.org/10.6084/m9.figshare.13265159.v1
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Reviewers' Comments: 

 

Reviewer #3: 

Remarks to the Author: 

All set. Thank you for the additional clarifications and making the data publicly available. 

 

Best wishes 

 

Tune H Pers. 


