Science Signaling

stke.sciencemag.org/cgi/content/full/14/665/eaaz9368/DC1

Supplementary Materials for

Augmented BMP signaling commits cranial neural crest cells to a chondrogenic fate by suppressing autophagic β-catenin degradation

Jingwen Yang, Megumi Kitami, Haichun Pan, Masako Toda Nakamura, Honghao Zhang, Fei Liu, Lingxin Zhu, Yoshihiro Komatsu*, Yuji Mishina*

*Corresponding author. Email: yoshihiro.komatsu@uth.tmc.edu (Y.K.); mishina@umich.edu (Y.M.)

Published 12 January 2021, *Sci. Signal.* **14**, eaaz9368 (2021) DOI: 10.1126/scisignal.aaz9368

This PDF file includes:

Fig. S1. Phenotypes due to expression of ca-ACVR1 in CNCCs during craniofacial development.

Fig. S2. Cell migration, proliferation, and survival are unaltered in ca-Acvr1 mutants.

Fig. S3. Skeletal stem cell populations are unaltered in ca-Acvr1 mutants.

Fig. S4. Noncanonical BMP signaling and TGF-β signaling are unaffected in ca-*Acvr1* mutants.

Fig. S5. LDN193189 suppresses Smad1/5/9 phosphorylation and chondrogenesis of BA1 cells in a concentration- and time-dependent manner.

Fig. S6. Increased commitment of BA1 cells to the chondrocyte fate in ca-Acvr1 mutants.

Fig. S7. *siRaptor* or rapamycin suppresses mTORC1 signaling and Wnt–β-catenin signaling.

Fig. S8. Blocking Wnt– β -catenin signaling suppresses chondrogenesis of BA1 cells but enhances chondrogenic differentiation of limb bud cells.

Fig. S9. Autophagy inhibits β -catenin signaling and is suppressed by BMP-mTORC1 signaling in BA1 cells.

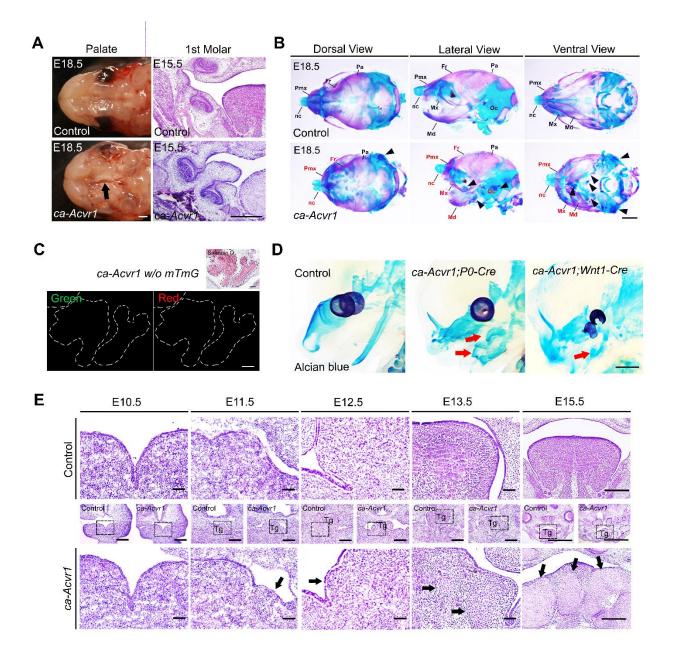
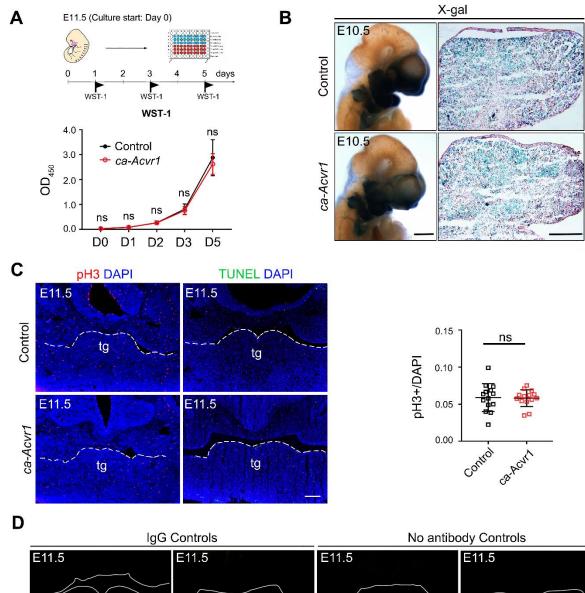

Fig. S10. Uncropped Western blots for Figs. 1, 4, and 5.

Fig. S11. Uncropped Western blots for Fig. 6.

Table S1. Genotyping PCR primers.


Table S2. Quantitative real-time PCR primers.

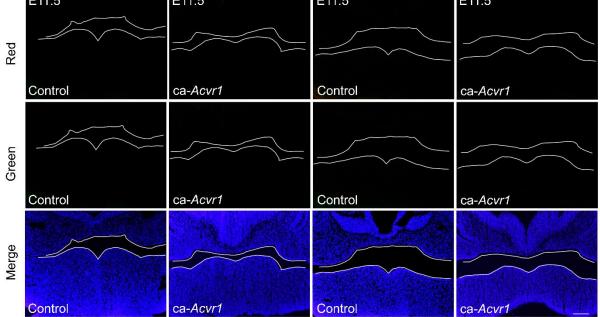

Table S3. Antibodies used in this study.

Fig. S1. Phenotypes due to expression of ca-ACVR1 in CNCCs during craniofacial

development. (A) Representative images showing the gross morphology of the palate and histological morphology of the first molar in control and ca-Acvr1 mutant embryos. Scale bars, 500 µm. n=3 mice per group. Black arrow indicates the cleft palate in mutant. (B) Representative images showing the cartilage and bone structures of the heads from control and ca-Acvr1 embryos. Scale bars, 1 mm. n=3 mice per group. Arrowheads indicate ectopic cartilages, and red labels indicate defective structures. Fr, frontal bone; Pa, parietal bone; Pmx, premaxilla bone; Mx, maxilla; Md, mandible; mc, Meckel's cartilage; nc, nasal capsule; Oc, otic capsule. (C) Representative images showing GFP and RFP signals in ectopic cartilages in a coronal section of a mutant embryo without the $R26R^{mTmG}$ reporter. Pictures were taken using the same parameters as the images in Fig. 1F. Scale bar, 100 μ m. n=3 mice per group. (**D**) Representative images showing the cartilage structures in heads of mutant embryos with the indicated genotypes. Red arrows indicate ectopic cartilages. Scale bar, 500 µm. n=3 mice per group. (E) Histological analysis of BA1 tissues during development. Representative coronal head sections (H&E staining) of control and mutant embryos at indicated time points are shown. The BA1 tissues (E10.5) and the tongue (E11.5-E15.5) that are shown in high magnification in the top and bottom rows are indicated in the lower magnification images in the middle row by black boxes. Scale bars, 300 μm (low magnification) and 50 μm (high magnification)). n=3 mice per group. Black arrows indicate abnormal structures.

Fig. S2. Cell migration, proliferation, and survival are unaltered in ca-*Acvr1* **mutants.** (**A**) The proliferation rate of CNCCs isolated from BA1 tissues (BA1 cells). n=3 independent experiments. (**B**) In vivo fate mapping of CNCCs expressing β-galactosidase in control and mutant embryos at E10.5. Scale bars, 1 mm (whole-mount), 100 µm (tissue sections). n=3 mice per group. (**C**) Representative images of pH3 (red) immunofluorescence and TUNEL staining (green) in coronal head sections from control or mutant embryos at E11.5. Nuclei are labelled with DAPI (blue). The percentage of pH3-positive cells in the CNCCs of BA1 tissues were quantified. Scale bar, 100 µm. n=13 sections from 4 embryos per group. (**D**) Representative images showing GFP (green) or RFP (red) signal in coronal sections of control and mutant embryos without primary antibody (negative controls) or with IgG as primary antibody (IgG controls). Pictures were taken using the same parameters as images in Figs. 2A, 3A, and 3B. Scale bar, 100 µm. n=3 mice per group. Error bars are mean ± s.d. ns *P* > 0.05; t-test.

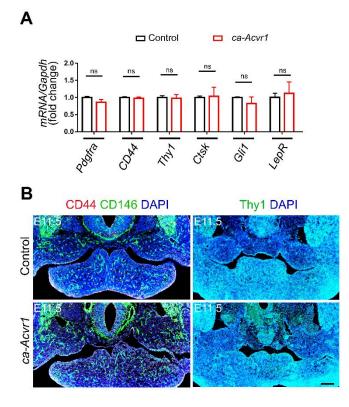


Fig. S3. Skeletal stem cell populations are unaltered in ca-*Acvr1* mutants. (A) Quantification of the expression of the skeletal stem cells markers *Pdgfra*, *CD44*, *Thy1*, *Ctsk*, *Gli1*, and *LepR* in BA1 cells from control and mutant embryos. n=3 independent experiments. (B) Representative images of CD146 (Green), CD44 (red), and Thy1 (green) immunofluorescence in coronal head sections from control and mutant embryos at E11.5. Nuclei were stained with DAPI (blue). Scale bar, 100 μ m. n=3 mice per group. Error bars are mean \pm s.d. ns P > 0.05; t-test.

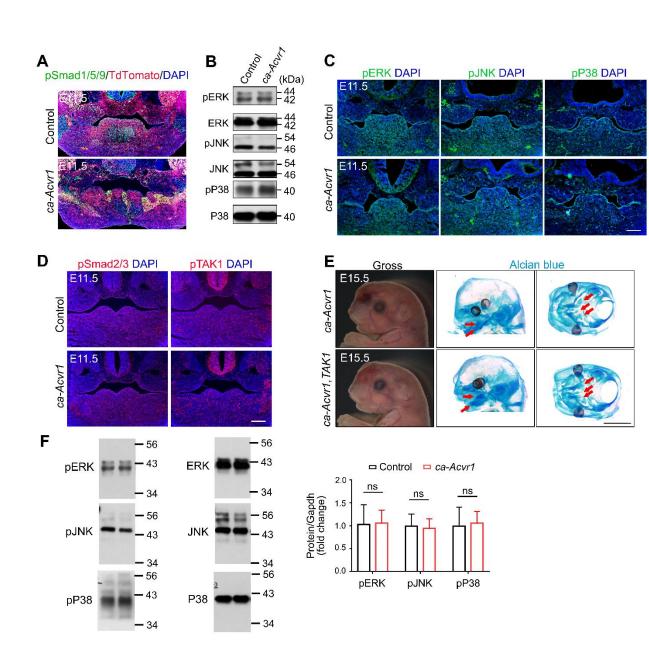


Fig. S4. Noncanonical BMP signaling and TGF-ß signaling are unaffected in ca-Acvr1 mutants. (A) Representative images showing tdTomato (red) and pSmad1/5/9 (green) immunofluorescence in coronal head sections from control and mutant embryos carrying the R26R^{tdTomato} reporter at E11.5. Nuclei are labelled with DAPI (blue). Scale bar, 100 µm. n=3 mice per group. (B) Western blot analysis of pERK, ERK, pJNK, JNK, pP38, and P38 in control and mutant BA1 tissues at E11.5. n=3 independent experiments. Uncropped western blot images and quantification are shown in (F). (C) Representative images showing pERK (green), pJNK (green), or pP38 (green) immunofluorescence in coronal head sections from control and mutant embryos at E11.5. Scale bars, 200 µm. n=3 mice per group. (D) Representative images showing pTak1 (red) or pSmad2 (red) immunofluorescence in coronal head sections from control and mutant embryos at E11.5. Scale bar, 200 µm. n=3 mice per group. (E) Representative images showing gross morphology and whole mount Alcian blue staining of the heads of E15.5 embryos from $Takl^{+/+}$; ca- $Acvrl^{flox/+}$; P0-Cre (ca-Acvrl) and $Takl^{flox/flox}$; ca- $Acvrl^{flox/+}$; P0-Cre (ca-Acvrl, *TAK1*) embryos. Scale bar, 1 mm. n= 4 mice per group. Red arrows indicate ectopic cartilages. (F) Uncropped western blot images for (B) and quantification results. Error bars are mean \pm s.d. ns P > 0.05; t-test.

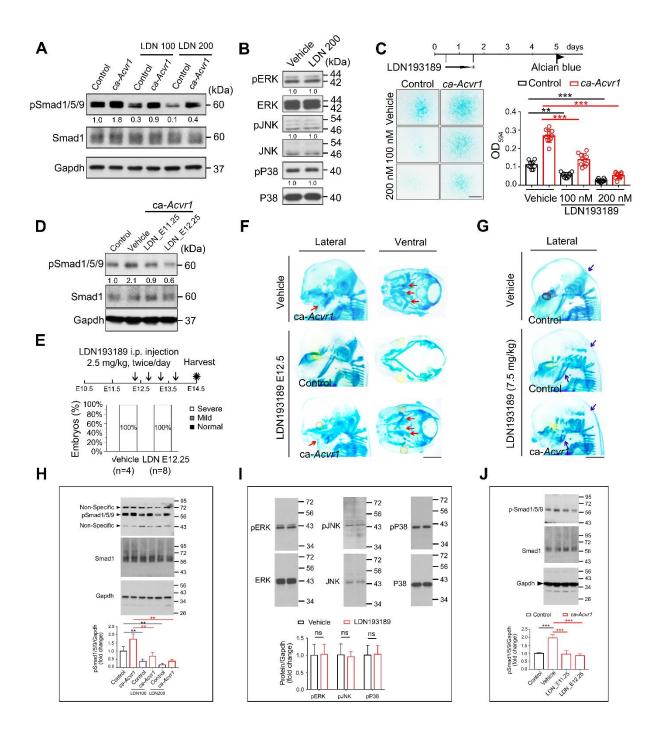
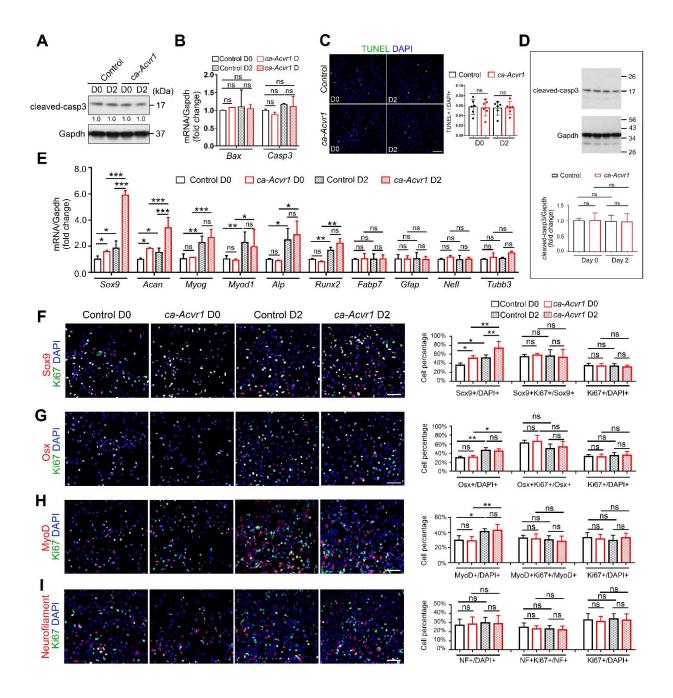
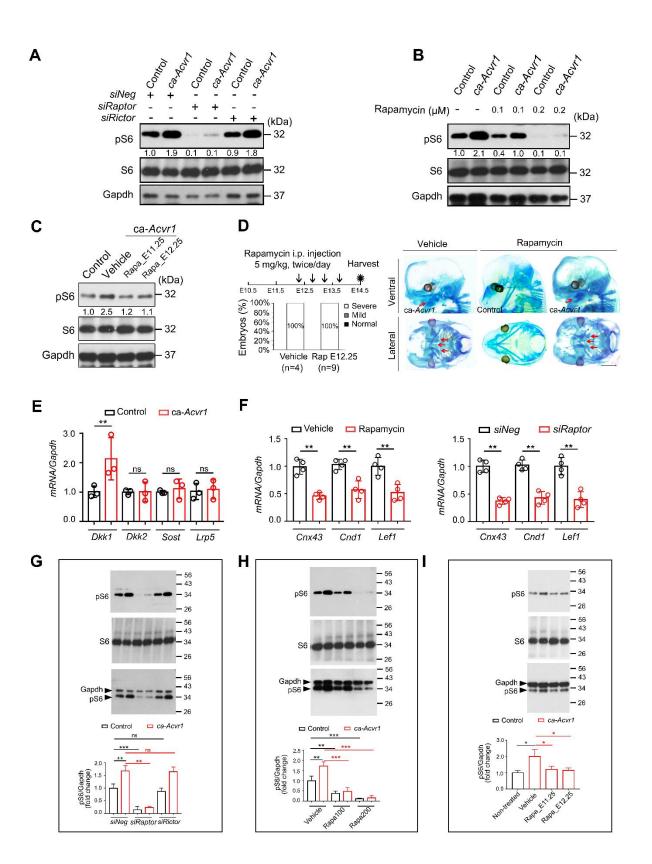




Fig. S5. LDN193189 suppresses Smad1/5/9 phosphorylation and chondrogenesis of BA1 cells in a concentration- and time-dependent manner. (A) Western blot analysis of pSmad1/5/9, total Smad1, and Gapdh in control and mutant BA1 cells stimulated with LDN193189 (100 nmol or 200 nmol) for 24 hr in the absence of ligands. n=3 independent experiments. Uncropped images and quantification are shown in (H). (B) Western blot analysis of pERK, ERK, pJNK, JNK, pP38, and P38 in control BA1 cells stimulated with LDN193189 (200 nmol) for 24 hr. n=3 independent experiments. Uncropped images and quantification are shown in (I). (C) Scheme, representative images of Alcian blue staining, and optical density quantification assessing chondrogenesis of BA1 cells treated as indicated. Scale bar, 1 mm. n=10 independent experiments. (D) Western blot analysis of pSmad1/5/9, total Smad1, and Gapdh in control and mutant BA1 tissues treated with LDN193189. n=3 mice per group. Uncropped images and quantification are shown in (J). (E and F) The ratios of each cartilage phenotype (E), and representative Alcian blue stains showing the cranial cartilage phenotypes (F) of embryos treated with LDN193189 in utero from E12.25 to E13.5. Scale bar, 1 mm. The numbers of mice examined are shown in parentheses. Red arrows indicate ectopic cartilages. (G) Representative Alcian blue stains showing cartilage phenotypes in embryos treated with LDN193189 in utero from E11.5 to E13.5. n=3 mice per group. Blue arrows indicate abnormal cartilages. (H to J) Uncropped western blot images for (A), (B), and (D), respectively, and quantification results. Error bars are mean \pm s.d. ns P > 0.05; ** P < 0.01; and *** P < 0.001; t-test (I); ANOVA (C, H, J).

(A) Western blot analysis of cleaved-caspase 3 in control and mutant BA1 cells on day 0 and day 2 of culture. n=3 independent experiments. Uncropped images and quantification are shown in (D). (B) Relative expression of *Bax* and *Casp3* in BA1 cells on day 0 and day 2 in micromass culture. n=3 independent experiments. (C) Representative images and quantification of TUNEL staining in coronal head sections from control and mutant embryos at E11.5. Nuclei were stained with DAPI. Scale bar, 100 μ m. n=3 mice per group. n=9 sections from 4 embryos per group. (**D**) Uncropped western blot images for (A) and quantification results. (E) Relative expression of chondrogenic markers (Sox9, Acan), myogenic markers (Myog, MyoD1), osteogenic markers (Runx2, Alp), and neurogenic markers (Nefl, Tubb3, Fabp7, and Gfap) in BA1 cells on day 0 and day 2 in micromass culture. n=3 independent experiments. (F to I) Representative double immunostaining images and quantification of the lineage markers Sox9 (F), Osx (G), MyoD (H) and Neurofilament (I) and the cell proliferation marker Ki67 in control and mutant BA1 cells at day 0 and day 2 of micromass culture. Scale bars, 100 µm. The percentages of single- and double-positive cells were quantified. n = 6 independent experiments. Error bars are mean \pm s.d. ns P > 0.05; * P < 0.05; ** P < 0.01; *** P < 0.001; t-test (C); ANOVA (B, D-I).

Fig. S6. Increased commitment of BA1 cells to the chondrocyte fate in ca-Acvr1 mutants.

Fig. S7. *siRaptor* or rapamycin suppresses mTORC1 signaling and Wnt–β-catenin

signaling. (A, B) Western blot analysis of pS6, total S6, and Gapdh in control and mutant BA1 cells transfected with siRaptor or siRictor (A) or stimulated with the indicated concentrations rapamycin for 24 hr (B). n=3 independent experiments. Uncropped images and quantification are shown in (G) and (H), respectively. (C) Western blot analysis of pS6, total S6, and Gapdh in control and mutant BA1 tissues of embryos treated in utero with rapamycin. n=3 mice per group. Uncropped images and quantification are shown in (I). (D) Scheme, the ratios of each cartilage phenotype (severe, mild, and normal), and representative showing the head cartilage phenotypes of the embryos treated with rapamycin in utero from E12.25 to E13.5. Scale bar, 1 mm. The numbers of mice examined are shown in parentheses. Red arrows indicate ectopic cartilages. (E) Relative expression of Dkk1, Dkk2, Sost, and Lrp5 in BA1 tissues of control and mutant embryos. n=4 mice per group. (F) Relative expression of Cnx43, Ccnd1, and Lef1 in BA1 cells transfected with *siRaptor* or stimulated with rapamycin for 24 hr. n=4 independent experiments. (G to I) Uncropped western blot images for (A to C), respectively, and quantification results. Error bars are mean \pm s.d. ns P > 0.05; * P < 0.05; ** P < 0.01; *** P < 0.001; t-test (E, F); ANOVA (G-I).

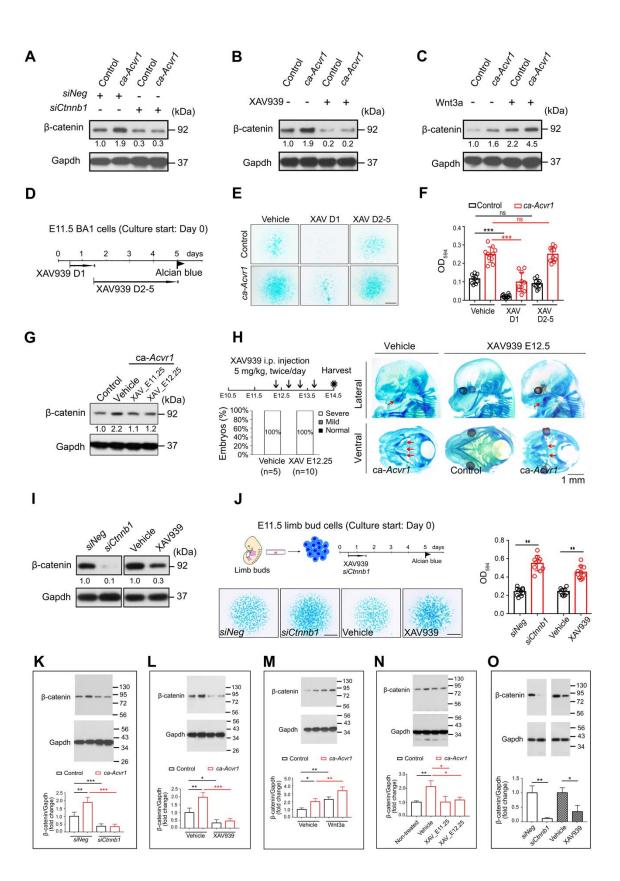


Fig. S8. Blocking Wnt–β-catenin signaling suppresses chondrogenesis of BA1 cells but enhances chondrogenic differentiation of limb bud cells. (A to C) Western blot analysis of βcatenin and Gapdh in control and mutant BA1 cells transfected with *siCtnnb1* (A), treated with XAV939 (B), or stimulated with Wnt3a (C) for 24 hr. n=3 independent experiments. Uncropped images and quantification are shown in (K to M), respectively. (D to F) Scheme (D), representative images of Alcian blue staining (E), and the optical density quantification (F) to assess chondrogenesis of BA1 cells treated with XAV939 during the indicated time period. Scale bar, 1 mm. n=10 independent experiments. (G) Western blot analysis of β -catenin and Gapdh in control and mutant BA1 tissues of embryos treated with XAV939. n=3 mice per group. Uncropped images and quantification are shown in (N). (H) Scheme, the ratios of each cartilage phenotype (severe, mild, and normal), and representative images showing the head cartilage phenotypes of embryos treated in utero with XAV939 from E12.25 to E13.5. Scale bar, 1 mm. The numbers of mice examined are shown in parentheses. Red arrows indicate ectopic cartilages. (I) Western blot analysis of β -catenin and Gapdh in limb bud cells transfected with *siCtnnb1* or treated with XAV939 for 24 hr. n=3 independent experiments. Uncropped images and quantification are shown in (O). (J) Scheme showing the isolation and micromass culture of cells from limb buds from E11.5 control embryos, representative images of Alcian blue staining, and the optical density quantification to show the chondrogenic ability of limb bud cells transfected with siCtnnb1 or treated with XAV939 at day 1. Scale bar, 1 mm. n=10 independent experiments. (K to O) Uncropped western blot images and quantification results for (A), (B), (C), (G), and (I), respectively. Error bars are mean \pm s.d. ns P > 0.05; * P < 0.05; ** P < 0.01; *** *P* < 0.001; t-test (J, O); ANOVA (F, K-N).

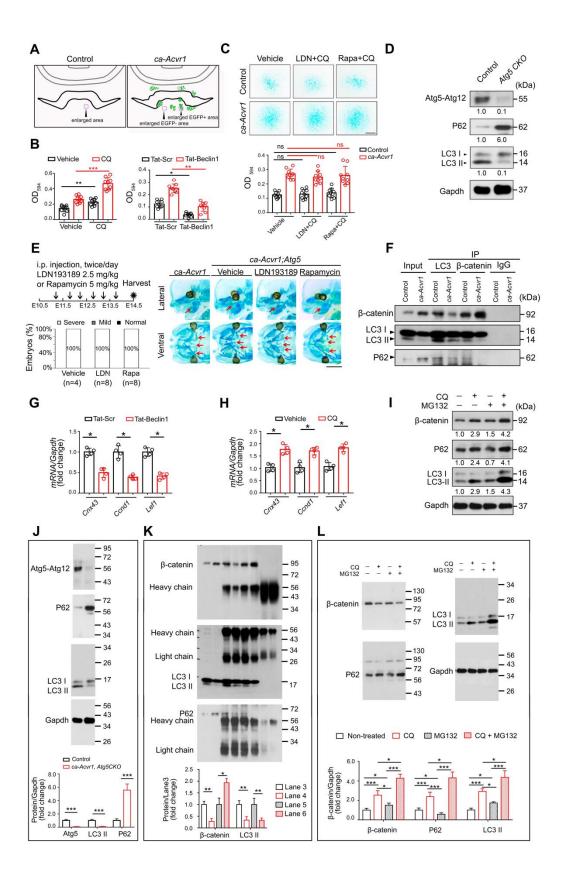
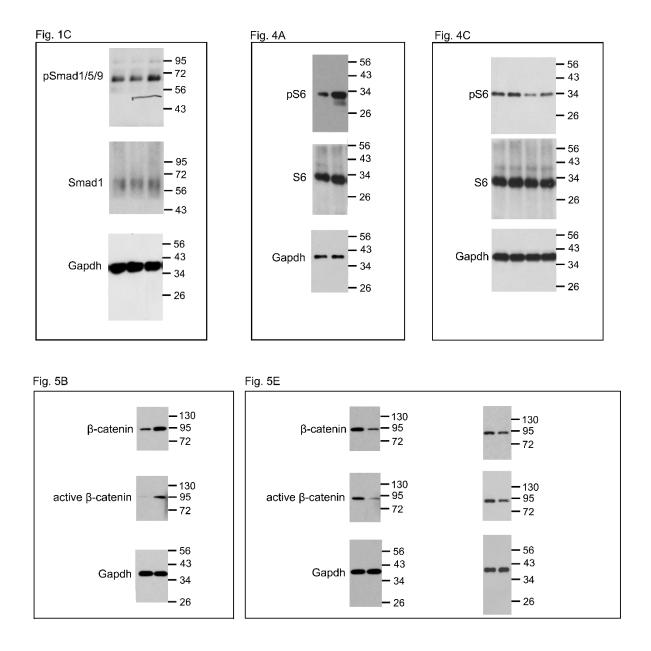
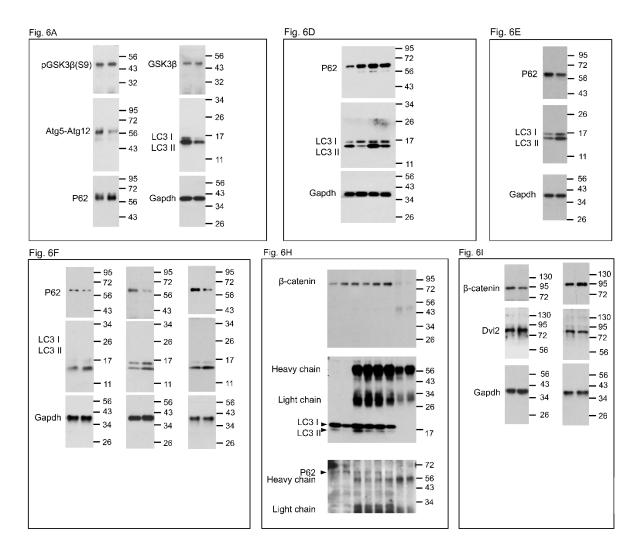




Fig. S9. Autophagy inhibits β-catenin signaling and is suppressed by BMP-mTORC1 signaling in BA1 cells (A) Schematic drawing to indicate the position of magnified regions in Fig. 6B. (B) Quantification of Alcian blue staining of BA1 cells stimulated with CQ or Tat-Beclin1. n=10 independent experiments. (C) Representative images and quantification of Alcian blue staining to assess chondrogenesis by BA1 cells treated with LDN193189 (LDN) and plus CQ or with rapamycin (rapa) plus CQ at day 1 of culture. Scale bar, 1 mm. n=10 independent experiments. (D) Western blot for the Atg5-Atg12 conjugate, P62, LC3, and Gapdh in control and Atg5 CKO (Atg5^{flox/flox}; P0-Cre) BA1 tissues at E11.5. n=3 independent experiments. Uncropped images and quantification are shown in (J). (E) Schematic representations, the ratios of each cartilage phenotype, and representative images showing cartilage structures in the heads of ca-Acvr1,Atg5 compound mutant embryos (Atg5^{flox/flox};ca-Acvr1^{flox/+};P0-Cre) treated in utero with LDN193189 or rapamycin from E11.25 to E13.5. Red arrows indicate ectopic cartilages. Scale bar, 1 mm. The numbers of mice examined are shown in parentheses. (F) Immunoblotting for β -catenin, LC3, and P62 in LC3 and β -catenin immunoprecipitates (IP) from lysates of control and mutant BA1 tissues. n = 3 independent experiments. Uncropped images and quantification are shown in (K). (G, H) Relative expression of *Cnx43*, *Ccnd1*, and *Lef1* in BA1 cells treated with Tat-Beclin1 peptide (G) or CQ (H) for 24 hr. n=3 independent experiments. (I) Western blot for β -catenin, LC3, P62, and Gapdh in mutant BA1 cells after stimulation with MG-132 and/or CQ as indicated for 24 hr. n= 3 independent experiments. Uncropped images and quantification are shown in (L). (J to L) Uncropped western blot images and quantification results for (D), (F), and (I), respectively. Error bars are mean \pm s.d. ns P > 0.05; * P < 0.05; ** P< 0.01; *** *P* < 0.001; t-test (G, H, J, K); ANOVA (B, C, L).

western blots shown in Figs. 1, 4, and 5 are provided.

Fig. S11. Uncropped Western blots for Fig. 6. Uncropped images of scanned western blots shown in Fig.6 are provided.

Table S1. Genotyping PCR primers.

Allele		Forward (5' to 3')	Reverse (5' to 3')		
ca-Acvrl ^{flox/lofx}	floxed (580 bp)	GTGCTGGTTATTGTGCTGTCTC	GACGACAGTATCGGCCTCAGGAA		
	wild type (334 bp)	GAGGACGCAGTCCAGTACCT	TAGCCTCTGCCTCACGCCCTGC		
Tak1 ^{flox/lofx}	floxed (300 bp)	GATACCTTACACTGGGGACCA	GGCATTCAGTTGTGGAGCATT		
	wild type (200 bp)				
Atg5 ^{flox/flox}	floxed (700 bp)	ACAACGTCGAGCACAGCTGCGC AAGG	GTACTGCATAATGGTTTAACTCTT GC		
	wild type (350 bp)	GAATATGAAGGCACACCCCTGA AATG	GTACTGCATAATGGTTTAACTCTT GC		
Cre	Cre (696 bp)	GAGTGATGAGGTTCGCAAGA	CTACACCAGAGACGGAAATC		
	wild type (371 bp)	ATGCTAGACCTGGGCAGCCATA	CATGCTAGCAGCTCGGAGAAAC		
$R26R^{mTmG}$	mTmG (195 bp)	CTCGTGATCTGCAACTCCAGTC	TCAATGGGCGGGGGGTCGTT		
	wild type (290 bp)	CTCGTGATCTGCAACTCCAGTC	CTCGATGGAAAATACTCCGAGG		
$R26R^{LacZ}$	LacZ (550 bp)	CTCGTGATCTGCAACTCCAGTC	GAGACTAGTGAGACGTGCTACT		
	wild type (290 bp)	CTCGTGATCTGCAACTCCAGTC	CTCGATGGAAAATACTCCGAGG		
R26R ^{tdTomato}	tdTomato (196 bp)	GGCATTAAAGCAGCGTATCC	CTGTTCCTGTACGGCATGG		
	wild type (297 bp)	AAGGGAGCTGCAGTGGAGTA	CCGAAAATCTGTGGGAAGTC		

Gene	Forward (5' to 3')	Reverse (5' to 3')			
Mouse Sox9	GACTTCCGCGACGTGGAC	GTTGGGCGGCAGGTACTG			
Mouse Col2a1	GGCAATAGCAGGTTCACGTACA	CGATAACAGTCTTGCCCCACTT			
Mouse Acan	TCGAGGACAGCGAGGCC	TCGAGGGTGTAGCGTGTAGAGA			
Mouse Cnx43	TGGGGGAAAGGCGTGAGGGA	ACCCATGTCTGGGCACCTCTCTT			
Mouse Ccnd1	GCGTACCCTGACACCAATCTC	CTCCTCTTCGCACTTCTGCTC			
Mouse Lef1	TCTCAAGGACAGCAAAGCTC	CACTTGAGGCTTCATGCACAT			
Mouse Dkk1	CTCATCAATTCCAACGCGATCA	GCCCTCATAGAGAACTCCCG			
Mouse Dkk2	CTGATGCGGGTCAAGGATTCA	CTCCCCTCCTAGAGAGGACTT			
Mouse Sost	AGCCTTCAGGAATGATGCCAC	CTTTGGCGTCATAGGGATGGT			
Mouse Lrp5	AAGGGTGCTGTGTACTGGAC	AGAAGAGAACCTTACGGGACG			
Mouse Axin2	TGACTCTCCTTCCAGATCCCA	TGCCCACACTAGGCTGACA			
Mouse Alp	GGACAGGACACACACACACA	CAAACAGGAGAGCCACTTCA			
Mouse Runx2	GACTGTGGTTACCGTCATGGC	ACTTGGTTTTTCATAACAGCGGA			
Mouse Myog	GAGACATCCCCCTATTTCTACCA	GCTCAGTCCGCTCATAGCC			
Mouse MyoD1	CCACTCCGGGACATAGACTTG	AAAAGCGCAGGTCTGGTGAG			
Mouse Nestin	CCCTGAAGTCGAGGAGCTG	CTGCTGCACCTCTAAGCGA			
Mouse Nefl	CCGTACTTTTCGACCTCCTACA	CTTGTGTGCGGATAGACTTGAG			
Mouse Tubb3	TAGACCCCAGCGGCAACTAT	GTTCCAGGTTCCAAGTCCACC			
Mouse Fabp7	GGACACAATGCACATTCAAGAAC	CCGAACCACAGACTTACAGTTT			
Mouse GFAP	CCCTGGCTCGTGTGGATTT	GACCGATACCACTCCTCTGTC			
Mouse Bax	TGAAGACAGGGGCCTTTTTG	AATTCGCCGGAGACACTCG			
Mouse Casp3	ATGGAGAACAACAAAACCTCAGT	TTGCTCCCATGTATGGTCTTTAC			
Mouse Pdgfra	AGAGTTACACGTTTGAGCTGTC	GTCCCTCCACGGTACTCCT			
Mouse Ctsk	GAAGAAGACTCACCAGAAGCAG	TCCAGGTTATGGGCAGAGATT			
Mouse LepR	TGGTCCCAGCAGCTATGGT	ACCCAGAGAAGTTAGCACTGT			
Mouse Gli1	CCAAGCCAACTTTATGTCAGGG	AGCCCGCTTCTTTGTTAATTTGA			
Mouse Thy1	TGCTCTCAGTCTTGCAGGTG	TGGATGGAGTTATCCTTGGTGTT			
Mouse CD44	TCGATTTGAATGTAACCTGCCG	CAGTCCGGGAGATACTGTAGC			
Mouse Gapdh	AGGTCGGTGTGAACGGATTTG	AGGTCGGTGTGAACGGATTTG			

 Table S2. Quantitative real-time PCR primers.

Antibody	Clone NO.	Species	Supplier	Cat NO.	IF	IB	IP
Sox9	3C10	Mouse	Abcam	ab76997	1:400		
EGFP	polyclonal	Rabbit	Abcam	ab290	1:200		
GFP	B2	Mouse	Santa Cruz	sc-9996	1:100		
Phospho-	D5B10	Rabbit	Cell signaling	13820	1:100	1:1000	
Smad1/5/9							
Smad1	D59D7	Rabbit	Cell signaling	6944		1:1000	
Phospho-S6	D68F8	Rabbit	Cell signaling	5364	1:500	1:5000	
ribosomal protein							
S6 ribosomal	5G10	Rabbit	Cell signaling	2217		1:5000	
protein							
LC3	polyclonal	Rabbit	Sigma-Aldrich	L7543	1:300	1:4000	1:400
Atg5	polyclonal	Rabbit	Cell signaling	2630		1:1000	
P62	polyclonal	Rabbit	Cell signaling	5114		1:1000	
β-catenin		Mouse	DB Bioscience	610154	1:200	1:1000	1:200
active β-catenin	D13A1	Rabbit	Cell signaling	8814		1:1000	
Phospho-Histone	polyclonal	Rabbit	Thermo Fisher	44-1190G	1:500	1:1000	
H3							
Ki67	D3B5	Rabbit	Cell signaling	9129	1:500		
Phospho-p44/42	D13.14.4E	Rabbit	Cell signaling	4370	1:100	1:1000	
MAPK (Erk1/2)							
p44/42 MAPK	137F5	Rabbit	Cell signaling	4695		1:1000	
(Erk1/2)							
Phospho-	81E11	Rabbit	Cell signaling	4668	1:100	1:1000	
SAPK/JNK							
SAPK/JNK	polyclonal	Rabbit	Cell signaling	9252		1:1000	
Phospho-p38	D3F9	Rabbit	Cell signaling	4511	1:100	1:1000	
MAPK							
p38 MAPK	D13E1	Rabbit	Cell signaling	8690		1:1000	
Phospho-TAK1	polyclonal	Rabbit	Cell signaling	9339	1:100		
Phospho-SMAD2	E8F3R	Rabbit	Cell signaling	18338	1:100		
CD146	EPR3208	Rabbit	Abcam	ab75769	1:200		
CD44	EPR18668	Rabbit	Abcam	ab189524	1:200		
CD90	IBL-6/23	Rabbit	Abcam	ab3105	1:200		
Osx	polyclonal	Rabbit	Abcam	ab22552	1:200		
MyoD	C-20	Rabbit	Santa Cruz	sc-304	1:100		
Neurofilament		Rabbit	DSHB	2H3	1:100		
GSK-3β	27C10	Rabbit	Cell Signaling	9315		1:1000	
Phospho-GSK-3β	D85E12	Rabbit	Cell Signaling	5558		1:1000	
cleaved caspase-3	Asp175	Rabbit	Cell Signaling	9661		1:1000	
Dvl2	polyclonal	Rabbit	Cell Signaling	3216		1:1000	
Gapdh	D16H11	Rabbit	Cell Signaling	5174		1:2000	

Table S3. Antibodies used in this study.