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1 SEPIAR Model Details

1.1 SEPIAR Model Compartments

1.2 ODE Equations

dS

dt
= −(λFOI(t))S(t) (1)

For exposed compartment Em where m = 1:

dE1

dt
= (λFOI(t))S(t) − φEE1(t) (2)
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Compartment Infection Status
S(t) Susceptible
Em(t) Exposed in compartment m
P (t) Pre-symptomatic
A(t) Asymptomatic
IS1(t) Infected symptomatic not yet sampled
IS2

(t) Infected symptomatic (non-severe)
H(t) Hospitalized (severe infected)
RA(t) Recovered (Asymptomatic)
RF(t) Recovered (Symptomatic Non-Severe)
RH(t) Recovered (Severe)

Table 1: Comparmtents in the SEPIAR epidemiological model

For exposed compartment Em where 1 < m <= M :

dEm
dt

= φEEm−1(t) − φEEm(t) (3)

dP

dt
= φEEM (t) − φUP (t) (4)

dIS1

dt
= pSφUP (t) − φSIS1

(t) (5)

dH

dt
= pHφSIS1

(t) − hVH(t) (6)

dIS2

dt
= (1 − pH)φSIS1(t) − γIS2(t) (7)

dA

dt
= (1 − pS)φUP (t) − φSA (8)

dRA

dt
= φSA (9)
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dRF

dt
= γIS2

(t) (10)

dRH

dt
= hVH(t) (11)

λFOI(t) =
β(t)[(IS1

(t)) + (IS2
(t))] + βa(t)[A(t)] + βp(t)[P (t)]

N
(12)

1.3 Accumulator Variables

Let CQ1 represent the total number of individuals with severe COVID-19 cases

who enter the hospital over a single-day period. In the SEPIAR model, this is

the number of people moving from compartment IS1
to H in a single day.

We assume that non-severe COVID-19 cases are sampled at the same time

in the course of their infection as severe cases, provided that sufficient testing

capacity is available. Let CQ3 represent the total number of people who move

from compartment IS1
to compartment IS2

over a single day in the SEPIAR

model. These people represents symptomatic COVID-19 cases that do not be-

come severe.

The quantities CQ1 and CQ3 generated from the epidemiological model are

used as inputs for the testing model.

2 Model Fitting Techniques

2.1 Fitted Parameters

Unless otherwise mentioned, we fit the recovery rate for non-severe symptomatic

infections (γ), the scaling factors for asymptomatic and pre-symptomatic trans-

mission (ba and bp), the scaling factor for post-intervention transmission (bq),

the proportion of new infected cases that will become symptomatic (pS), the
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proportion of symptomatic cases that are severe enough to require hospitaliza-

tion (pH), the reproductive number for symptomatic cases (R0) the dispersion

parameter for RT-PCR testing (σM), and the initial number of infected (I0)

and exposed (E0) individuals at the start of the simulation on March 1, 2020.

We constrain the fitting algorithm to explore only positive values for all fitted

parameters and only values between 0 and 1 for pS, pH, ba, bp, and bq.

2.2 Initial Grid Searches of SEPIR and SEIAR Models

We first fit the SEPIR model, which does not have asymptomatic transmission,

and the SEIAR model, which does not have pre-sympamatic tranmission (Figure

11). For each model, we generate a grid of 25,000 initial parameter combinations

using Latin Hypercule Sampling. For each initial combination, the given model

is fit to observed case data for two sets of 50 iterations using the iterated filtering

algorithm MIF2[1] using 50,000 particles. The final likelihood of each param-

eter combination with respect to observed case data is then estimated using

the sequential Monte Carlo algorithm pfilter[2]. We then isolate all parameter

combinations within 2 log-likelihood units of the parameter combination with

the highest likelihood (the maximum likelihood estimate or MLE), and calculate

the likelihood of each combination with respect to the serology data. We then

isolate the parameter combination with the highest likelihood with respect to

the serology data.

2.3 Monte Carlo Profile of SEPIAR Model

For the analysis of the full SEPIARmodel, which includes both pre-symptomatic

and asymptomatic transmission, we construct a Monte Carlo Profile[3] of the

relative strength of asymptomatic transmission (ba). As Figure 2 illustrates,

we generate a set of starting points at 30 different evenly spaced values for ba
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Fit each parameter combination to 
observed case data using iterated 

filtering, keep b_a fixed at 0.

Generate 25,000 initial parameter 
combinations via Latin Hypercule 

Sampling  

Isolate all parameter combinations 
within 20 log-likelihood units  of 

MLE with respect to observed 
cases

Isolate all parameter 
combinations within 2 log-

likelihood units of MLE with 
respect to observed cases

Calulate Likelihood with respect to 
serology

Isolate MLE with respect to 
serology

Fit each parameter combination to 
observed case data using iterated 

filtering, keep b_a fixed at 0.

Generate 25,000 initial parameter 
combinations via Latin Hypercule 

Sampling  

Isolate all parameter combinations 
within 20 log-likelihood units  of 

MLE with respect to observed 
cases

Isolate all parameter 
combinations within 2 log-

likelihood units of MLE with 
respect to observed cases

Calulate Likelihood with respect to 
serology

Isolate MLE with respect to 
serology

Fit each parameter combination to 
case data using iterated filtering; 

b_p is fixed at 0 but other 
parameters can vary

Generate boundary box for 
initial parameter values for 
profile from SEPIAR model 

using maximum and 
minimum values of these 

combinations. 

Isolate all parameter combinations 
within 20 log-likelihood units  of 

MLE with repsect to observed 
cases

Isolate all parameter combinations 
within 2 log-likelihood units of 
MLE with respect to observed 

cases

Generate 25,000 initial parameter 
combinations via Latin Hypercule 

Sampling  

Isolate MLE with respect to 
serology

Calulate Likelihood with respect to 
serology

A) B) 

Figure 1: Diagram of the grid searches for the SEPIR (A) and SEIAR
(B) models.
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between 0 and 1. For each of those 30 starting points, we create 40 different

initial sampling points with the same value of ba but different values for the

other parameters being fitted. Initial values for the relative strength of pre-

symptomatic transmission bp were drawn from a uniform distribution between

0 and 1. The values for all of the other fitted parameters were uniformly drawn

from the boundaries of all parameter combinations obtained from fitting the

SEIAR model that had likelihoods with respect to case data within 20 log-

likelihood units of the MLE. This yielded a total of 1200 starting points. Each

profile starting point was then fit to case data using the iterated filtering algo-

rithm MIF2[1] and the Sequential Monte Carlo algorithm pfilter[2], with MIF2

constrained to keep ba unchanged. For all parameter combinations that were

supported by observed case data (i.e. that had log-likelihoods within 2 units

of the MLE), we then calculated the likelihood with respect to serology. All

parameter combinations from the full SEPIAR model with serology likelihoods

within 2-log-likelihood units of the MLE were used in subsequent analyses of

the proportion of cases that are symptomatic (pS), the reproductive number

in symptomatic individuals ( R0), and the overall reproductive number for the

model (R0NGM) which was calculated using the Next Generation Matrix[4].

2.4 Model Comparison

We compare the likelihoods with respect to the serology data of all the max-

imum likelihood estimates from the SEPIR, SEIAR, and SEPIAR models via

the Likelihood Ratio Test. Recall that when calculating the likelihood with

respect to case data, all three models had maximum likelihoods that were not

statistically different.

7



Generate 30 initial values of b_a 
for profile, evenly spaced between 

0 and 1.

Isolate all parameter combinations 
within 2 log-likelihood units of 

MLE with respect of observed case 
data. 

Calulate Likelihood with respect to 
serology

Isolate MLE with 
respect to 
serology

Calculate 
symptomatic and 
overall R_0 values 

for each combination

Generate boundary box for initial 
parameter values using  using 

maximum and minimum values of 
grid search from SEIAR Model. 

Add boundaries for b_p (between 
0 and 1) to boundary box.

For each initial value of b_a, 
generate 40 initial parameter 

combinations where the other 
parameters are uniformly drawn 

from the boundary box.

Fit all 1200 parameter 
combinations to observed case 

data using iterated filtering; keep 
b_a unchanged.

Isolate all parameter combinations 
within 2 log-likelihood units of 
MLE with respect to serology

Figure 2: SEPIAR Profile Fitting Procedure. This diagram summarizes
how the Monte Carlo profile of ba for the SEPIAR model was fit to case data
and subsequently to serology.
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Model Log-Likelihood
SEPIAR -24.34239**
SEIAR -24.6274**
SEPIR -29.17705

Table 2: Comparison of MLE Likelihoods from SEPIR, SEIAR, and SEPIAR
models with respect to serology data

3 Testing Model

The testing model is implemented with discrete time steps of a day, denoted

hereafter by t.

3.1 Testing Capacity Data

We use the total number of RT-PCR tests conducted each day across the five

counties compromising New York City as measured by the New York State

Health Department’s COVID tracker as the daily testing capacity for the city.

This capacity is fed into the model as a co-variate (Lreported(t)).

Let L0(t) represent the initial testing capacity on day t. Recall that we

assume it took 2 days to conduct a RT-PCR Test. Therefore, we advance the

testing capacity by 2 days from the observed value, since the testing capacity

on day t will correspond to the number of tests conducted on day t + 2.

L0(t) = Lreported(t + 2) (13)

3.2 Testing Priorities

Given a finite daily testing capacity, we assume that tests are used in the fol-

lowing order during any given day until the testing capacity is exhausted:

1. Initial testing of hospitalized patients. Hospitalized patients include

patients who have severe cases of COVID-19 (Queue 1) as well as indi-
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viduals who do not have COVID-19 but are hospitalized with respiratory

symptoms (Queue NC). Patients are added to queue 1 as they enter com-

partment H in the epidemiological model.

2. Re-testing hospitalized patients when they leave the hospital

(Queue 2). Patients hospitalized with COVID-19 are re-tested twice

over a 24 hour period as they exit the hospital.

3. Initial testing of non-severe symptomatic cases (Queue 3).Patients

are added to queue 1 as they enter compartment IS2
in the epidemiological

model.

4. Re-testing of non-severe symptomatic cases 14 days after they

are first sampled (Queue 4).

We assume that any remaining unused testing capacity remaining after all

four queues have been tested is used to test individuals without COVID-19.

Thus, this unused capacity does not roll over to the next day.

Supporting Figure S4 illustrates these testing priorities.

3.3 General framework for incorporating changes in test-

ing capacity

Below we provide the detailed steps of the general testing framework which can

be applied to other locations where testing capacity is changing over time. A

diagram of this framework is shown in Supporting Figure S3. We illustrate

the steps by focusing on the testing of hospitalized severe COVID-19 cases.

In subsection 3.4, we describe several modifications to this framework that we

make to take into account additional queues and modifications that are specific

to New York City in the early stage of the epidemic.
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We use the variable Q1 to represent all COVID-19 hospitalized cases that

have been sampled but have not been tested yet. We first add the hospitalized

COVID-19 cases that have just been sampled on day t (CQ1(t)) to Q1.

Q11(t) = Q11(t) + CQ1(t) (14)

Let the variable TQ1 represent all of the people in Queue 1 who will be tested.

If L0(t) is bigger than the Queue 1, then everyone in Queue 1 can be tested and

TQ1(t) = Q1(t) (15)

Let Lunused(t) represent the testing capacity left over after Q1 has been

tested:

Lunused(t) = L0(t) − TQ1(t) (16)

There are then no individuals left in Q1 who need to be tested.

Q1(t) = 0 (17)

However, suppose that on a given day there is not enough testing capacity

to test everyone in Q1 (i.e. at the start of that day, L0(t) < Q1(t)).

In this case, we assume that all of the testing capacity is used to test Q1:

TQ1(t) = L0(t) (18)

We therefore decrease Queue 1 by the number of people who were tested.

Q1(t) = Q1(t) − TQ1(t) (19)
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In this case, there is no unused testing capacity:

Lunused(t) = 0 (20)

Let YQ1(t) represent the number of people who tested positive on day t, and

c the sensitivity of the RT-PCR assay.

We simulate RT-PCR testing as a draw from a Binomial distribution where

N = TQ1(t) and p = c.

YQ1(t) ∼ Binomial(TQ1(t), c) (21)

If there is unused testing capacity after everyone in Queue 1 has been tested

(i.e. Lunused(t) > 0, then this capacity can be used to test individuals in other

queues with a lower priority; see Section 3.4).

If testing of any of the individuals in these later queues results in additional

new positive cases, these are added to YQ1(t) to obtain the total number of

expected new COVID-19 cases during day t, denoted by Ysum(t).

3.4 NYC Specific Modifications and Additional Queues

There are several aspects of the testing model that are particular to New York

City and the initial wave of the epidemic in the U.S. We summarize those aspects

here. With sufficient description of the specific testing implementation, similar

modifications could be considered for other locations.

• Re-Sampling of Hospitalized Cases- We assume that hospitalized

COVID-19 cases will be re-sampled twice over a 24-hour period as they

leave the hospital, to make sure that they have recovered. We take this into

account with a second queue, Queue 2 (Q2(t)), which represents patients

who tested positive who had a severe COVID-19 infection, were re-sampled
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Remove  the T_Q1 samples that 
were teseted from the queue 

(Q_1 = Q_1 - T_Q1)

Compare current samples in 
queue 1 (Q_1) with avialable 
daily  testing capacity (L_0)

Add newly sampled cases to 
queue each day

(Q_1 = Q _1+ C_Q1)

Determine samples to be tested 
that day from queue 1 (T_Q1) 

If L_0  >= Q_1, then T_Q1 = Q_1.
If L_0 < Q_1, then T_Q1 = L_0.

Simulate PCR Testing with 
sensitivity c

Y_Q1 ~ Binomial(T_Q1, c)

Combine new positive cases from 
all queues

Y_sum  = Y_Q1 + {New Positive 
cases from other queues}

Measurement Model
Y ~ Negative Binomial(Y_sum, 

sigma_M)

Calculate new hospitalized cases 
each day (C_Q1) from SEPIAR 

epidemiological model

Update available testing 
capacity for that day

L_unused = L_0 - T_Q1

Follow-up steps for queues 
with lower priority

(See Figure S4)
 

Figure 3: Diagram of the general testing framework described in Sec-
tion 3.3. The New York City-specific modifications described in Section 3.4
are not shown here.
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as they left the hospital, and need to be tested again. We do not simulate

RT-PCR testing, keep track of results of testing, or deal with lags for

Queue 2, since the RT-PCR results of this re-sampling are not relevant

for our model. What is relevant is that at least some of the available testing

capacity Lunused(t) may be used up re-testing hospitalized patients as they

leave the hospital before other groups such as non-severe symptomatic

patients can be tested.

In our epidemiological model, we assume that individuals spend an average

of 13 days in the hospital. To be consistent, in our testing model, we

assume that individuals who test positive for COVID-19 will be re-sampled

once 13 days after they enter Queue 1, and then re-sampled a second

time 1 day later. To keep track of the days since each sample entered

Queue 1, we modify our implementation of Queue 1 by introducing initial

sampling cohorts. There are thirteen cohorts, representing people who

entered Queue 1 up to 13 days before time t. Let TQ1v (t) represent the

number of people who were sampled v days before day t who will be tested

on day t. We calculate TQ1v (t) as we loop through each cohort v in Queue

1, Q1v , starting with the oldest (Q1V ) and ending with the most recent

(Q11).

For example, if there is sufficient capacity to test everyone in the oldest

cohort (i.e. L0 > Q1V (t)), then we essentially follow a similar procedure

to equations 15 and 16:

TQ1V (t) = Q1V (t) (22)

Lunused(t) = L0(t) − TQ1V (t) (23)
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We similarly decrease Lunused(t) as the capacity is used up from testing

each subsequent cohort. For example, suppose that there is enough ca-

pacity to test a subsequent cohort v (i.e. Lunused(t) > Q1v (t)). Then:

TQ1v (t) = Q1v (t) (24)

Lunused(t) = Lunused(t) − TQ1v (t) (25)

Alternatively, when we do not have enough testing capacity to test all of

the cohort, then:

TQ1v (t) = Lunused(t) (26)

We loop through all cohorts in Queue 1 until either all the people in the

queue have been tested or until the unused testing capacity is exhausted.

When simulating RT-PCR testing, we again loop over all sampling cohorts

v from 1 : V . Equation 21 is modified accordingly:

YQ1v (t) ∼ Binomial(TQ1v (t), c) (27)

For the first re-sampling, we need to keep track of those individuals who

tested positive when they first entered the hospital. Because different cases

form the same cohort may be tested on different days, we need a variable

to accumulate those cases that tested positive and belong to the same

cohort. Let PQ1v (t) represent all cases from Queue 1 initially sampled

v − 1 days before time t who have tested positive so far.

We accumulate the total number of people in initial sampling cohort v

who have tested positive so far by adding the number of people from that
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cohort who tested positive on day t (YQ1v (t)) to PQ1v (t):

PQ1v (t) = PQ1v (t) + YQ1v (t) (28)

For the first re-sampling, the oldest cohort is entered into Q2(t) :

Q2(t) = Q2(t) + PQ1V (t) (29)

For the second re-sampling, we keep track of the individuals in this oldest

cohort and enter them into Q2 again one day later (on day t+ 1).

At the end of each simulation day, all initial sampling cohorts are advanced

by 1 day.

• 2-Day Lag in Testing- We incorporate a 2-day lag between when tests

are conducted and results are reported to take into account the 48 hour

testing time of early RT-PCR tests. We do not update cohorts during this

lag, so this effectively adds another 2 days between the initial sampling and

the re-sampling beyond the 13 days spent in the hospital. If this framework

is applied to other locations and time periods, this modification may not

be needed, particularly if rapid diagnosis RT-PCR tests are in use.

• Testing of non-symptomatic severe cases-Queue 3, which records

the number of non-severe symptomatic cases that need to be tested, is

implemented identically to Queue 1, except that individuals can exit the

queue at rate γ as they recover, even if they have not yet been tested.

Sampling cohorts are used in this queue as well.

• Re-testing of non-symptomatic severe cases- Early CDC guidelines[5]

recommended a 14-day quarantine for non-hospitalized symptomatic indi-

viduals, and that these individuals be re-tested at the end of the quaran-

16



tine. Queue 4, which records the re-sampling of non-severe symptomatic

cases as they exit quarantine, is implemented identically to Queue 2, ex-

cept that cases are re-sampled 14 days after they enter Queue 3, rather

than 13 days, to match the length of the quarantine period.

• Queues are numbered in order of priority- Any unused testing ca-

pacity after Queue 1 is empty is applied to Queue 2, and subsequently

Queues 3 and 4.

• Severe non-COVID hospitalized cases- Queue NC, which represents

severe non-COVID-19 respiratory cases, is implemented in a similar fash-

ion as Queue 1. Let Gsevere(w, y) represent our estimate of the weekly

expected severe non-COVID-19 respiratory cases that would be sampled

for testing in the hospital, where w denotes the week, and y, the year.

This estimate is obtained from syndrome surveillance data as described

later in Section 4. The number of daily new cases that enter Queue NC,

CQNC , is therefore:

CQNC
=
Gsevere(w, y)

7
(30)

Queue NC has the same priority as Queue 1, since both groups of individu-

als will present with severe respiratory symptoms at the time of sampling.

Both groups are hence sampled at once. For the situation where testing

capacity is greater than the total samples in a given sampling cohort in

Queue 1 and Queue NC, we simply test all samples from that cohort in

both queues. For the situation where the testing capacity is limiting, we

simulate a draw from a hypergeometric distribution. For example, in the

model, we modify equation 26 as follows:

TQ1v (t) ∼ hypergeom(Q1v (t), QNCv
(t), Lunused(t)) (31)
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We assume that the RT-PCR test is 100% specific, so all cases in Queue

NC will test negative since they do not have COVID-19. We thus do

not simulate RT-PCR testing for Queue NC. The main importance of

individuals in Queue NC is that they deplete some of the testing capacity

that would otherwise be used for Queue 1.

3.5 Measurement Model

Let Ysum represent the total number of new positive tests from all of the queues.

We assume that there is additional negative-binomial distributed dispersion

after the RT-PCR testing with standard deviation σM. Thus, if Y is the ob-

served number number of daily cases, we simulate Y from a negative binomial

distribution with mean equal to Ysum and and variance Ysum +
σ2
M

Ysum
2

4 Syndrome Surveillance Estimates

We estimate the number of non-COVID-19 severe respiratory cases that may

have presented each week of the epidemic in NYC hospitals using syndrome

surveillance data from NYC hospital emergency departments and observed in-

fluenza cases in NYC in previous years. The estimate we seek here represents

the typical number of non-COVID-19 respiratory cases one would expect in a

given week of the year given the seasonal pattern of influenza cases and that of

other respiratory ailments that present to NYC hospitals.

4.1 Description of Data

4.1.1 Syndrome Surveillance for Respiratory Disease

Weekly respiratory syndrome surveillance reports for all emergency departments

in New York City hospitals from 2016-2020 were obtained from the New York
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Retesting of individuals as they 
leave the hospital using remaining 
capacity (L_unused) instead of L

L_unused = L_unused - T_Q2

Test Hospitized COVID-19 
cases  (Queue 1) and non-COVID-
19 hosptialized cases (Queue NC) 

at the same priority
L_unused = L_0 - T_Q1 - T_Q_NC

Testing of non-severe 
symtpomatic COVID-19 cases with 

remaining capacity
L_unused = L_unused - T_Q3

Re-testing of non-severe 
symptomatic COVID-19 cases  14 

days after infection
L_unused = L_unused - T_Q4

Start with daily available 
testing  capacity (L_0)

Figure 4: Diagram of the testing priorities described in Section 3.2.
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Health Department’s web portal[6]. These reports include all cases in which the

chief complaint mentioned bronchitis, chest cold, chest congestion, chest pain,

cough, difficulty breathing, pneumonia, shortness of breath, or upper respiratory

infection. For this analysis, we use weeks 2-20 from 2016,2017 and 2019.

4.1.2 Confirmed Flu Cases

Confirmed influenza cases from all New York Counties from 2016-2020 for all

counties in New York State were obtained from the New York State public health

portal[7]. We used data from the five countries comprising New York City that

correspond to the same time period as the syndrome surveillance data. We

excluded 2018 from this analysis since 2018 was an anomalous, severe, influenza

season[8].

4.2 Description of Statistical Model

Recall that Gsevere(w, y) is the number of non-COVID-19 respiratory infections

during week w of year y that were severe enough to be sampled for COVID-19

testing. This was the quantity added to Queue NC in Equation 30 of Section

3.4. We assume that these cases are a fixed fraction s of the total non-COVID

respiratory syndrome cases presenting in the emergency departments of hospitals

in NYC in week w of year y, which we denote as (G(w, y)):

Gsevere(w, y) = G(w, y) ∗ s (32)

We assume that in the absence of COVID-19, a portion of observed respira-

tory syndrome surveillance reports are associated with influenza, and that the

non-influenza associated reports have a fixed seasonality.

Therefore, we consider that our estimate for the non-COVID-19 weekly res-

piratory syndrome surveillance cases (G(w, y)) varies linearly with confirmed
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influenza cases F (w, y) in NYC and presents additional weekly variability whose

effect is represented non-para-metrically with a polynomial dependency as fol-

lows:

G(w, y) = g0 + gFF (w, y) + b3w
3 + b2w

2 + b1w + b0 + ε (33)

where

ε ∼ rnorm(0, σε) (34)

4.2.1 Model Fitting and Simulation

We estimate the intercept g0 and influenza coefficient gF via a linear regression of

respiratory syndrome surveillance reports and confirmed cases in New York City

in 2016,2017 and 2019. We then fit the residuals from this linear regression to

a third-order polynomial seasonality function to obtain estimates of coefficients

bi. We estimate the error term σε by measuring the residual standard error from

the polynomial fit.

When fitting the epidemiological model, we simulate values for G(w, y) using

observed weekly influenza cases in 2020 as the co-variate F (w, y) obtained from

the same source[7]. A plot of the fitted model is shown in Figure S10.

4.3 Estimation of Proportion Sampled for COVID-19 test-

ing

Recall that the scaling parameter s represents the probability that an individual

who shows up to the emergency department with respiratory symptoms is severe

enough to merit testing for COVID-19. As a proxy for this value, we use the

ratio of individuals aged 65 or older who were hospitalized for influenza to the

number of individuals aged 65 or older who had a medical visit for influenza
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during the 2018-2019 influenza season[9].

The value we use for this scaling parameter s for the fitting of all three

models is 0.16.

We profile over this parameter value as a sensitivity analysis(see Figure S8).

Allowing this parameter to vary does not result in a higher likelihood with

respect to serology data compared to the MLE parameter combination from the

main analysis.

4.3.1 Table of Fitted Parameters

Parameter Value
gF 0.12
g0 1183
b3 0.012
b2 0.981
b1 -37.2
b0 229
σε 109
s 0.16

Table 3: Parameter values used for the non-COVID-19 severe cases estimate
(rounded).

4.4 Detection of anomalies in 2020 syndrome surveillance

From our model of non COVID-19 respiratory cases, we can obtain an estimate

of the expected number of syndrome surveillance reports Gw,y in 2020 in the

absence of COVID-19. Note that we do not use the scaling parameter s in this

calculation, unlike when fitting the epidemiological model.

If we subtract this value from the observed respiratory syndrome surveil-

lance reports in 2020, we obtain a metric for anomalous respiratory syndrome

surveillance reports related to COVID-19. This is the pink line in Figure 5 of

the main manuscript.
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5 Overall Reproductive Number Derivation

Following [4], we derive R0NGM
as the leading eigenvalue of the following matrix:

K = −TΣ−1, (35)

which is composed of two other matrices, T and Σ−1, defined below.

The Transmission Matrix is given by

T =

0 0 0 0 0 βP βA β β

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

The Transition Matrix is given by
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Σ =

−φE 0 0 0 0 0 0 0 0

φE −φE 0 0 0 0 0 0 0

0 φE −φE 0 0 0 0 0 0

0 0 φE −φE 0 0 0 0 0

0 0 0 φE −φE 0 0 0 0

0 0 0 0 φE −φU 0 0 0

0 0 0 0 0 (1 − pS)φU −φS 0 0

0 0 0 0 0 pSφU 0 −φS 0

0 0 0 0 0 0 0 (1 − pH)φS −γ

Then, the inverse of the transition matrix is:

Σ−1 =

−1
φE

0 0 0 0 0 0 0 0

−1
φE

−1
φE

0 0 0 0 0 0 0

−1
φE

−1
φE

−1
φE

0 0 0 0 0 0

−1
φE

−1
φE

−1
φE

−1
φE

0 0 0 0 0

−1
φE

−1
φE

−1
φE

−1
φE

−1
φE

0 0 0 0

−1
φU

−1
φU

−1
φU

−1
φU

−1
φU

−1
φU

0 0 0

−(1−pS)
φS

−(1−pS)
φS

−(1−pS)
φS

−(1−pS)
φS

−(1−pS)
φS

−(1−pS)
φS

−1
φS

0 0

−pS
φS

−pS
φS

−pS
φS

−pS
φS

−pS
φS

−pS
φS

0 −1
φS

0

−(1−pH)pS
γ

−(1−pH)pS
γ

−(1−pH)pS
γ

−(1−pH)pS
γ

−(1−pH)pS
γ

−(1−pH)pS
γ 0 −(1−pH)

γ
−1
γ

From the leading eignvalue of the resulting matrix K, we finally obtain:

R0NGM
=
βP
φU

+
βA(1 − pS)

φS
+
βpS
φS

+
β(1 − pH)pS

γ
(36)
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6 Supplemental Figures



Figure 5: Monte Carlo profile of the strength of transmission in asymp-
tomatic cases relative to that of symptomatic cases (ba). Each point
represents the parameter combination from the Monte Carlo profile for ba with
the highest log-likelihood (with respect to observed cases) for a given value of
ba. All points above the blue line are supported by the case data (i.e. they have
likelihoods within 2 log likelihood units of the profile MLE).
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A) B) 

Figure 6: Additional plots of the overall reproductive number (R0NGM)
vs the reproductive number in symptomatic individuals (R0) from pa-
rameter combinations supported by case and serology data from the
full SEPIAR (A) and SEIAR (B) models. A) Each point represents one
parameter combination within 2 log-likelihood units of the MLE (with respect
to cases and serology) from the ba profile using the full SEPIAR model. Each
point is colored by the strength of pre-symptomatic transmission (bp). B) Each
point represents one parameter combination within 2 log-likelihood units of the
MLE (with respect to serology) from the grid search of the SEIAR model (no
pre-symptomatic transmission). Points are colored by the relative strength of
asymptomatic transmission (ba). For ease of plotting, in panel A) we exclude
two parameter combination with very low pre-symptomatic transmission rates
bp. These outliers are also excluded from Figure 3 in the main manuscript , but
are shown in Supporting Figure S7.
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A) B) 

Figure 7: Additional plots of the overall reproductive number (R0NGM)
vs the reproductive number in symptomatic individuals (R0) includ-
ing the outlier parameter combination colored by the relative strength
of asymptomatic transmission (ba) (A) or the relative strength of pre-
symptomatic transmission (bp) (B). Each point represents one parameter
combination within 2 log-likelihood units of the MLE (with respect to cases and
serology) from the ba profile of the full SEPIAR model. We include here the
outlier parameter combinations with very high symptomatic R0 greater than 15
that were excluded from Figure 3 and Figure S6.
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Figure 8: Monte Carlo profile of the probability that an individual
(who does not have COIVD-19) who shows up to the emergency de-
partment with respiratory symptoms is severe enough to merit testing
for COVID-19 (s). Each point represents the parameter combination from the
Monte Carlo profile for the scaling parameter s with the highest log-likelihood
(with respect to observed cases) for a given value of s. All points above the blue
line have likelihoods within 2-log likelihood units of the profile MLE).
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A) B) 

Figure 9: Contributions from pre-symptomatic, symptomatic, and
asymptomatic infections to the overall force of infection 4 weeks be-
fore (A) and after the peak in reported cases (B). The calculation of the
contribution to the overall force of infection from simulated trajectories of pa-
rameter combinations from the SEPIAR model supported by case and serology
data as described in Figure 4 of the main manuscript was replicated using time
points 4 weeks before and after the peak of reported cases on April 14, 2020
instead of at the time of the peak. As in Figure, two parameter combinations
with rates of pre-symptomatic transmsison bp below 0.02 were excluded from
the plot.
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Figure 10: Plot of observed respiratory syndrome surveillance reports
compared to simulations from fitted statistical model The red line
corresponds to weekly respiratory infections from syndrome surveillance reports
in NYC hospitals in 2016, 2017 and 2019 that were used to fit the statistical
model in Section 4. The blue line represents the median estimate for the number
of expected syndrome surveillance reports (G(w, y) for that week and year from
100 simulations from the fitted statistical model. The shaded light blue region
represents the 2.5% and 97.5% quantiles from those 100 simulations.
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Figure 11: Validation analysis results from fitting model to simulated
data. We are particularly interested here in verifying the ability
of the inference pipeline to estimate the value of the probability of
symptomatic infection pS used in the simulations. A) Observed data
and simulated trajectories used for fitting. The green points denote ob-
served daily reported case counts in New York City. The red points denote
daily reported cases from a representative simulated trajectory from a "low" ba
parameter combination (ba = 0.07, R0 = 6.10, bq = 0.23, bp = 0.94, pS = 0.15,
pH = 0.16, γ = 6.33,E0 = 63566.34 z0 = 13443, and the overall reproductive
number R0NGM = 2.27), while the blue points denote daily reported cases for a
representative trajectory from a "high" ba parameter combination (ba = 0.97,
R0 = 3.08, bq = 0.16, bp = 0.99, pS = 0.15, pH = 0.17, γ = 11.73, E0 = 54806,
z0 = 11625, and R0NGM

= 3.50). B) Supported parameter ranges for the
proportion of cases that are symptomatic (pS for fits to simulated and
observed data. Red and blue dots represent respectively parameter combina-
tions supported by the case data when the model was fit to the low ba (red) or
high ba (blue) trajectories. For comparison, the green dots represent parameter
combinations supported by the case when the model was fit to observed case
data (as shown in panel B of Figure 2). All parameter combinations above
the green line have likelihoods within 2-log-likelihood units of the MLE defined
with respect to serology. Our approach recovers the value of pS used in the
simulations, and does so accurately.
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Figure 12: Comparison of infection fatality ratios (IFR) estimated from
fitted model parameters under different testing strategies. The red
shaded region denotes a histogram of the infection fatality ratio calculated with
respect to all cases, both symptomatic and asymptomatic. The IFR was calcu-
lated for each parameter combination from the SEPIAR model that was sup-
ported by both case and serology data. The proportion of hospitalized cases
that result in deaths was estimated from observed confirmed COVID-19 hos-
pitalisations and deaths in New York City during time period of the study.
The red histogram shows the range of IFR values expected under the SEPIAR
model if all cases (symptomatic and asymptomatic) are observed. Each count
in the histogram represents the expected IFR for one parameter combination
that is supported by the case and serology data. The blue histogram shows the
expected IFR if all symptomatic cases are observed. The higher IFR obtained
in the blue histogram compared to the red histogram demonstrates how differ-
ent testing strategies can alter the IFR. The orange line denotes the observed
IFR calculated by dividing the total number of confirmed COVID-19 deaths in
NYC during the study period by the total number of confirmed cases. The gap
between the orange line and the blue histogram illustrates how limited testing
capacity can affect the IFR that is estimated, since not all symptomatic cases
were tested due to limited testing capacity early in the outbreak.
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