
Supplementary Information for “The inverse variance-flatness

relation in Stochastic-Gradient-Descent is critical for finding flat

minima”

S1. THE TWO PHASES OF LEARNING: THE INITIAL FAST LEARNING

PHASE AND THE SLOW EXPLORATION PHASE

The dynamics of L versus iteration time are shown in Fig. S1, which shows that there are

two phases in learning in DNN. There is an initial fast learning phase where the overall loss

function decreases quickly and sometimes abruptly followed by an exploration phase when

the training error reaches 0 (or nearly 0) and the overall loss L still decreases but much more

slowly and gradually. Due to its slow time scale, the exploration phase can be considered

as in quasi-steady-state. These two phases exist independent of the hyperparameters and

the network architecture as shown in Fig. S1, where the transition region between the two

phases are highlighted.

The weights reached in the exploration phase can be considered as solutions of the problem

given that the training error vanishes and the test error seems to reach a low steady state

value in the exploration phase as shown in Fig. S2.

This transition can also be characterized by the amplitude and persistence of the mini-

batch gradients. At a given time t, the SGD gradient is given by:

~g(t) = −∇Lµ(t), (S1)

where µ(t) is the minibatch taken at time (iteration) t.

The amplitude Ag(t) of ~g and the correlation Cg(t) of its direction for two consecutive

time are defined as follows :

Ag(t) ≡ ||~g(t)||, (S2)

Cg(t) ≡ ~g(t) · ~g(t+ ∆t)/[Ag(t)Ag(t+ ∆t)], (S3)

where ∆t = 1 is the iteration time step.

Ag(t) and Cg(t) can be used as order parameters of the learning system. As shown

Fig. ??, in the beginning of the learning process, the average 〈Ag〉 (over a moving window
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of size Tg = 1 epoch) is relatively large and the average 〈Cg〉 is finite. This corresponds

to the initial stage of learning when the gradient directions have some degree of alignment

(finite Cg) and the overall error decreases quickly due to the large values of Ag. We call this

the directed fast learning phase. As time goes on, the average 〈Ag〉 becomes smaller but

stays at a small finite value while the average 〈Cg〉 becomes close to zero, which means that

the gradient directions for different samples become almost orthogonal. We call this the

exploration phase, where the cross-entropy (CE) loss is low and decreases slowly. Due to the

finite size of the system, this transition is not infinitely sharp as phase transition in physical

systems in thermodynamic limit (infinite system limit). As shown in Fig. ??, the training

error ε becomes zero during the transition regime and it stays zero in the exploration phase.

S2. PROPERTIES OF THE FIRST PRINCIPAL COMPONENT MODE

In our study, we used the cross entropy loss function for each sample:

d(~Yk, ~Zk) = − ln
[ exp(~Yk · ~Zk)∑nc

n=1 exp(Yk,n)

]
= − ln

[ exp(Yk,n(k))∑nc
n=1 exp(Yk,n)

]
, (S4)

where nc is the total number of classes and also the dimension of the network output vector

~Yk and the correct output vector ~Zk. The correct class for sample k is n(k), and ~Zk is just

a unit vector in the correct (n(k)) direction. Let m(k) be the incorrect output component

with the largest output value, we can then define ∆Yk ≡ Yk,n(k)−Yk,m(k). The cross entropy

loss for sample k can then be written as:

lk ≡ d(~Yk, ~Zk) = ln[1 + ak exp(−∆Yk)] ≈ ak exp(−∆Yk), (S5)

where ak =
∑

n6=n(k) exp(Yk,n − Yk,m(k)) is an order O(1) number given that Yk,m(k) is the

largest among all the incorrect outputs (n 6= n(k)).

As we described in the main text, the persistent drift in the first PC direction ~p1 can

be understood by translating a solution ~w0 found by SGD along ~p1 by θ1 to a new weight

vector ~w = ~w0 + θ1 × ~p1. We studied how such a change of weights affects ∆Yk for a given

sample k. We computed ∆Yk as a function of θ1 for different samples, and found that the

change in ∆Yk depends approximately linearly on θ1 :

∆Yk(θ1) ≈ ∆Yk(0) + βkθ1, (S6)
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where βk is a sample dependent constant. This linear dependence is shown clearly in

Fig. S3A for different samples covering different correct classes.

By using Eq. S6 in the expression for lk, i.e., Eq. S5, we have:

lk(θ1) ∝ lk(0)× exp(−βkθ1), (S7)

which depends exponentially on θ1 for all samples k. As a result, the overall loss function

along the first PC direction:

L1 ≡ 〈lk(θ1)〉k ≈ L0 exp(−βθ1 + β2θ
2
1), (S8)

where β is the average of βk: β = 〈βk〉k > 0, and β2 depends on the variation of βk among

different samples. The expression for L1(θ1) agrees with the one obtained from the MLF

ensemble average derived in the main text with the correspondences: β = M
(0)
11 θ

(0)
1 and

β2 = M11/2.

The functional form of ln(L1(θ1)) expressed in Eq.S8, i.e., ln(L1(θ1)) ≈ ln(L1(0))−βθ1 +

β2θ
2
1 agrees with our numerical results shown in Fig. S3B, which shows that ln(L1) has a

finite slope at θ1 = 0. It is this finite slope that drives the drift motion of θ1 observed in

Fig. 1C in the main text.

Finally, we find that ~p1 is highly aligned with ~w0:
~p1
|~p1| ·

~w0

|~w0| ≈ 0.91, which is demonstrated

in Fig. S3C where all the components of ~p1 and ~w0 are plotted against each other. Corre-

spondingly, the coefficient βk is proportional to ∆Yk(0) for different samples k as shown in

Fig. S3D. Therefore, moving along ~p1 results roughly in an overall amplification of the solu-

tion weight vector ~w0 and the corresponding amplification of the output difference (decision

gap) ∆Yk.

S3. THE RELATIONSHIP BETWEEN FLATNESS AND THE HESSIAN

MATRIX

As we stated in the main text, our definition of the loss landscape flatness in certain

direction i is the size of the region (or the range of θi) within which the loss function is

smaller than L0 × e where e is the natural log base. The motivation for this definition of

flatness is that Fi characterizes the size of the region near a minimum (in the PCA direction

i) where the loss function is also small (within a factor of e). As defined, Fi contains non-local
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properties of loss function landscape as it depends on the loss function landscape in a finite

neighborhood of the minimum, whereas Hessian matrix only describes the local curvature

of the landscape at the minimum.

The flatness Fi is connected with the Hessian, but not always the same. To see this, we

can expand the log of the loss function around its minimum:

ln(Li) = ln(L0) +
κi
2
δθ2i + hi(δθi),

where κi is the eigenvalue of the Hessian matrix and hi(δθi) contains all the higher order

terms. If the higher order terms can be neglected in the finite regime Fi/2 ≥ δθi ≥ −Fi/2,

then the flatness Fi is directly related to the Hessian eigenvalue κi: Fi =
√

8
κi

. However,

when κi is small or zero, the flatness parameter Fi is not determined solely by the local

curvature κi, it also depends on the higher order terms. For example, take the case when

ln(Li) = ln(L0) + δθ4i /(ε
2 + δθ2i ), with ε� 1, we have κi = 0, but Fi ≈ 2.

To demonstrate their connection and difference, we show the eigenvalues κi of the Hessian

and 8/F 2
i where Fi is defined and determined independently from our analysis of the loss

landscape. As we can see from Fig. S4 shown here, the agreement is good for large values of

κi, however, when κi is small or even a small negative value (due to numerical inaccuracy and

sampling noise), the flatness remains well defined and finite. Overall, the flatness parameter

is a more robust non-local measure of the loss landscape.

S4. STATISTICAL PROPERTIES OF THE MLF ENSEMBLE

In the random landscape theory, the MLF Lµ is approximated by an inverse Gaussian

function:

Lµ(~θ) ≈ Lµmin exp[
N∑

i,j=1

Mµ
ij

2
(θi − θµi )(θj − θµj )]

= Lµ0 exp[
∑
i

Mµ
ii

2
θi(θi − 2θµi ) +

∑
i<j

Mµ
ij(θiθj − θiθ

µ
j − θjθ

µ
i )], (S9)

where ~θµ is the location of the minimum for MLF Lµ, θi = ~θ · ~pi is the parameter vector

projected onto the i-th PC direction, Lµmin is the minimal loss, and Mµ = {Mµ
ij} is the

symmetric Hessian matrix for ln(Lµ) at its minimum location ~θµ. For convenience, we define

Lµ0 ≡ Lµ(0) = Lµmin exp[
∑N

i,j=1M
µ
ijθ

µ
i θ

µ
j ] to represent the loss function value for minibatch µ

at ~θ = 0, and L0 ≡ 〈Lµ0〉µ is the minimum loss of the overall loss function L.
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To simply the theory, we make the mean-field approximation that Mµ
ij, M

µ
ii , and θµi are

uncorrelated random variables, which is supported by direct simulations. Furthermore, for

convenience of analytical treatment, we assume that these random variables follow Normal

distributions: Mµ
ii ∼ N (M

(0)
ii , σ

2
M,i) with positive mean M

(0)
ii > 0, Mµ

ij ∼ N (0, σ2
ij) with

zero mean for i 6= j, θµi ∼ N (0, σ2
θ,i) with zero mean for the diffusive modes (i ≥ 2), and

θµ1 ∼ N (θ
(0)
1 , σ2

θ,1) with a finite mean θ
(0)
1 ( 6= 0) for the drift mode (i = 1), which allows us to

obtain the overall loss function (up to the second order terms in θi) by averaging over the

distributions of Mµ and ~θµ:

L ≡ 〈Lµ(~θ)〉µ ≈ L0

〈
exp{

∑
i

Mµ
ii

2
θi(θi − 2θµi ) +

∑
i<j

Mµ
ij(θiθj − θiθ

µ
j − θjθ

µ
i )}
〉
Mµ,~θµ

≈ L0 exp{−M (0)
11 θ

(0)
1 θ1 +

∑
i

[
M

(0)
ii

2
+

1

2
σ2
θ,i(M

(0)
ii )2]θ2i } ×

∏
i

(1− Γi)
−1/2

≈ L0 exp(βθ1 +
∑
i

Mii

2
θ2i ), (S10)

which is the same as Eq. 10 in the main text. The constant β = −M (0)
11 θ

(0)
1 is related to the

finite drift velocity in the first PCA direction (i = 1): v
(0)
1 ≡ 〈v1〉µ ≈ −αL0β. The flatness

Fi ≡ (8/Mii)
1/2 is determined by the statistical properties of the MLF ensemble:

Mii = M
(0)
ii + σ2

θ,i(M
(0)
ii )2 + σ2

θ,iσ
2
M,i +

∑
j 6=i

σ2
ij[σ

2
θ,j + δj1(θ

(0)
1 )2].

For each MLF Lµ, if we vary ~w = ~w0 + θi~pi along a given PC-direction ~pi, we obtain the

MLF profile along the i-th PC direction consistent with those shown in Fig. 3A in the main

text obtained from direct simulations:

Lµi (θi) ∝ exp[
Mµ

ii

2
(θi − θµi )2 − (

∑
j 6=i

Mµ
ijθ

µ
j )(θi − θµi )] ∝ exp[

Mµ
ii

2
(θi − θ̃µi )2], (S11)

which has a minimum at θi = θ̃µi that is shifted from θµi due to the random off-diagonal

Hessian matrix elements:

θ̃µi = θµi +
1

Mµ
ii

∑
j 6=i

Mµ
ijθ

µ
j . (S12)

It is easy to show that θ̃µi has zero mean (〈θ̃µi 〉µ = 0) and a variance given by:

σ̃2
θ,i ≡ 〈(θ̃

µ
i )2〉µ = σ2

θ,i + 〈(Mµ
ii)
−2〉µ

∑
j 6=i

σ2
ijσ

2
θ,j ≈ σ2

θ,i +
1

(M
(0)
ii )2

∑
j 6=i

σ2
ijσ

2
θ,j, (S13)
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where we have used the approximation 〈(Mµ
ii)
−2〉µ ≈ 1

(M
(0)
ii )2

.

We have tested the assumptions in our random landscape theory by direct numerical

calculation of the distributions of θµi , the diagonal Hessian matrix element Mµ
ii , the off-

diagonal Hessian element Mµ
ij (i 6= j), and their correlations. As shown in Fig. S5, the

distributions for θµi , and the off-diagonal Hessian element Mµ
ij (i 6= j) can be approximated

well by Gaussian distributions with zero mean. The distribution for Mµ
ii is a little skewed

probably because of its non-zero mean value. More importantly, no significant correlation is

found between these random variables, which verifies the key assumption made in our paper

that leads to the form of the overall loss function given in Eq. 10 in the main text.

Furthermore, both M
(0)
ii and σ̃2

θ,i can be determined numerically for different i ≥ 2 (dif-

ferent PC directions). As shown in Fig. S6, σ̃θ,i scales almost linearly with Fi = (8/Mii)
1/2

and M
(0)
ii scales inversely with Fi, approximately as F−2i . As a result, we have the diffusion

constant Di ∝ (M
(0)
ii )2σ̃2

θ,i ∝ F−2i as shown in Fig. 3B in the main text.

S5. THE CORRELATION IN SGD VELOCITY FLUCTUATIONS

As we show in the main text, the dynamics of the PCA components can be described by

the stochastic equation (for i ≥ 2):
dθi
dt

= vi(t), (S14)

where vi(t) ≈ −α∂δL
µ(t)

∂θi
with µ(t) the minibatch used at time t.

The correlation function of vi can be defined as:

Ci(t) ≡ 〈vi(t+ t′)vi(t
′)〉 = Dici(t), (S15)

where ci(t) = Ci(t)/Di is the normalized correlation function with Di = Ci(0) and ci(0) = 1.

The finite values of ci(t) for t ≥ ∆t (∆t = 1 to set the time unit for one iteration step)

describes the additional correlation with a finite correlation time beyond those captured by

Ci(0), i.e., the equal time velocity correlation or equivalently the velocity variance.

From the normalized velocity-velocity correlation ci(t), we can define an integrated cor-

relation function:

Gi(t) =

∫ t

−t
ci(t

′)dt′, (S16)

which is a symmetric function of t (the same is true for ci(t)).
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The weight variable θi(t) =
∫ t
0
vi(t

′)dt′, and the variance of the weight is given by:

σ2
i ≡ 〈θ2i 〉 − 〈θ̄2i 〉

= T−1w

∫ Tw

0

〈θ2i (t)〉dt− T−2w 〈(
∫ Tw

0

θi(t)dt)
2〉, (S17)

where Tw is the PCA window size and θ̄i = T−1w

∫ Tw
0

θi(t)dt is the average weight. Since PCA

was done by using the weights shifted by their mean, we have θ̄i = 0.

By defining Si(t) ≡ D−1i 〈θ2i (t)〉, we have:

Si(t) = D−1i

∫ t

0

∫ t

0

〈vi(t′)vi(t′′)〉dt′dt′′

=

∫ t

0

∫ t

0

ci(t
′ − t′′)dt′dt′′

=

∫ t

0

dt1

∫ t1

−t1
ci(t2)dt2,

=

∫ t

0

Gi(t1)dt1, (S18)

where a change of integration variables: t1 = t′ + t′′, t2 = t′ − t′′ has been used.

As shown in Fig. S7 below, as time t increases, Gi(t) decreases with time and reaches

zero at a time scale τi, which defines the correlation time of vi. Quantitatively, the weight

variance within the PCA time window is given by σ2
i = DiT

−1
w

∫ Tw
0

Si(t)dt ≡ Di∆tτi and the

correlation time scale τi is given by:

τi ≡ T−1w ∆t−1
∫ Tw

0

[ ∫ t

0

∫ t

0

ci(t
′−t′′)dt′dt′′

]
dt = T−1w ∆t−1

∫ Tw

0

Si(t)dt = T−1w ∆t−1
∫ Tw

0

∫ t

0

Gi(t1)dt1dt,

(S19)

which can be calculated by determining the functions Gi(t) and Si(t) from the correlation

function Ci(t). Here, we introduce ∆t = 1 explicitly in the definition( expression) for τi to

make sure it has the dimension of a time scale.

As shown in Fig. S8, we find that τi decreases with Fi roughly as a power law:

τi ∼ F−ψτi ,

with an exponent ψτ ≈ 1.8. Taken this new result together with the dependence of Di on

Fi (Fig. S8, which is also shown as Fig. 3B in the main text), we can explain the steeper

inverse dependence of weight variance on the landscape flatness.
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S6. GENERALITY OF THE INVERSE VARIANCE-FLATNESS RELATION

As shown in the main text (Fig. 2D), the inverse relation between the SGD variance and

the flatness of the loss function landscape is the same for different choices of the hyper-

parameters, batch size B and learning rate α. Since all the results reported in the main

text are from a simple network with 2 hidden layers applied to the MNIST dataset, we

have tested the robustness of this inverse variance-flatness relation in different networks, for

different algorithms and datasets. We first tested the variance-flatness relation in a DNN

with a larger number of hidden layers, e.g., 4 hidden layer network as shown in Fig. S9A.

We found the same inverse variance-flatness relation for weights in all different layers as

shown in Fig. S9B. We have also tested the inverse variance-flatness relationship in other

DNN architectures such as LeNet (illustrated in Fig. S9C), different learning algorithms

such as ADAM, and different dataset such as CIFAR10. As shown in Fig. S9D, the inverse

variance-flatness relation holds true in all these cases we studied.

We have tested the dependence of Di and τi on Fi for more complex networks such as

network with multiple-intermediate-layers and a CNN network for the CIFAR10 datasets.

As shown in Figs. S10&S11, the inverse dependence of τi and Di on Fi seem general as they

also hold true for all the cases we studied.

S7. PROPERTIES OF THE CNN FILTERS IN DIFFERENT PCA DIRECTIONS

We have investigated properties of CNN filters in different PCA directions by using a

CNN network described in the Method section in the main text on the MNIST dataset. In

this network, the first convolution layer has 16 filters (labeled by k ∈ [1, 16]), and each filter

has 9 (3× 3) weights (labeled by l ∈ [1, 9]), so the weights in this layer can be arranged in

a 16× 9 weight matrix w(l, k).

We did PCA for the weight fluctuations around a solution w∗(k, l). Each princi-

ple component (PC) direction i in the weight space can be characterized by a PCA

weight matrix wi(k, l) (note that the PCA weight matrices are orthogonal to each other:∑9
k=1

∑16
l=1wi(k, l)wj(k, l) = δij). We first checked the alignment of the solution w∗

with the PCA weight matrices by computing the projected magnitude pi defined as:

pi ≡ ||w∗ · wi||2 = [
∑

k,l w
∗(k, l)wi(k, l)]

2. As shown in Fig. S12 (upper panel), there is
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no clear evidence of whether w∗ is aligned more with the flat directions (larger i) or the

sharp directions (smaller i). We have also studied the PCA weight matrices wi(k, l) them-

selves. As shown in Fig. S12 (lower panels), the weight matrices in the sharper directions

(smaller i) seem to have elements that are more evenly distributed while elements in the

PCA weight matrices in the flatter directions with higher values of i (e.g., i = 130, 144) are

only sparsely distributed. We do not fully understand the origin and possible implications

of this observation. It seems to suggest that the PCA weights along sharp directions tend

to capture certain global characteristics of the picture while those in the flatter directions

depend more on local features. Further studies are needed to verify and understand these

observations.

S8. ROBUSTNESS OF THE LDC ALGORITHM

In the landscape-dependent constraints (LDC) algorithm proposed in our paper, we can

determine the flatness Fi efficiently from the variance σi by using the inverse variance-

flatness relationship discovered in this study, i.e., F−2i ∝ σ
4/ψ
i . However, although the

inverse variance-flatness relation is robust, the exact value of the power law exponent or

the power-law form of the inverse dependence itself is not universal for different layers in

the network and for different network architectures. Fortunately, the general results of the

algorithm do not seem to depend sensitively on the exponent as we show below (see Fig. S13)

for three different choices of ψ = 3, 4, 5 (note ψ = 4 is what we used in the main text).

S9. APPLICATION OF THE LDC ALGORITHM IN MORE COMPLEX CASES

To demonstrate the landscape-dependent constraints (LDC) algorithm in preventing

catastrophic forgetting, we have applied it to problems that are harder than those shown in

the main text: 1) learning two groups of 5 digits: (0, 1, 2, 3, 4) and (5, 6, 7, 8, 9) sequentially

without forgetting; 2) sequentially learning all the animals and all man-made objects in

CIFAR10. The results shown in Fig. S14 are better than those by using EWC. In general,

the results from LDC are better than those from EWC.

The detailed findings are also interesting. For example, for the 5 digit learning task in

MNIST, the minimum number of constraints N∗c = 600 which is larger than N∗c = 200
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reported in the main text for a simpler case of learning two digits. This means that for the

same architecture, the network needs more components to store the information when tasks

become harder. For the CIFAR dataset, we used a small CNN (described in the Methods

section) for convenience of analysis. In this small CNN, the best average accuracy is around

70% on CIFAR10, which is lower than the current state-of-the-art performance. However,

it is not our goal to improve the performance of a single task. Here, we showed that by

using LDC the average accuracy is around 60% after learning two tasks in sequence, which

demonstrates the usefulness of LDC because without it the previous task would be totally

forgotten with an accuracy ∼ 25% close to random choice.

S10. THE FLATNESS-DETECTING NOISE (FDN) IMPROVES BATCH

LEARNING

To test our “active temperature” hypothesis for the SGD based learning algorithm, we

developed a new batch learning algorithm where a “flatness detecting” noise is introduced

to the deterministic gradient descent (GD) learning dynamics. In particular, we have added

an anisotropic noise term whose strength depends explicitly on the flatness of the landscape.

We describe this “flatness detecting noise” (FDN) method in the following.

First, we define the gradient matrix ∂Lµ

∂wi
= Qiµ and its correlation matrix F :

F =
1

Nm

QQT , (S20)

where Nm is the number of minibatches used in computing F .

When the minibatch size B = 1 and Nm = M the total number of training samples , F

is exactly the Empirical Fisher Information, which is the same as the Hessian matrix at a

local minimum. Let ~θi and ei denote the eigenvector and eigenvalue of F respectively, the

dynamics of the weights in FDN is given by:

d~w

dt
= −α(

∂L

∂ ~w
+

Nc∑
i=1

√
ei~θiη̃), (S21)

where η̃ ∼ N (0, σn) is a Gaussian white noise with the variance σn that characterize the

overall noise strength. Since ei depends on the curvature of the loss landscape in the direction

~θi, a smaller noise is added to a flatter direction and a larger noise is added to a steeper

direction in the FDN method (Eq. S21).
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We compare the performance of the original gradient descent (GD) algorithm, the gra-

dient descent method with the flatness detecting noise (Eq. S21), which we call GDη∗, GD

with a constant noise, which we call GDη, and SGD. We use a small fully connected net-

work (input layer: 784 neurons, hidden layer 1: 35 neurons, hidden layer 2: 35 neurons,

output layer: 10 neurons) and train the network on MNIST data set. In order to speed up

the training process, we use B = 50,Nm = 2M/B = 2400 and only add noise on the first

three hundred components (Nc = 300) for each layer. The F matrix is updated for every 50

epochs.

As shown in Fig. S15, for GD, the loss decreases smoothly and it has a higher test error

(3.27%) at the end. The loss in SGD fluctuates as it decreases and it seems to go through

a “phase transition” before it reaches a steady state, where even though the training loss is

similar to that reached by GD but the test error (2.54%) is lower. In the GDη∗ algorithm

where we add the ”flatness detecting noise” to GD, similar phase transition occurs that

allows GDη∗ to reach a low test error(2.41%) basin. It is important to note that only the

flatness-detecting noise, i.e., anisotropic noise whose strength in a given direction depends

inversely on the flatness of the loss landscape in that direction, works. When we added an

isotropic constant noise to GD, i.e., GDη, the performance is not improved.

These results based on the GDη∗ algorithm with engineered flatness-detecting noise

strongly support the conclusion in our study that the anisotropic landscape-dependent noise

in SGD is responsible for driving the system to the flat minima where there is better gener-

alization.
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FIG. S1: Two different phases in learning. (A) shows the phase transition in a multi-layer fully-

connected neural network. Here we use a network with four hidden layers and each hidden layer

has 50 units. The experiment is done on the MNIST data sets. We can see that there is an obvious

fast drop of cross-entropy loss around 50 epochs after which the system enters the exploration

phase where the loss is low and changes only slowly. This phase transition holds true for different

combination of learning rate and batch size. (B) shows the phase transition in a LeNet, which has

two convolution layers with size 1× 3× 3× 16 and 16× 5× 5× 32, and one fully-connected neural

network with size 1586 × 10 (see Fig. S9C). We can see that there is also a drop of cross-entropy

loss around 30 epochs
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FIG. S2: The cross-entropy (CE) loss and testing error versus training time. The inset shows that

the test error reaches a steady-state low value in the exploration phase while the CE changes very

slowly.
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FIG. S3: The effect of changing θ1 along the first PC direction ~p1. (A) The dependence of ∆Yk, the

difference between the correct output and the maximum incorrect output, on the displacement θ1

along the first PC for different sample k. ∆Yk increases linearly with θ1. Each symbol corresponds

to an average over 5 samples of the same digit. (B) The landscape of lnLi(θi) along the i-th PC

direction. Only ln(L1) has a finite gradient at θ1 = 0, which indicates a drift motion in ~p1. In all

other PC directions (i ≥ 2), ln(Li) has a zero gradient at θi = 0, which indicates a diffusive motion

in these directions. (C) The components p1,j of ~p versus the corresponding components w0,j of

vecw0 for all j = 1, 2, ..., 2500 weight components between the two hidden layers. This shows that

the two weight vectors ~p1 and ~w0 are highly aligned. (D) The coefficient βk versus ∆Yk(0) for

different samples k shown in (A).
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FIG. S4: This figure shows the comparison between flatness and eigenvalues of Hessian matrix.

Here the eigenvalue of Hessian matrix and flatness are calculated from the last layer of fully connect

network with 500 parameters.For the lower rank modes, Hessian eigenvalue (κi) is the same as the

curvatures calculated from flatness (8/F 2
i ). For the higher rank modes, the eigenvalues can reach

zero and even become negative, but Mii still remain positive (see inset) because Fi is a measure of

the landscape flatness in a finite region near the minimum.
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FIG. S5: The distributions of θµi , the diagonal Hessian matrix element Mµ
ii , the off-diagonal Hessian

element Mµ
ij (i 6= j). Mµ

ii and Mµ
ij are obtained by taking the second derivatives of the MLF (Lµ)

at a given solution in the exploration phase.
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FIG. S6: The variance σ̃2i of the minimum positions and the average diagonal element M
(0)
ii of

the Hessian matrices of the MLF ensemble versus the flatness Fi of the overall loss function. The

diffusion constant is Di ∝ (M
(0)
ii )2σ̃2i , and the combination (M

(0)
ii )2σ̃2i versus Fi is also shown.

i = 30 used here.
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FIG. S7: (A) Gi(t) and (B) Si(t) versus training time tfor different principal components. The

dotted lines in (B) indicate the values of τi.
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FIG. S8: The inverse dependence of τi (in unit of epoch) and Di on the flatness Fi for the 2-hidden-

layer NN on MNIST used in the main text. Each epoch has 1, 200 minibathes.
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FIG. S9: The variance-flatness relation for different network, data set and optimization method.

(A) A four hidden layer neural network is used on the MNIST dataset. (B) The inverse relation

between variance and flatness holds between any two adjacent hidden layers. (C) Illustration of

LeNet which has two convolution layer with sizes of 3×5×5×6 and 6×5×5×16, and three fully

connected layers with sizes of 400× 120,120× 84,84× 10. (D) The relation between variance and

flatness in the two convolution layers clearly shows an inverse dependence. The LeNet convolution

network shown in (C) is used on the CIFAR10 dataset and the network is optimized by using SGD

with momentum.
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FIG. S10: The inverse relation of τi (in unit of epoch) and Di on Fi for a multi-hidden-layer

network (4 hidden layers) on MNIST the same as in Fig. S9A.
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FIG. S11: The inverse dependence of τi (in unit of epoch) and Di on Fi for CNN on CIFAR10 the

same as in Fig S9C.
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FIG. S12: (Upper panel) The amplitude of the solution weight matrix w∗(k, l) projected onto

different PCA weight matrix wi(k, l): pi ≡
∑

k,l[w
∗(k, l)wi(k, l)]

2 for different PCA direction i.

(Lower panels) The filter weight matrices in CNN along different PCA directions, wi(l, k), for four

different directions i = 2, 50, 130, 144. k ∈ [1, 16] is the filter index, and l ∈ [1, 9] labels the 3 × 3

filter weights. For larger i’s (flatter directions), the filter matrix seems to become sparser.
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FIG. S13: The average error 〈ε〉 = (ε1 + ε2)/2 for the two tasks versus the normalized constraint

strength λ̃ ≡ 10ψλ for different choices of ψ = 3, 4, 5. The simulations are done on the same network

and data set as the one in Figure 4 in the main text. In the landscape dependent constraint (LDC)

algorithm, we determine the flatness by using the inverse variance-flatness relationship Fi ∝ σ−2/ψi ,

where the variance σ2i is determined by the PCA analysis. The LDC results seem to be insensitive

to the precise choice of ψ.
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FIG. S14: The comparison of LDC and EWC for avoiding catastrophic forgetting in two more

complex cases. (A)&(C) Task-1 error (ε1) versus task-2 error (ε2) as the constraint strength λ

is varied, (B)&(D) the minimum average error (〈ε〉) versus the number of constraints Nc. For

(A)&(B), learning digit sets, [0, 1, 2, 3, 4] and [5, 6, 7, 8, 9] in MNIST, are used as task-1 and task-

2 respectively. For (C)&(D), we used the CIFAR10 dataset, and learning all the natural ob-

jects (birds,cats,deer,dogs,frogs,horses) is used as task-1 and learning all man-made objects (air-

planes,cars,ships and trucks) is used as task-2 .
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FIG. S15: (A) The loss error and (B) the test error versus training time for four algorithms. For

gradient descent (GD) method, its loss decreases smoothly and the test error reaches a higher

steady state value (3.27%) at the end of training. SGD have large fluctuations in the beginning of

the training before it transitions to the exploration phase where the cross entropy loss is the same

as in GD but the steady state test error (2.54%) is lower. When we add the ”flatness detecting

noise” to GD, which we call the GDη∗ algorithm, the behavior is similar to that of SGD and GDη∗

also leads to a low test error∼ 2.41% (see inset in (B)). As a comparison, we also add an isotropic

noise with constant strength to SD, which we call the GDη algorithm, we find that the behavior

of GDη is similar to that of GD, which does not lead to a lower generalization error as in GDη∗,

where anisotropic landscape dependent noise is used.
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FIG. S16: The normalized accumulative variance spectrum and the effective SGD learning di-

mension (Dl). (A) The normalized accumulative variance versus PCA directions (i) for different

network width H. (B) The learning dimension Dl, which is defined as the number of components

(directions) which accounts for 99.9% total variance, is much smaller than the total number of pa-

rameters Np(≡ H2), and it only increases weakly as Np increases. This means SGD only search for

solutions in a relatively small sub-manifold and is not affected significantly by over-parametrization.

The error bars are obtained by using 10 different solutions obtained by random initialization (with

the same norm) for each network.
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