SI Appendix

SI Appendix includes: Details about numerical calculations Simulations on the He⁺ ions injection Figures S1-S12 Supplementary Video captions 1-6

Details about numerical calculations

We model and numerically solve our system as the Mott resistor network model as schematize in Fig. S7a. A load resistance R_{load} is making a voltage divisor circuit with a resistor tensor network. Each site of our grid of size $L \times W$ is represented by 4 resistors of 3 possible values $R_{cm}^{VO_2}$, $R_{cm}^{V_5O_9}$, and $R_{MI}^{VO_2}$ (*cm* is short form of correlated metal, while *MI* is Mott Insulator). The system is initially fully insulator, *i.e.* all resistors are equal to $R_{MI}^{VO_2}$. For a finite amount of time t_{pulse} a constant voltage *V* is applied in order to obtain a voltage of the system:

$$V_{S} = \frac{R_{S}}{R_{S} + R_{\text{load}}} \tag{1}$$

where R_S denoted the total resistance of the resistors network. After the pulse the system relax and then can be applied or not another pulse. At each cycle of our simulations the entire network of resistors is updated following the probabilities:

The probability to switch from a metallic to an insulating state of VO₂:

$$P_{CM_{VO_2} \to MI_{VO_2}} = e^{\frac{-(E_B^{VO_2} - E_{cm}^{VO_2})}{KT}}$$
(2)

The probability to switch from an insulating to a metallic state of VO₂:

$$P_{MI_{VO_2} \to CM_{VO_2}} = e^{\frac{-(E_B^{VO_2} - E_{MI}^{VO_2})}{KT}}$$
(3)

The probability to switch from an insulating state of VO_2 to a metallic state of V_5O_9 :

$$P_{MI_{VO_2} \to CM_{VSO_2}} = e^{\frac{-(E_B^{VSO_2} - E_{MI}^{VO_2} - \Delta V)}{KT}}$$
(4)

The probability to switch from a metallic state of V₅O₉ to either state of VO₂:

$$P_{CM_{V_{5}O_{9}} \to VO_{2}} = e^{\frac{-(E_{B}^{V_{5}O_{9}} - E_{cm}^{V_{5}O_{9}})}{KT}}$$
(5)

Then the probability to be in a metallic state of VO₂ is: $\frac{e^{\frac{-E_{cm}^{VO2}}{KT}}}{e^{\frac{-E_{cm}^{VO2}}{KT}} + e^{\frac{-E_{mI}^{VO2}}{KT}}}.$

 $E_{MI}^{VO_2}$, $E_{cm}^{VO_2}$ and $E_B^{VO_2}$, *i.e.* the energy of the insulating and metallic state of VO₂ and the energy barrier between these 2 states, are computed in the same way of (1) as sketched in Fig. S7c and reported in Fig. S7d, and far away from the first order transition of VO₂ are kept constant, as done in (2). Instead, $E_{cm}^{V_2O_2}$ and $E_B^{V_2O_3}$ are respectively the energy of the metallic state of V₅O₉ and the energy barrier toward a state of VO₂. As shown in Fig. S7d, the values of these parameters are renormalized in respect of $E_{MI}^{VO_2}$ in order to maintain a constant difference $E_B^{V_5O_3} - E_{MI}^{VO_2}$ and $E_B^{V_5O_3} - E_{cm}^{VO_2}$ due to the physical interpretation of this transition. Indeed, the chemical barrier needed by the oxygens to leave the molecules is evaluated as constant in temperature. K is the Boltzmann constant, ΔV is the local voltage drop of the site and T is the local temperature on the site. As done in (1), the temperature is updated at each cycle by the following formula:

$$T_{ij} = T_{subs} + \frac{V^2}{C_v R_{ij}} + 4T_{ij} - k_h \sum_{\langle ik \rangle}^{firstneighbor} T_{ik}$$
(6)

Where the indices i and j denotes the coordinates of the site in the network, C_v the specific heat of the system, k_h the thermal conductivity and $\sum_{\langle ik \rangle}^{firstneighbor}$ denotes the summation over the first neighboring sites around the one with coordinates ij.

Simulations on the He⁺ ions injection.

 V_5O_9 can be thought of as an O-deficient VO_2 as has been shown in the main text. This realization leads us to the speculative possibility that we could prepare the VO_2 spatially to induce the current or E-field motivated transition directly. For practical reasons it would be of great advantage to locate where the filaments would be likely to form and the density of filaments to be written. Furthermore, it is possible that a spatially prepared VO_2 with O deficiencies would present a lower threshold for the onset of V_5O_9 metallic state resulting in a designed pattern of filaments and lower power consumption. With this in mind, we have simulated such a structure applying a finely focused He⁺ ion beam. We have access to such a beam with radius ~1 nm which has been used to write disorder in the high Tc superconductor YBa₂Cu₃O₇(*3*). In Fig. S12a we show the calculated ion tracks for a 35 keV He⁺ ion incident on a film of VO₂ using the program SRIM. In this figure we show the ion tracks for 5000 ions incident normal to a VO₂ film of 1500 Å thickness (the thickness of the samples studied in the main text). With a finely focused incident beam, the ion scattering causes the beam to broaden to ~200250 A fwhm. Even more interesting is a plot of the resultant displacement shown in Fig. S12b. The beam results in a narrow track of displacements throughout the film. It is this result which tempts us to expect that this technology will afford us substantial control over the creation of conducting filaments in the VO₂.

Figures and Captions

Fig. S1. Room-temperature XRD scans for vanadium oxide films on (100) Ge substrate.

Fig. S2. Typical volatile resistive switching in VO₂. I-V curve measured at 330K for one of the Au/VO₂/Ge devices.

Fig. S3. (a) Before and (b) after the formation of the conductive filament. The position of the conductive filament is indicated by the white arrow.

Fig. S4. The selected area electron diffraction analyses for VO₂. (a) The SAED pattern for M1 phase VO₂ at [010] zone axis. (b) Simulated M1 phase VO₂ from [010] direction. (c) The SAED for high temperature rutile phase VO₂ from [010] zone axis.
(d) Simulated SAED for R phase VO₂ from the same zone axis.

Fig. S5. Simulated electron diffraction patterns. (a), (b), (c), Simulated electron diffraction patterns for M1 VO₂ from [010] and [102], and V₅O₉ from [120], respectively. (d) The combination of M1 VO₂ [102] diffraction, two sets of twinned V₅O₉ from [102] and M1 VO₂ from [010], which matches well with the experimental results shown in the main text. The mirror plane of twins is shown in red. The yellow parallelograms mark the base vectors for M1 VO₂ in reciprocal space, while the black parallelograms show those of V₅O₉.

Fig. S6 TEM studies on the conductive filament area. (a) Dark field TEM images showing the V_5O_9 conductive filament (in yellow). Some V_5O_9 nano-grains within VO_2 matrix have been encircled. (b) High resolution TEM image acquired from the red rectangle area in (a), showing the twin structure of V_5O_9 phase.

Fig. S7. Orbital hybridization analyses for two relevant vanadates. (a) Schematic diagram showing the VO₆ octahedron. The apical and equatorial V-O bonds are indicated in black and orange colors. (b) The relationship between the geometric axis (red arrows) and the coordination axis of M1 phase VO₂. (c) The illustration of

vanadium t_{2g} d orbitals. (d), (e) Schematic of the orbital band structure of M1 phase VO₂ and V₅O₉ phase, deduced from the measured EELS result.

Fig. S8. Sketch representation of the Mott resistor network model. (a) The simulation circuits. Each site of a grid of size $L \times W$ is represented by 4 resistors. All resistors in each site have the same one of 3 possible values correspond to the 3 phases: metal VO₂, metal V₅O₉ and insulator VO₂, respectively. (b) Simulated R-T curve for VO₂ volatile switching. The transition temperature is about 340 K. (c) Cartoon schematic of the free energy of the system near T_{IMT} (T<T_{IMT} on the top and T>T_{IMT} at the bottom). (d) Energies vs Temperature computed as discussed in the Supporting

Information.

Fig. S9. Simulations of the formation and relaxation of volatile conductive filament at 338 K (close to IMT temperature). (a) Electric current of the system in arbitrary unit as a function of time. A first pulse voltage of $V_{app}/V_{th}=1.2$ is applied from t=1 until t=150 and a second pulse of $V_{app}/V_{th}=1.527$ is applied from t=300 until t=450. The substrate temperature is fixed at T=338 K. V_{th} is the voltage that triggers threshold switching. (b) Average temperature through the network as a function of time. The small variation in the sample temperature at 338 K is due to the Joule heating caused by applied voltage. (c) Resistance of the resistor network in arbitrary unit as a function of time. (d)-(i) Distributions of metallic rutile VO₂ (green), V₅O₉ phase (red) and insulator M1 VO₂ (yellow) at different time: (d) t=3 (starting of the first pulse of voltage

 $V_{app}/V_{th}=1.2$); (e) t=150 (formation of volatile conductive filament. The conductive filament is formed of rutile VO₂); (f) t=201 (during the relaxation process); (g) t=301 (starting of the first pulse of voltage $V_{app}/V_{th}=1.527$); (h) t=450 (first snapshot after the second pulse); (i) t=599 (during the relaxation process). A stronger second pulse was applied on the sample and the conductive filament is largely formed by rutile VO₂ (Joule heating). Notably very small patches of V₅O₉ can be found. The t is the simulation step. (j)-(o) The corresponding temperature distributions in the unit of Kelvin. The full simulated movie can be found in the Supplementary Video 4.

Fig. S10. Simulation results for non-volatile conductive filament at 280 K (far from

IMT temperature). a, Current across the resistor network in arbitrary unit as a function of time. A first $V_{app}/V_{th}=1.056$ pulse is applied from t=1 to t=150 and a second one of $V_{app}/V_{th}=1.2$ from t=600 to t=750. **b**, Average temperature through the network as a function of time. The small variation in the sample temperature at 280 K is due to the applied voltage that induces Joule heating. The substrate is heated to 600 K for annealing at 300<t<450 and 750<t<1200. **c**, Resistance of the network in arbitrary unit as a function of time. **d-i**, Distribution of metallic rutile VO₂ (green), V₅O₉ phase (red) and insulator M1 VO₂ (yellow) at different time as indicated in **c** with star marks. **d**, t=1 (starting position); **e**, t=299 (after the relaxation of the first applied voltage $V_{app}/V_{th}=1.056$); **f**, t=449 (just before the finishing of the first annealing process); **g**, t=501 (after the relaxation of the first annealing process); **h**, t=749 (during the second

pulse of voltage $V_{app}/V_{th}=1.2$); **i**, t=1250 (during the relaxation of the last annealing process). Note, the t is the simulation step. **j-o**, The corresponding temperature distributions in the unit of Kelvin. The full simulated movie can be found in the Supplementary Video 5.

Fig. S11. Simulation for volatile and non-volatile conductive filament at room temperature. a, Current across network in arbitrary unit as a function of time. A first voltage $V_{app}/V_{th}=1.25$ pulse is applied from t=1 until t=150 and a second $V_{app}/V_{th}=1.5$ is applied from t=600 until t=750. b, Average temperature through the network as a function of time. The small variation in the temperature of the sample at 300 K is due to the applied voltage that induce Joule heating. The substrate temperature is increased up to 620 K for annealing purpose at 300<t<450. c, Resistance of the network in

arbitrary unit as a function of time. **d-i**, Distribution of metallic rutile VO₂ (green), V₅O₉ phase (red) and insulator M1 VO₂ (yellow) at different times. **d**, t=1 (starting position); **e**, t=150 (during first pulse voltage of V_{app}/V_{th}=1.25 is applied); **f**, t=291 (after relaxation of the first pulse); **g**, t=351 (during the annealing process); **h**, t=501 (after the annealing process); **i**, t=749 (the second pulse with smaller stimuli). Notably, once the non-volatile V₅O₉ filament is formed the surrounding areas of the conductive filament might heated up by the stronger pulse, thus driving the VO₂ insulating phase into a metallic VO₂ via IMT. **j-o**, The corresponding temperature distributions in degrees Kelvin. The full simulated movie can be found in the Supplementary Video 6.

Fig. S12. Simulations on the He⁺ ions injection into VO₂ film. a, Ion beam track for
35 keV He⁺ ions incident on a film of 1500 Å of VO₂. Beam is incident from the left.
b, Displacements in the VO₂ film as a function of depth. The track of displacements is narrow through the film.

Supplementary Video 1 | In-situ TEM observation of the V5O9 conductive filament.

Supplementary Video 2 $|V_5O_9$ conductive filament reappear at the same location after the annealing.

Supplementary Video 3 | The whole time dependent numerical simulations for Fig. 5.

Supplementary Video 4 | The whole time dependent numerical simulations for Supplementary Materials Fig. 9.

Supplementary Video 5 | The whole time dependent numerical simulations for Supplementary Materials Fig. 10.

Supplementary Video 6 | The whole time dependent numerical simulations for Supplementary Materials Fig. 11.

- J. D. Valle, P. Salev, F. Tesler, N. M. Vargas, Y. Kalcheim, P. Wang, J. Trastoy, M.-H. Lee, G. Kassabian, J. G. Ramírez, M. J. Rozenberg, I. K. Schuller, Subthreshold firing in mott nanodevices. *Nature*, 569, 388–392 (2019).
- P. Stoliar, J. Tranchant, B. Corraze, E. Janod, M. -P. Besland, F. Tesler, M. Rozenberg, L. Cario. A leaky-integrate-and-fire neuron analog realized with a mott insulator. *Adv. Funct. Mater.*, 27, 1604740 (2017).
- S. A. Cybart, E. Y. Cho, T. J. Wong, B. H. Wehlin, M. K. Ma, C. Huynh, R. C. Dynes, Nano Josephson superconducting tunnel junctions in YBa₂Cu₃O_{7-δ} directly patterned with a focused helium ion beam. *Nat. Nano.* 10, 598-602 (2015)