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Supplementary Information Text 
 
Details on the Genetic Analysis: Genetic drift 

 
In this supplemental material, we include tests for the effect of 7 years (~70 Aedes 

aegypti generations) of genetic drift in two ways: a) simulating expected differentiation due to 70 
generations of drift, and b) using empirical data to calculate genetic differentiation for samples 
collected from the same population sampled at different time-points. 
 

We ran simulations using the individual-based forward-time program simuPOP [1, 2]. We 
simulated a population with 12 loci, random mating, no migration, and an Ne equal to 500. We 
took random samples of 20 individuals from generation 0 (after 100 generations of burn-in) and 
from generation 70, and used Genepop [3] to calculate the CSE between the two samples. This 
process was repeated three times, and the resulting CSE values were 0.173, 0.236, and 0.168. 
These values are similar to the temporal empirical results and significantly less than the mean 
CSE results between different sites reported in the submitted paper (p=0.02), giving us additional 
confidence that genetic drift is not confounding the model. The three replicates produced FST 
values of 0.173, 0.236, and 0.168, with corresponding p-values of 0.13, 0.00000054, and 0.10. 
Although these are not statistically different than values in the paper (p = 0.13), two of three are 
not statistically significant from zero.   
 

Additionally, we identified 12 populations in North America (including 5 that are included 
in the submitted paper) for which we have samples from 2, 3, or 4 different years. In total this 
yields 35 time interval pairs, and these time intervals range from 1 to 12 years (mean = 3.4 
years). The mean CSE among these points is 0.22 ± 0.07, significantly lower than the 0.34 ± 
0.065 mean reported for CSE values in the manuscript (p < 10-11).  (Just considering the 
populations that also appear in the manuscript, the mean time interval is 3.3 years and the CSE is 
0.21 ± 0.70.) A linear regression shows no correlation between the length of the time interval and 
the value of CSE (adjusted R2 = -0.0037, p-value = 0.36) (Fig. 15A). Similarly, the mean 
linearized FST (0.051 ± 0.087) for these time intervals. The temporal samples were significantly 
lower than the linearized FST values presented in the paper (0.086 ± 0.043) (p=0.017). A linear 
regression shows no correlation between the length of the time interval and the value of 
linearized FST (adjusted R2 = -0.0065, p-value = 0.38) (Fig. 15B). These results indicate the 
genetic distance caused by resampling the same site at different years can be explained by a 
small amount of noise, possibly related to sampling error. Genetic drift is evidently not playing a 
large role, even for time samples taken more then 70 generations apart. 

 
Details on the modeling process:  
 
Leave-two-out cross-validation 
  
 A concern with the leave-one-out cross-validation (LOOCV) is that we would expect the 
error values of the training dataset and the full dataset to converge as the size of the training 
dataset increases. To ensure that the root mean square error (RMSE) of the LOOCV is not simply 
due to the large training dataset, we also ran a leave-two-out cross-validation (LTOCV) using 
CSE, in which two points and all their affiliated pairs were withheld as the testing dataset for each 
of the 16 runs (38 points/2). While the LOOCV testing datasets only contain 5.2% of the data 
(37/706 pairs of points), the LTOCV testing datasets each contain 11.9% of the data (75/706 
pairs of points), very similar to the proportion of data withheld for testing during the widely-used 
ten-fold cross-validation procedure.  

Comparing LOOCV and LTOCV we found that the mean RMSEtest and RMSEtrain values 
showed essentially no change (Table S9). Additionally, the mean RMSEtrain for the cross-
validations (0.036) is similar to RMSEfull for the full model run using CSE (0.035). These results 
strongly suggest that the consistent values RMSE between the cross-validations and full model 



 

 

 

 

run are not simply due to the large size of the training dataset, but rather to the model’s 
performance. 
 
Linear regression 

 
  As a basis for comparison, we also fit our model using a standard linear regression in 
place of Random Forest (RF). In order to highlight certain advantages of RF, we kept the input 
data the same in the linear regression model as the RF model, including using all 29 
environmental and anthropogenic spatial datasets. We used CSE as genetic distance, and we 
used all the genetic data to build the model (i.e. no cross-validation). We modeled genetic 
connectivity using straight lines (iteration 0) and one round of least cost path analysis (iteration 1), 
as this was sufficient to demonstrate the issues with this approach. 
 

Modeling genetic distance with straight lines (iteration 0), the R2 of the linear regression 
model was 0.433 (p < 10-16), much lower than the RF model from the same iteration (R2 = 0.618). 
The most important variables from the linear regression model (p<0.001) were altitude, potential 
evapotranspiration, precipitation of the wettest month, precipitation of the driest month, and the 
kernel density map. The prediction surface from the linear regression contained extremely large 
values (>470,000) that are not within the expected range for the inverse of CSE (2-6) (Fig. S16A). 
These values likely distort the least cost path analysis. When these high-value outliers were 
removed, the prediction surface could be visualized, and it showed little spatial detail (Fig. S16A).  

 
Modeling genetic distance with least cost paths (iteration 1), the linear regression model’s 

R2 was 0.402 (p < 10-16), lower than the R2 from iteration 0 of the same model and much lower 
than the RF model from the same iteration (R2 =0.681). The most important variables (p<0.001) 
were aridity, human density, friction, and potential evapotranspiration, all different from the most 
important variables in the first iteration. Again, the prediction surface contained outliers 
(>55,000,000), and when the outliers were removed the prediction surface showed little spatial 
detail (Fig. S16B). Although this is a toy model it clearly illustrates some of the advantages of RF 
over a standard linear regression when modeling complex relationships among many variables, 
some correlated. The RF approach we employ provides greater accuracy across the distribution 
of the species, more spatial detail, fewer unreasonable (extreme outlier) predictions of 
connectivity, and more stable assessment of variable importance. 

 

 

 
 
 
 
  



 

 

 

 

 

 
 
 Fig. S1. Relationship between geographic distance and genetic distance for all sites. (A) Log 
geographic distance vs. CSE and (B) Log geographic distance vs. linearized FST.  
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Fig S2. Genetic structure of North America using Principal Component Analysis. Ellipses indicate 
the distribution of individuals within each population. Populations groups are labeled by their site 
abbreviation and state. (See Table S1 for full list of sites and corresponding abbreviations.) 
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Fig. S3. STRUCTURE plot of North America dataset. Each vertical bar represents an individual, 
and the proportion of each color assigned to each individual represents the proportion of the 
individual’s ancestry attributable to each of the K theoretical genetic clusters (K=2).  

 
  



 

 

 

 

 
Fig. S4. Root mean square error (RMSEtest) for each site in the leave-one-out cross-validation for 
CSE (A) and linearized FST (B). Circle size corresponds to RMSEtest value. In the same vein of 
Fig. S9, the goal of this model is to determine the influence of spatial autocorrelation on the 
model. Although there are some clusters of low/high RMSEtest values, there are a range of 
RMSEtest values across the map and between points that are in low or highly sampled areas.  
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Fig. S5. CSE leave-one-out cross-validation root mean square error (RMSEtest) before (A) and 
after (B) weighting the RF bootstrapping. The RF bootstrapping was weighted by the inverse of 
the kernel density of the lower kernel density site for each pair of sites, ensuring that low density 
sites were sampled more frequently. The first purpose of this figure is to show that weighting the 
RF bootstrapping decreases the difference in RMSEtest between the high and low density sites. 
The second purpose is to show the difference in RMSEtest between the points with the highest 
(10%) values on the kernel density map, those with the lowest (10%), and all points. Although the 
ranges are overlapping, the low density points category has higher and more variable RMSEtest 
than the high density category. 
  
  



 

 

 

 

 

Fig. S6. The four most important variables for the leave-one-out cross-validation using CSE as 
genetic distance. A. maximum temperature (Celsius x 100), B. slope (degree), C. altitude 
(meters), and D. mean temperature (Celsius x 100). 
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Fig. S7. Importance (left) and relative importance (right) of all variables for leave-one-out cross-
validation with CSE as genetic distance. Importance is mean decrease in model accuracy when 
removing each variable, and relative importance is scaled such that the most important variable 
has importance equal to 1. Results across all 38 folds are depicted to show the relatively high 
consistency for which variables were ranked as most or least important. The point circled in red 
shows the result from the full dataset run for comparison.  
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Fig. S8. The four most important variables for the leave-one-out cross-validation using linearized 
FST as genetic distance. A. maximum temperature (Celsius x 100), B. accessibility (travel time to 
the nearest major city), C. slope (degree inclination), and D. mean temperature (Celsius x 100). 
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Fig. S9. Importance (left) and relative importance (right) of all variables for leave-one-out cross-
validation with linearized FST as genetic distance. Importance is mean decrease in model 
accuracy when removing each variable, and relative importance is scaled such that the most 
important variable has importance equal to 1. Results across all 38 folds are depicted to show the 
relatively high consistency for which variables were ranked as most or least important. 
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Fig. S10. Straight lines (top row) and least cost path lines using Bexar, Texas as the focal point. 
We show iterations 1-10 for a full dataset model run using CSE as genetic distance. Behind the 
lines are the predicted connectivity surfaces generated from the model built using those lines. 
Each map is labeled with the iteration number and root mean square error of the associated RF 
model (RMSEfull). The optimized model was reached after five iterations (the iteration with the 
lowest RMSEfull) in this case. In the connectivity surfaces, green is high connectivity and red is 
low connectivity. Least cost path lines are show in dark green, and the straight lines used to 
initialize the model are shown in black.  
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Fig. S11. Mean of the 38 leave-one-out cross-validation optimized resistance surfaces for (A) 
CSE and (B) linearized FST. Light colors (yellow) indicate high connectivity, while dark colors 
(purple) indicate low connectivity. 
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Fig. S12. Importance (left) and relative importance (right) of all variables for the full dataset model 
using CSE as genetic distance. Importance is mean decrease in model accuracy when removing 
each variable, and relative importance is scaled such that the most important variable has 
importance equal to 1. The results are shown for all 10 iterations to show the relatively high 
stability for which variables are chosen as most/least important. The point circled in red 
represents the result from the best iteration (lowest RMSEtest), and the point in yellow is the result 
from the initialization of the model with straight lines (iteration 0). 
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Fig. S13. Pearson correlation between the mean resistance map generated by the leave-one-out 
cross-validation and the resistance map generated by the full dataset run, using CSE as genetic 
distance in both cases. Darker green show areas of high correlation, while yellow shows areas of 
low correlation.  
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Fig. S14. Semivariograms to show the influence of spatial autocorrelation, i.e. systematic spatial 
variation in a variable. The x axis is distance bins, the y axis is semivariance, and the blue line 
shows the best model fit. Spatial autocorrelation and geographic distance influence CSE up until 
200km, as shown by increasing semivariance up until this distance (A). There is a large reduction 
of the impact of spatial autocorrelation on the semivariance of the model residuals (observed – 
predicted CSE), as shown the leveling of the model fit line at a much shorter distance (B).  
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Fig. S15. The effect of interval time (assuming 10 generations/year) and genetic distance for 
populations sampled in multiple years. A. CSE, B. Linearized FST. 
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Fig. S16. Predicted connectivity surfaces for full model with CSE and using a standard linear 
regression in place of Random Forest, for iteration 0 (A) and iteration 1 (B). 
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Table S1. Sampled locations, corresponding abbreviation, latitude, longitude, sampling year, 
number of individuals sampled, and whether the data are being published here for the first time. 

 

Site location Short Latitude Longitude Year N New 

Maricopa County, AZ, USA Az 33.2918 -112.4291 2013 39 no 

Tucson, AZ, USA TJC2 32.2226 -110.9747 2012 40 no 

Nogales, NM, USA Nog 31.3012 -110.9381 2013 40 no 

Hermosillo, SON, MEX Her 29.073 -110.9559 2013 50 no 

Deming, NM, USA Dem 32.2593 -107.7401 2017 40 yes 

Las Cruces, NM, USA LC18 32.34568 -106.7661 2018 40 yes 

Truth or Consequences, 
NM TC 33.137 -107.2526 2017 17 yes 

Socorro, NM, USA Soc 34.0578 -106.8976 2017 8 yes 

Albuquerque, NM, USA Alb 35.0788 -106.6627 2018 22 yes 

Alamagordo, NM, USA Ala 32.8909 -105.9484 2017 35 yes 

Sunland Park, NM, USA SP 31.8073 -106.587 2017 37 yes 

Roswell, NM, USA Ros 33.4009 -104.5294 2017 39 yes 

Carlsbad, NM, USA Car 32.427 -104.243 2017 17 yes 

Lovington, NM, USA Lov 32.9476 -103.3504 2017 9 yes 

Lubbock, TX, USA Lub 33.5699 -101.8727 2017 14 yes 

Dallas, TX, USA Dall 32.75426 -96.79689 2017 40 no 

Ellis, TX, USA El 32.3782 -96.793 2017 40 yes 

Cameron, TX, USA Cam 26.125309 -97.53918 2015 40 no 

Travis, TX, USA Tr 30.2526 -97.778 2017 40 yes 

Bexar, TX, USA Bex 29.4112 -98.4954 2017 18 yes 

Houston, TX, USA Houston 29.7628 -95.3831 2011 19 no 

Nueces, TX, USA Nuec 27.7439 -97.672 2017 40 yes 

Hidalgo, TX, USA Hid 26.3651 -98.1638 2017 40 yes 

Juarez, CHIH, MEX Juar 31.683 -106.4249 2017 40 yes 

Nuevo Leon, NL, MEX NL 25.6803 -100.3133 2017 10 yes 

New Orleans LA, USA NO 29.9984 -90.07611 2012 46 no 

Muscogee, GA, USA 18 and 9 32.5223 -84.9341 2011 48 no 

St. Augustine, FL, USA StA 29.9134 -81.31774 2017 48 no 

Barberville, FL, USA Bb 29.1861 -81.4209 2017 40 no 

Daytona Beach, FL, USA DB 29.2034 -81.0884 2017 44 no 

Orlando, FL, USA Orl 28.5496 -81.3754 2014 32 no 

Melbourne, FL, USA Mel 28.0785 -80.6838 2014 45 no 

Rio, FL, USA FLO 27.2183 -80.24 2014 51 no 

Palm Beach County, FL, 
USA PBC_filter3 26.53 -80.0658 2013 50 no 

Miami, FL, USA Miami 25.7753 -80.2089 2011 47 no 

Fort Myers, FL, USA FM 26.6398 -81.8745 2014 37 no 

Sarasota, FL, USA Sar 27.3509 -82.5484 2014 39 no 

Tampa, FL, USA Tam 27.9816 -82.4526 2014 50 no 

 

 
  



 

 

 

 

Table S2. Spatial data list, sources, resolution of the original dataset, and resampling method 
used (if any). 

 

Abbreviation Definition Source name 
Original 
resolution 

arid Global Aridity Index CGIAR CSI 1km2 

access 
Travel time to the nearest city 
of 50,000 inhabitants  Weiss et al. 2018 

~1km2, bilinear 

resampling 
prec Annual precipitation CHELSA climate data  1km2 

mean.temp Annual mean temperature CHELSA climate data  1km2 

human.density Human population density European Commission 

~1km2, bilinear 

resampling 

friction 

Friction map in which each 
pixel represents the speed of 
human travel in that area Weiss et al. 2018 

1km2 

min.temp 
Coldest temperature of the 
coldest month CHELSA climate data 

1km2 

EvBroadleaf 
Evergreen/deciduous 
needleleaf trees (%) Tuanmu and Jetz 2014 

1km2 

Needleleaf Needleleaf trees (%) Tuanmu and Jetz 2014 1km2 

DecBroadleaf 
Deciduous broadleaf trees 
(%) Tuanmu and Jetz 2014 

1km2 

MiscTrees Mixed/other trees (%) Tuanmu and Jetz 2014 1km2 

Shrubs Shrubs (%) Tuanmu and Jetz 2014 1km2 

Herb Herbaceous vegetation (%) Tuanmu and Jetz 2014 1km2 

Crop 
Cultivated and managed 
vegetation (%) Tuanmu and Jetz 2014 

1km2 

Flood 
Regularly flooded vegetation 
(%) Tuanmu and Jetz 2014 

1km2 

Urban Urban/built-up (%) Tuanmu and Jetz 2014 1km2 

Snow Snow/ice (%) Tuanmu and Jetz 2014 1km2 

Barren 
Barren including spare 
shrub/herbaceous cover (%) Tuanmu and Jetz 2014 

1km2 

Water Open water (%) Tuanmu and Jetz 2014 1km2 

Slope Slope Amatulli et al. 2020 

90m2, resampled 
by taking mean 
of pixels in 1km2 

Altitude Altitude MERIT DEM 

90m2, resampled 
by taking mean 
of pixels in 1km2 

PET 
Monthly potential 
evapotranspiration CGIAR CSI 

1km2 

DailyTempRange 
Mean diurnal temperature 
range CHELSA climate data 

1km2 

max.temp 
Maximum temperature of the 
warmest month CHELSA climate data 

1km2 

AnnualTempRange Annual temperature range CHELSA climate data 1km2 

prec.wet 
Precipitation of the wettest 
month CHELSA climate data 

1km2 

prec.dry 
Precipitation of the driest 
month CHELSA climate data 

1km2 

GPP 

Gross primary production, a 
measure of vegetation 
photosynthesis  Zhang et al. 2017 

500m2, bilinear 
resampling 
 

kernel100 

Kernel density map of 
sampled sites (bandwidth = 
100km) NA 

 
 
1km2 

  



 

 

 

 

Table S3.  Description and equations for each performance metric recorded for the model. The equations reference the randomforestSRC 
package in R and variables are defined as follows: RF = Random Forest model under consideration, GD = genetic distance measure (CSE or 
linearized FST), TestingData = predictor and observational data from 1 site and affiliated pairs, TrainingData = predictor and observational data 
from the other 37 sites. 

 

Metrics for 10-fold cross-validation 

Abbreviation Description Equation 

RSQ 
Psuedo R-squared (percent variance explained by 
model, calculated by R package) 1 - mse / Var(y) 

RMSEtrain 
Root mean square error of model for training 
dataset sqrt(mean((RF$predicted.oob - TrainingData$FST_lin)^2)) 

RMSEtest 
Root mean square error of model for testing 
dataset 

sqrt(mean((predict.rfsrc(RF, TestingData)$predicted - 
TestingData$GD)^2)) 

MAEtrain Mean absolute error of model for training dataset 
mean(abs(predict.rfsrc(RF, TrainingData)$predicted - 
TrainingData$GD)) 

MAEtest Mean absolute error of model for testing dataset mean(abs(RF$predicted.oob - TestingData$GD)) 

Rtrain 
Pearson correlation between predicted and 
observed genetic distance for training dataset cor(RF$predicted.oob,TrainingData$GD)  

Rtest 
Pearson correlation between predicted and 
observed genetic distance for testing dataset 

cor((predict.rfsrc(RF, TestingData))$predicted, 
TestingData$GD) 

Metrics for full dataset run 

Abbreviation Description Equation 

RSQfull 
Psuedo R-squared (percent variance explained by 
model, calculated by R package) 1 - mse / Var(y) 

RMSEfull Root mean square error of model sqrt(mean((RF$predicted.oob - FullData$CSE)^2)) 

Rfull 
Pearson correlation between predicted and 
observed genetic distance for full dataset cor(RF$predicted.oob, FullData$GD) 

MAEfull Mean absolute error of model for full dataset mean(abs(RF$predicted.oob - FullData$GD)) 

 
 
  



 

 

 

 

Table S4. Leave-one-out cross-validation results for iterative Random Forest model using CSE as genetic distance.  Best iteration selected by 
highest Rtest; RSQtrain = R-squared (percent variance explained by the model); RMSEtrain = root mean squared error of model for training dataset; 
RMSEtest = root mean squared error of model for validation dataset; MAEtrain = mean absolute error of model for training dataset; MAEtest =mean 
absolute error of model for validation dataset; Rtrain = correlation between observed and predicted CSE using training dataset; Rtest = correlation 
between observed and predicted CSE using testing dataset; Most Important variables are the four most important variables for optimized 
Random Forest model. For detailed information about these metrics, see Table S5. 
 

Point Site It. RSQ RMSEtrain RMSEtest MAEtrain MAEtest Rtrain Rtest Most important variables 

1 
Az 

0 0.618 0.039 0.042 0.030 0.035 0.708 0.708 
Max temp, Altitude, Human density, Kernel 
100 

2 TJC2 7 0.661 0.036 0.030 0.029 0.024 0.834 0.834 Max temp, Human density, Slope, Mean temp 

3 Nog 10 0.662 0.036 0.033 0.028 0.025 0.860 0.860 Max temp, Slope, Barren, Human density 

4 Her 2 0.671 0.036 0.036 0.028 0.027 0.797 0.797 Max temp, Slope, Altitude, Mean temp 

5 Dem 6 0.674 0.036 0.028 0.028 0.021 0.828 0.828 Max temp, Slope, Human density, Mean temp 

6 LC18 10 0.685 0.035 0.026 0.027 0.019 0.867 0.867 Max temp, Access, Altitude, Mean temp 
7 TC 6 0.680 0.035 0.050 0.027 0.040 0.453 0.453 Max temp, Slope, Access, Barren 

8 Soc 6 0.663 0.035 0.049 0.027 0.040 0.633 0.633 Max temp, Slope, Access, Human density 

9 Alb 5 0.667 0.035 0.047 0.027 0.037 0.529 0.529 Max temp, Slope, Herb, Human density 

10 
Ala 

0 0.611 0.039 0.038 0.031 0.032 0.750 0.750 
Max temp, Altitude, Human density, Kernel 
100 

11 SP 9 0.667 0.036 0.035 0.028 0.026 0.832 0.832 Max temp, Slope, Access, Herb 

12 Ros 6 0.703 0.034 0.074 0.026 0.068 0.655 0.655 Max temp, Access, Mean temp, Slope 

13 Car 2 0.685 0.035 0.034 0.027 0.029 0.661 0.661 Max temp, Slope, Altitude, Mean temp 

14 Lov 7 0.685 0.035 0.026 0.028 0.020 0.750 0.750 Max temp, Mean temp, Altitude, Herb 

15 
Lub 

0 0.601 0.040 0.034 0.031 0.028 0.572 0.572 
Max temp, Altitude, Human density, Kernel 
100 

16 Dall 9 0.672 0.036 0.037 0.028 0.030 0.720 0.720 Max temp, Slope, Access, Mean temp 

17 
El 

1 0.654 0.037 0.032 0.028 0.026 0.748 0.748 
Max temp, Altitude, Human density, Kernel 
100 

18 Cam 2 0.685 0.035 0.045 0.027 0.039 0.870 0.870 Max temp, Slope, Mean temp, Barren 

19 
Tr 

0 0.604 0.039 0.040 0.031 0.034 0.813 0.813 
Max temp, Altitude, Kernel 100, Human 
density 

20 Bex 6 0.658 0.037 0.033 0.029 0.027 0.789 0.789 Max temp, Slope, Human density, Barren 

21 
Houston 

2 0.680 0.035 0.078 0.028 0.070 0.454 0.454 
Max temp, Mean temp, Altitude, Human 
density 

22 Nuec 8 0.668 0.036 0.038 0.028 0.032 0.704 0.704 Max temp, Slope, Altitude, Access 

23 Hid 9 0.665 0.036 0.053 0.028 0.045 0.729 0.729 Max temp, Access, Altitude, Barren 



 

 

 

 

24 Juar 5 0.663 0.036 0.041 0.028 0.033 0.780 0.780 Max temp, Slope, Barren, Access 

25 NL 9 0.657 0.035 0.088 0.028 0.077 0.423 0.423 Max temp, Mean temp, Altitude, Herb 

26 NO 2 0.666 0.036 0.053 0.028 0.043 0.415 0.415 Max temp, Slope, Altitude, Mean temp 

27 18/9 6 0.691 0.035 0.039 0.027 0.033 0.607 0.607 Max temp, Mean temp, Slope, Altitude 

28 StA 2 0.678 0.035 0.038 0.027 0.033 0.921 0.921 Max temp, Slope, Mean temp, Altitude 

29 
Bb 

0 0.600 0.039 0.036 0.031 0.032 0.938 0.938 
Max temp, Altitude, Kernel 100, Human 
density 

30 DB 5 0.665 0.036 0.018 0.028 0.015 0.964 0.964 Max temp, Slope, Herb, Barren 

31 Orl 1 0.656 0.036 0.034 0.027 0.029 0.980 0.980 Max temp, Mean temp, Altitude, Access 
32 Mel 3 0.670 0.035 0.021 0.028 0.017 0.942 0.942 Max temp, Slope, Herb, Mean temp 

33 FLO 10 0.656 0.036 0.024 0.028 0.020 0.972 0.972 Max temp, Slope, Access, Barren 

34 PBC 7 0.656 0.036 0.021 0.028 0.018 0.960 0.960 Max temp, Slope, Access, Mean temp 

35 Miami 1 0.651 0.036 0.023 0.028 0.020 0.949 0.949 Max temp, Friction, Human density, Kernel100 

36 FM 8 0.662 0.036 0.023 0.028 0.018 0.961 0.961 Max temp, Slope, Barren, Herb 

37 Sar 4 0.674 0.035 0.022 0.027 0.018 0.963 0.963 Max temp, Slope, Mean temp, Herb 

38 Tam 9 0.642 0.037 0.019 0.029 0.015 0.968 0.968 Max temp, Slope, Access, Mean temp 

Mean   0.661 0.036 0.038 0.028 0.031 0.771 0.771  

Stdev   0.025 0.001 0.016 0.001 0.014 0.169 0.169  

 
  



 

 

 

 

Table S5: Mean relative importance of all variables for the leave-one-out cross-validation using CSE as genetic distance. 
 
 

Variable Mean relative importance 

Maximum temperature      1.000 

Slope         0.495 

Altitude      0.343 

Mean temperature     0.313 

Human density 0.269 

Accessibility to nearest major city        0.268 

Kernel 100     0.268 

Herbaceous vegetation         0.259 

Barren        0.224 

Shrubs        0.181 

Precipitation of the wettest month      0.128 

Daily temperature range 0.122 
Gross primary production           0.116 

Friction      0.116 

Deciduous broadleaf  0.113 

Potential Evapotranspiration           0.113 

Annual precipitation         0.111 
Annual Temperature Range 0.109 

Precipitation of the driest month      0.095 

Aridity          0.095 

Water         0.091 

Needleleaf    0.090 

Minimum temperature      0.088 
Urban         0.087 

Evergreen broadleaf   0.085 

Crop          0.082 

Regularly flooded vegetation       0.065 

Misc. trees     0.065 

Snow          0.008 

 



 

 

 

 

Table S6. Leave-one-out cross-validation results for iterative Random Forest model using linearized FST as genetic distance.  Best iteration 
selected by lowest RMSEtest; Site = the site excluded for the training dataset; RSQ = Pseudo R-squared (percent variance explained by the 
model); RMSEtrain = root mean squared error of model for training dataset; RMSEtest = root mean squared error of model for testing dataset; 
MAEtrain = mean absolute error of model for training dataset; MAEtest =mean absolute error of model for validation dataset; Rtrain = correlation 
between observed and predicted linearized FST using training dataset; Rtest = correlation between observed and predicted linearized FST using 
testing dataset; Most Important variables are the four most important variables for optimized Random Forest model. For detailed information 
about these metrics, see Table S5. 
 

Point Site It. RSQ RMSEtrain RMSEtest MAEtrain MAEtest Rtrain Rtest Most important variables 

1 Az 0 0.489 0.031 0.032 0.009 0.032 0.703 0.461 Slope, Mex temp, Kernel100, Friction 

2 TJC2 2 0.500 0.030 0.024 0.023 0.019 0.708 0.708 Access, Max temp, Kernel100, Slope 

3 
Nog 

8 0.550 0.027 0.047 0.021 0.036 0.744 0.600 
Max temp, Altitude, Access, 
DecBroadleaf 

4 
Her 

10 0.556 0.029 0.029 0.022 0.023 0.747 0.630 
Max temp, Altitude, Access, 
DecBroadleaf 

5 Dem 0 0.474 0.032 0.032 0.011 0.035 0.697 0.699 Slope, Max temp, Altitude, Access 

6 LC18 4 0.580 0.028 0.027 0.021 0.021 0.765 0.836 Access, Slope, Kernel100, Max temp 

7 
TC 

5 0.582 0.028 0.037 0.021 0.029 0.766 0.331 
Max temp, Mean temp, Access, 
Kernel100 

8 
Soc 

10 0.572 0.028 0.036 0.021 0.029 0.758 0.638 
Max temp, Access, Mean temp, 
Kernel100 

9 Alb 2 0.530 0.029 0.034 0.022 0.027 0.729 0.409 Kernel100, Max temp, Water, Access 

10 
Ala 

8 0.524 0.030 0.027 0.023 0.020 0.727 0.694 
Access, Max temp, Kernel100, Mean 
temp 

11 SP 2 0.535 0.030 0.024 0.023 0.021 0.734 0.853 Slope, Access, Max temp, Friction 

12 
Ros 

4 0.553 0.029 0.028 0.022 0.025 0.745 0.757 
Access, Max temp, Mean temp, 
Kernel100 

13 Car 6 0.546 0.029 0.024 0.022 0.020 0.740 0.679 Max temp, Mean temp, Access, Slope 

14 
Lov 

1 0.535 0.030 0.026 0.023 0.019 0.733 0.657 
Slope, Max temp, Mean temp, 
Kernel100 

15 Lub 0 0.471 0.032 0.024 0.009 0.033 0.689 0.561 Max temp, Slope, Kernel100, Access 

16 Dall 6 0.550 0.029 0.021 0.023 0.017 0.743 0.761 Max temp, Slope, Access, Mean temp 

17 
El 

4 0.530 0.030 0.025 0.023 0.021 0.730 0.741 
Max temp, Access, Mean temp, 
Altitude 

18 
Cam 

10 0.563 0.028 0.048 0.021 0.040 0.751 0.596 
Max temp, Access, Mean temp, 
Altitude 

19 Tr 9 0.536 0.030 0.020 0.023 0.016 0.733 0.830 Max temp, Slope, Access, Mean temp 



 

 

 

 

20 
Bex 

8 0.547 0.029 0.022 0.022 0.016 0.741 0.733 
Access, Max temp, Altitude, 
Kernel100 

21 Houston 10 0.611 0.026 0.068 0.020 0.059 0.783 0.572 Access, Max temp, Slope, Flood 

22 Nuec 8 0.584 0.028 0.026 0.021 0.021 0.766 0.690 Max temp, Slope, Access, Flood 

23 Hid 7 0.527 0.030 0.036 0.023 0.030 0.726 0.716 Access, Max temp, Slope, Altitude 

24 Juar 9 0.504 0.031 0.024 0.023 0.020 0.710 0.761 Access, Slope, Max temp, Mean temp 

25 
NL 

9 0.540 0.029 0.039 0.022 0.029 0.737 0.506 
Access, Max temp, Kernel100, Mean 
temp 

26 
NO 

10 0.559 0.029 0.044 0.022 0.038 0.750 0.462 
Max temp, Kernel100, Access, Mean 
temp 

27 18/9 3 0.563 0.029 0.030 0.021 0.024 0.752 0.668 Access, Slope, Max temp, Mean temp 

28 
StA 

10 0.537 0.030 0.028 0.023 0.024 0.736 0.825 
Access, Kernel100, Max temp, Mean 
temp 

29 Bb 5 0.579 0.027 0.056 0.020 0.050 0.762 0.863 Slope, Access, Max temp, Mean temp 

30 DB 8 0.487 0.031 0.019 0.024 0.016 0.698 0.920 Access, Max temp, Slope, Kernel100 

31 Orl 5 0.508 0.030 0.022 0.023 0.017 0.714 0.941 Mean temp, Access, Max temp, Slope 

32 Mel 4 0.551 0.029 0.021 0.022 0.017 0.747 0.865 Slope, Max temp, Flood, Mean temp 

33 
FLO 

8 0.543 0.029 0.012 0.022 0.011 0.739 0.963 
Mean temp, Max temp, Access, 
Altitue 

34 
PBC 

4 0.545 0.029 0.014 0.022 0.011 0.741 0.934 
Slope, Max temp, Mean temp, 
Kernel100  

35 
Miami 

4 0.531 0.030 0.017 0.023 0.014 0.730 0.918 
Mean temp, Access, Max temp, 
Kernel100 

36 
FM 

1 0.544 0.029 0.018 0.022 0.014 0.740 0.907 
Max temp, mean temp, Kernel100, 
Slope 

37 Sar 10 0.530 0.030 0.020 0.023 0.016 0.734 0.840 Access, Max temp, Kernel100, Slope 

38 
Tam 

6 0.538 0.030 0.017 0.023 0.013 0.736 0.914 
Mean temp, Max temp, Slope, 
Kernel100 

Mean   0.540 0.029 0.029 0.021 0.024 0.736 0.722  

Stdev   0.031 0.001 0.012 0.004 0.010 0.021 0.160  

 
  



 

 

 

 

Table S7: Mean relative importance of all variables for the leave-one-out cross-validation using linearized FST as genetic distance. 
 

Variable Mean relative importance 

Maximum temperature 0.824 

Accessibility to the nearest major city 0.765 

Slope        0.555 

Mean temperature 0.547 

Kernel 100 0.466 
Altitude 0.354 

Deciduous broadleaf 0.248 

Shrubs 0.239 

Needleleaf 0.229 

Annual temperature range 0.215 

Misc. trees  0.198 

Friction 0.195 

Water  0.189 

Evergreen broadleaf  0.188 

Daily temperature range 0.187 

Precipitation of the wettest month 0.181 

Annual precipitation 0.180 
Potential evapotranspiration 0.177 

Aridity 0.173 

Regularly flooded vegetation 0.171 

Precipitation of the driest month 0.152 

Cultivated and managed vegetation  0.146 

Human density 0.144 
Barren 0.139 

Minimum temperature 0.124 

Herbaceous vegetation 0.122 

Gross primary production 0.120 

Urban  0.086 

Snow 0.004 
 



 

 

 

 

Table S8: Result for full dataset run of iterative Random Forest model using CSE as genetic distance.  Best iteration selected by lowest 
RMSEtest; Site = the site excluded for the training dataset; RSQ = Pseudo R-squared (percent variance explained by the model); RMSEfull = root 
mean squared error of model for training dataset; MAEfull = mean absolute error of model for training dataset; Rfull = correlation between observed 
and predicted CSE; Most Important variables are the four most important variables for optimized Random Forest model. For detailed information 
about these metrics, see Table S5. 
 

Iteration RSQ RMSEfull MAEfull Rfull Most important variables 

Straight 0.606 0.0388 0.031 0.786 Max temp, Altitude, Human density, Kernel 100 

1 0.674 0.0353 0.027 0.825 Max temp, Altitude, Mean temp, Human density 

2 0.669 0.0356 0.028 0.824 Max temp, Slope, Altitude, Kernel 100 

3 0.688 0.0345 0.027 0.832 Max temp, Slope, Barren, Human density 

4 0.667 0.0357 0.028 0.820 Max temp, Slope, Barren, Herb 

5 0.685 0.0347 0.027 0.830 Slope, Max temp, Barren, Herb 

6 0.661 0.0360 0.028 0.817 Max temp, Slope, Herb, Barren 

7 0.662 0.0359 0.028 0.817 Max temp, Altitude, Herb, Human density 

8 0.669 0.0356 0.028 0.821 Max temp, Slope, Human density, Barren 

9 0.658 0.0361 0.028 0.818 Max temp, Slope, Human density, Mean temp 

10 0.680 0.0349 0.027 0.828 Max temp, Slope, Barren, Human density 

 
 
  



 

 

 

 

Table S9: Comparison of root mean squared error (RMSE) among full model, leave-one-out cross-validation (LOOCV), and leave-two-out cross-
validation (LTOCV). 
 

Model RMSEtrain  SD RMSEtest  SD 

Full model 0.035 (=RMSEfull)  

LOOCV 0.036  0.0014 0.038  0.016 

LTOCV 0.036  0.0016 0.038  0.015 

  



 

 

 

 

Dataset S1 (separate file). Input dataset for the iterative Random Forest model. Each row 
represents a pair of sites; the latitude and longitude for each site is listed as well as the genetic 
distance (CSE and linearized FST) between each pair of sites.   

Dataset S2 (separate file). Microsatellite calls for all individuals in STRUCTURE format.   

 
Dataset S3 (separate file). Most important variables for each iteration of the full dataset run 
using CSE as genetic dataset. 
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