Supplemental Methods

Physicochemical rules for identifying monoclonal antibodies with drug-like specificity

Yulei Zhang, Lina Wu, Priyanka Gupta, Alec A. Desai, Matthew D. Smith, Lilia A. Rabia, Seth D. Ludwig, Peter M. Tessier

Individual chemical rules for identifying antibodies with low specificity. The chemical rules were generated using threefold cross validation methods and were required to meet a number of constraints. First, the clinical-stage mAbs (137) were split into training (80%) and test (20%) sets in ten different ways using stratified sampling (Table S6). The training sets were further divided into three partitions (folds), and two partitions were used for training and one for validation. Individual rules were required to satisfy the following constraints: i) adjusted accuracy (herein simply referred to as accuracy) of preclinical antibodies (training set) >55%; ii) % mAbs flagged with high specificity (preclinical, training set) < % mAbs flagged with low specificity (preclinical, training set); iii) accuracy (clinical mAbs, training set) >55% in each fold (three constraints for each of the ten 80/20 splits); iv) difference between the accuracy of training (two folds) and validation (one fold) < 5% (three constraints for each of the ten 80/20 splits, clinical mAbs); v) % mAbs flagged with high specificity (defined by each individual assay) < % mAbs flagged with low specificity (defined by each individual assay; five constraints that were evaluated using the entire 80% of the clinical antibody training data for each of the ten 80/20 splits); vi) average validation accuracy for each of the ten 80/20 splits > 60% where the average validation accuracy is the average of the validation accuracy for all observed flag values within each 80/20 split; vii) average test accuracy for each of the ten 80/20 splits > 50% where the average test accuracy is the average of the test accuracies for all observed flag values within each 80/20 split. These constraints are summarized in Table S7. Finally, the rules were required to be observed in each of the ten 80/20 splits, although different values for the rules were allowed.

Combined rules for enhancing the identification of mAbs with low specificity. Sets of rules were generated by combining single rules together (up to six single rules per combined set were evaluated), as explained in the Results section. Each mAb was considered to have low specificity if flagged by four or five rules (as specified). Sets of rules in the first round of analysis were only accepted if they met several requirements: i) accuracy >60% (preclinical mAbs, training set); ii) % mAbs flagged with high specificity <10% (preclinical mAbs, training set); iii) accuracy (clinical mAbs, training set) >60% in each fold (three constraints for each of the ten 80/20 splits); iv)

difference between the accuracy of training (two folds) and validation (one fold) <10% (three constraints for each of the ten 80/20 splits, clinical mAbs); v) flag <5% clinical-stage mAbs with high specificity in training sets (as defined combination of five assays); vi) % accuracy (clinical mAbs, training set) >60% (defined by each individual assay; five constraints that were evaluated using the entire 80% of the clinical antibody training data for each of the ten 80/20 splits); and vii) % accuracy (clinical mAbs, training set) >60% (defined by combination of five assays; one constraint was evaluated using the entire 80% of the clinical antibody training data for each of the ten 80/20 splits). These constraints are summarized in Table S7. Finally, the combined rules (with the same values for each rule) were required to be observed in each of the ten 80/20 splits. The best sets of combined rules (Table S9) in the first round of analysis were identified as those with the lowest coefficients of variation for the average validation accuracy (ten 80/20 splits).

Next, mAbs that were not flagged as polyspecific in the first round of analysis (Set A in Table S9, <4 flags, 121 of 137 clinical mAbs and 375 of 424 preclinical mAbs) were evaluated in round 2 of analysis. First, single rules were generated using the same constraints as used in the first round of analysis. Next, combined sets of rules using the six rules in Set A (Table S9) and up to six additional rules were required to meet a number of constraints: i) accuracy >70% (preclinical mAbs, training set); ii) accuracy (clinical mAbs, training set) >75% in each fold (three constraints for each of the ten 80/20 splits); iii) difference between the accuracy of training (two folds) and validation (one fold) <10% (three constraints for each of the ten 80/20 splits, clinical mAbs); iv) flag <10% clinical-stage mAbs with high specificity in training sets (as defined by the combination of five assays); v) % accuracy (clinical mAbs, training set) >70% (defined by each individual assay; five constraints that were evaluated using the entire 80% of the clinical antibody training data for each of the ten 80/20 splits); and vi) % accuracy (clinical mAbs, training set) >75% (defined by combination of five assays; one constraint that was evaluated using the entire 80% of the clinical antibody training data for each of the ten 80/20 splits). These constraints are summarized in Table S7. Finally, the combined rules (with the same values for each rule) were required to be observed in each of the ten 80/20 splits. The best five sets of combined rules in concert with Set A (Table S9) were identified as those with the lowest coefficients of variation for the average validation accuracy (ten 80/20 splits; Table S12).

Deep sequencing and data analysis. The antibody libraries were evaluated using deep sequencing, as described in the Methods section. The V_H region of the scFab gene was amplified via two-step PCR. The first step was performed using primers that were complementary to V_H and added the Illumina adapter sequences and barcodes. The second reaction used the purified PCR

product from the first reaction and primers identical to the Illumina adapter sequences. The primers are summarized below:

Primer Name	Sequence	Function
Key	p5-i5-filler-plasmid_complement	
CSpr90	AATGATACGGCGACCACCGAGATCTACACATCGTACGTCACTCGCTACCGCTGGAGCTTCTT CTGGC	
CSpr91	AATGATACGGCGACCACCGAGATCTACACACTATCTGTCACTCGCTACCGCTGGAGCTTCTT CTGGC	Forward
CSpr92	AATGATACGGCGACCACCGAGATCTACACTAGCGAGTTCACTCGCTACCGCTGGAGCTTCTT CTGGC	Primer for
CSpr93	AATGATACGGCGACCACCGAGATCTACACCTGCGTGTTCACTCGCTACCGCTGGAGCTTCTT CTGGC	Sample Preparation
CSpr94	AATGATACGGCGACCACCGAGATCTACACTCATCGAGTCACTCGCTACCGCTGGAGCTTCTT CTGGC	
CSpr95	AATGATACGGCGACCACCGAGATCTACACCGTGAGTGTCACTCGCTACCGCTGGAGCTTCTT CTGGC	
Key	p7-i7-filler-plasmid_complmement	
MSpr14	CAAGCAGAAGACGGCATACGAGATAACTCTCGGTGACTGCCAATGGAAAAACAGAGGGCCC	
MSpr15	CAAGCAGAAGACGGCATACGAGATACTATGTCGTGACTGCCAATGGAAAAACAGAGGGCCC	Deverse
MSpr16	CAAGCAGAAGACGGCATACGAGATAGTAGCGTGTGACTGCCAATGGAAAAACAGAGGGCCC	Reverse Primer for
MSpr17	CAAGCAGAAGACGGCATACGAGATCAGTGAGTGTGACTGCCAATGGAAAAACAGAGGGCCC	
MSpr18	CAAGCAGAAGACGGCATACGAGATCGTACTCAGTGACTGCCAATGGAAAAACAGAGGGCCC	Sample Preparation
MSpr19	CAAGCAGAAGACGGCATACGAGATCTACGCAGGTGACTGCCAATGGAAAAACAGAGGGCCC	Fieparation
CSpr96	TCACTCGCTACCGCTGGAGCTTCTTCTGGC	Read1 Primer
MSpr12	GGTGACTGCCAATGGAAAAACAGAGGGCCC	Read2 Primer
MSpr13	GGGCCCTCTGTTTTTCCATTGGCAGTCACC	Index1 Primer

The raw sequencing files from Illumina MiSeq (300 bp paired-end sequencing reaction) were merged together using BBMerge1 with the qtrim parameter set to 15 and all other parameters set to default values. The resulting merged ".fastq" file was converted to a ".fasta" file and analyzed line by line. Sequences were translated with BioPython2 if they were the correct size (378 bp) without any 'N' base calls. The frequency of each set of mutations (herein referred to as a mutational string) was counted if the first residue of the translation was the correct amino acid ('A') and there were no stop codons. If the first residue was incorrect or there was a stop codon, the translation of the reverse complement was checked. The frequency of each mutational string was determined and exported into a ".csv" file for calculation of the enrichment ratios.

References

- 1. Bushnell, B.; Rood, J.; Singer, E. BBMerge Accurate paired shotgun read merging via overlap. *Plos One* **2017**, *12*, (10).
- 2. Cock, P. J. A.; Antao, T.; Chang, J. T.; Chapman, B. A.; Cox, C. J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; de Hoon, M. J. L. Biopython: freely available

Python tools for computational molecular biology and bioinformatics. *Bioinformatics* **2009**, *25*, (11), 1422-1423.

Table S5. Maximum and minimum values for the observed counts of amino acids (weighted by their solvent accessibilities) and net charges (pH 7.4) of different regions within the variable domains of clinical-stage and preclinical mAbs in the training sets. Glycine is assumed to be fully exposed (SASA value of one). The net charges were calculated by assigning values of +1 for R and K, +0.1 for H, and -1 for D and E. The CDRs were defined using a combination of Chothia and Kabat numbering, and heavy chain CDR3 was defined to also include two additional N-terminal residues. It is expected that the performance of the rules generated in this study will be highest for mAbs that do not violate any of these limits.

Max limits	Α	С	D	Е	F	G	Η	Ι	K	L	Μ
H1	0.81	0	1.12	0.64	0.78	6	0.62	1.11	0.73	0.28	0.10
H2	0.98	0	2.01	1.79	0.81	5	0.80	1.48	1.79	0.32	0.64
H3	1.15	0.05	1.88	0.70	0.93	4	0.76	1.07	0.92	1.67	0.90
H123	1.37	0.05	2.61	2.41	1.47	9	1.49	1.69	2.16	1.67	0.91
L1	0.82	0.02	2.43	0.80	0.68	4	0.92	1.30	1.74	0.61	0.01
L2	0.45	0	1.95	0.94	0.60	2	0.36	0.75	0.62	0.54	0.24
L3	0.68	0.05	0.78	0.85	0.49	4	0.67	0.69	0.53	0.92	0.50
L123	1.02	0.05	2.71	1.56	0.73	7	0.99	1.30	1.74	1.25	0.50
CDR	1.95	0.05	4.22	3.04	1.47	12	1.80	1.79	2.89	1.78	0.91
VH	3.39	0.05	3.63	4.34	1.47	18	1.49	2.18	4.73	2.65	1.02
VL	2.98	0.06	4.54	4.31	1.22	17	1.26	1.59	4.05	2.67	0.50
Fv	5.94	0.06	6.70	6.99	1.67	30	1.80	2.80	7.41	4.29	1.02
framework	4.66	0.03	4.43	5.51	0.99	19	0.88	1.59	6.37	3.37	0.64
										# of	
Max limits	N	Р	Q	R	S	Т	V	W	Y	# of residues	charge
Max limits H1	N 1.28	P 0.61	Q 0.02	R 0.68	S 2.01	T 1.54	V 0.63	W 0.41	Y 2.02		charge
										residues	_
H1	1.28	0.61	0.02	0.68	2.01	1.54	0.63	0.41	2.02	residues 12	1.1
H1 H2	1.28 2.33	0.61 0.81	0.02 2.10	0.68 1.47	2.01 2.82	1.54 1.50	0.63 0.67	0.41 0.63	2.02 1.59	residues 12 19	1.1
H1 H2 H3	1.28 2.33 0.81	0.61 0.81 0.79	0.02 2.10 0.60	0.68 1.47 1.13	2.01 2.82 1.67	1.54 1.50 1.20	0.63 0.67 1.83	0.41 0.63 1.06	2.02 1.59 2.07	residues 12 19 23	1.1 3 3.1
H1 H2 H3 H123	1.28 2.33 0.81 2.88	0.61 0.81 0.79 1.09	0.02 2.10 0.60 2.10	0.68 1.47 1.13 1.87	2.01 2.82 1.67 4.60	1.54 1.50 1.20 2.54	0.63 0.67 1.83 1.83	0.41 0.63 1.06 1.18	2.02 1.59 2.07 3.59	residues 12 19 23 50	1.1 3 3.1 4.1
H1 H2 H3 H123 L1	1.28 2.33 0.81 2.88 1.51	0.61 0.81 0.79 1.09 0.61	0.02 2.10 0.60 2.10 1.31	0.68 1.47 1.13 1.87 1.73	2.01 2.82 1.67 4.60 3.28	1.54 1.50 1.20 2.54 1.37	0.63 0.67 1.83 1.83 0.84	0.41 0.63 1.06 1.18 0.47	2.02 1.59 2.07 3.59 1.07	residues 12 19 23 50 17	1.1 3 3.1 4.1 3.2
H1 H2 H3 H123 L1 L2	1.28 2.33 0.81 2.88 1.51 1.41	0.61 0.81 0.79 1.09 0.61 0.77	0.02 2.10 0.60 2.10 1.31 0.59	0.68 1.47 1.13 1.87 1.73 1.40	2.01 2.82 1.67 4.60 3.28 2.39	1.54 1.50 1.20 2.54 1.37 1.44	0.63 0.67 1.83 1.83 0.84 0.33	0.41 0.63 1.06 1.18 0.47 0.64	2.02 1.59 2.07 3.59 1.07 0.86	residues 12 19 23 50 17 7	$ \begin{array}{r} 1.1 \\ 3 \\ 3.1 \\ 4.1 \\ 3.2 \\ 2.1 \\ \end{array} $
H1 H2 H3 H123 L1 L2 L3	1.28 2.33 0.81 2.88 1.51 1.41 0.97	0.61 0.81 0.79 1.09 0.61 0.77 0.72	0.02 2.10 0.60 2.10 1.31 0.59 0.57	0.68 1.47 1.13 1.87 1.73 1.40 0.69	2.01 2.82 1.67 4.60 3.28 2.39 1.30	1.54 1.50 1.20 2.54 1.37 1.44 1.03	0.63 0.67 1.83 1.83 0.84 0.33 0.59	0.41 0.63 1.06 1.18 0.47 0.64 0.47	2.02 1.59 2.07 3.59 1.07 0.86 0.95	residues 12 19 23 50 17 7 12	$ \begin{array}{r} 1.1 \\ 3 \\ 3.1 \\ 4.1 \\ 3.2 \\ 2.1 \\ 2.1 \end{array} $
H1 H2 H3 H123 L1 L2 L3 L123	1.28 2.33 0.81 2.88 1.51 1.41 0.97 2.94	0.61 0.81 0.79 1.09 0.61 0.77 0.72 0.94	0.02 2.10 0.60 2.10 1.31 0.59 0.57 1.31	0.68 1.47 1.13 1.87 1.73 1.40 0.69 2.70	2.01 2.82 1.67 4.60 3.28 2.39 1.30 5.36	1.54 1.50 1.20 2.54 1.37 1.44 1.03 2.06	0.63 0.67 1.83 1.83 0.84 0.33 0.59 1.16	0.41 0.63 1.06 1.18 0.47 0.64 0.47 0.71	2.02 1.59 2.07 3.59 1.07 0.86 0.95 1.74	residues 12 19 23 50 17 7 12 33	$ \begin{array}{r} 1.1 \\ 3 \\ 3.1 \\ 4.1 \\ 3.2 \\ 2.1 \\ 2.1 \\ 5.3 \\ 7.1 \\ 7.1 \\ \end{array} $
H1 H2 H3 H123 L1 L2 L3 L123 CDR	1.28 2.33 0.81 2.88 1.51 1.41 0.97 2.94 3.84	0.61 0.81 0.79 1.09 0.61 0.77 0.72 0.94 1.68	0.02 2.10 0.60 2.10 1.31 0.59 0.57 1.31 3.12	$\begin{array}{r} 0.68 \\ 1.47 \\ 1.13 \\ 1.87 \\ 1.73 \\ 1.40 \\ 0.69 \\ 2.70 \\ 2.74 \end{array}$	2.01 2.82 1.67 4.60 3.28 2.39 1.30 5.36 8.22	$ \begin{array}{r} 1.54 \\ 1.50 \\ 1.20 \\ 2.54 \\ 1.37 \\ 1.44 \\ 1.03 \\ 2.06 \\ 3.58 \\ \end{array} $	0.63 0.67 1.83 1.83 0.84 0.33 0.59 1.16 1.96	0.41 0.63 1.06 1.18 0.47 0.64 0.47 0.71 1.34	2.02 1.59 2.07 3.59 1.07 0.86 0.95 1.74 4.05	residues 12 19 23 50 17 7 12 33 79	$ \begin{array}{r} 1.1 \\ 3 \\ 3.1 \\ 4.1 \\ 3.2 \\ 2.1 \\ 2.1 \\ 5.3 \\ 7.1 \\ \end{array} $

Fv

framework

6.86

4.02

5.36

4.75

7.26

6.70

5.57

4.52

20.64

15.17

10.93

9.43

4.29

3.39

1.69

0.54

4.70

1.52

238

161

9.1

5.1

Min limits	Α	С	D	Ε	F	G	Н	Ι	K	L	Μ
H1	0	0	0	0	0	0	0	0	0	0	0
H2	0	0	0	0	0	0	0	0	0	0	0
H3	0	0	0	0	0	0	0	0	0	0	0
H123	0	0	0	0	0	1	0	0	0	0	0
L1	0	0	0	0	0	0	0	0	0	0	0
L2	0	0	0	0	0	0	0	0	0	0	0
L3	0	0	0	0	0	0	0	0	0	0	0
L123	0	0	0	0	0	0	0	0	0	0	0
CDR	0	0	0	0	0	1	0	0	0	0	0
VH	0.35	6E-05	0.29	0.30	0	7	0	0	1.17	0.02	0
VL	0.13	3E-05	0.03	0.60	0.01	7	0	0.01	0.76	0.22	0
Fv	0.75	3E-04	1.15	1.54	0.04	17	0	0.08	2.79	0.31	0
framework	0.63	3E-04	0.10	1.54	0.01	13	0	0.01	1.85	0.31	0
										# of	
Min limits	Ν	Р	Q	R	S	Т	V	W	Y	residues	charge
Min limits H1	N 0	P 0	Q 0	R 0	S 0	T 0	V 0	W 0	Y 0	residues 10	charge -2
			-								
H1	0	0	0	0	0	0	0	0	0	10	-2
H1 H2	0 0	0	0	0 0	0 0	0 0	0	0 0	0 0	10 16	-2 -3
H1 H2 H3 H123 L1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	10 16 5	-2 -3 -4 -4 -4.9 -4
H1 H2 H3 H123 L1 L2	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0 0	0 0 0 0.19	10 16 5 32 10 7	$ \begin{array}{r} -2 \\ -3 \\ -4 \\ -4.9 \\ -4 \\ -2 \\ \end{array} $
H1 H2 H3 H123 L1 L2 L3	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0.25 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0.19 0	10 16 5 32 10 7 7	-2 -3 -4 -4.9 -4 -2 -2 -2
H1 H2 H3 H123 L1 L2	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0.25 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0.19 0 0 0 0 0 0	10 16 5 32 10 7	$ \begin{array}{r} -2 \\ -3 \\ -4 \\ -4.9 \\ -4 \\ -2 \\ -2 \\ -5 \\ -5 \end{array} $
H1 H2 H3 H123 L1 L2 L3 L123 CDR	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0.25 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0.19 0 0 0 0	10 16 5 32 10 7 7	$ \begin{array}{r} -2 \\ -3 \\ -4 \\ -4.9 \\ -4 \\ -2 \\ -2 \\ -2 \\ -5 \\ -7 \\ \end{array} $
H1 H2 H3 H123 L1 L2 L3 L123 CDR VH	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0.53	0 0 0 0 0 0 0 9E-04 1.17	0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{r} 0 \\ 0 \\ 0 \\ 0.25 \\ 0 \\ 0.32 \\ 0.82 \\ 5.26 \\ \end{array} $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.25	0 0 0 0 0 0 0 0 0 0 0 0 0.27	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0.19 0 0 0 0 0 0 0.31 0.29	$ \begin{array}{r} 10\\ 16\\ 5\\ 32\\ 10\\ 7\\ 7\\ 24\\ 60\\ 112\\ \end{array} $	$ \begin{array}{r} -2 \\ -3 \\ -4 \\ -4.9 \\ -4 \\ -2 \\ -2 \\ -2 \\ -5 \\ -7 \\ -4.9 \end{array} $
H1 H2 H3 L123 L1 L2 L3 L123 CDR VH VL	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 9E-04 1.17 0.74	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0.25 0 0 0.32 0.82	0 0 0 0 0 0 0 0 0 0 0 0 2 1	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0.19 0 0 0 0 0 0 0 0.31	$ \begin{array}{r} 10\\ 16\\ 5\\ 32\\ 10\\ 7\\ 7\\ 24\\ 60\\ 112\\ 104\\ \end{array} $	$ \begin{array}{r} -2 \\ -3 \\ -4 \\ -4.9 \\ -4 \\ -2 \\ -2 \\ -2 \\ -5 \\ -7 \\ -4.9 \\ -5.9 \\ \end{array} $
H1 H2 H3 H123 L1 L2 L3 L123 CDR VH	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0.53	0 0 0 0 0 0 0 9E-04 1.17	0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{r} 0 \\ 0 \\ 0 \\ 0.25 \\ 0 \\ 0.32 \\ 0.82 \\ 5.26 \\ \end{array} $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.25	0 0 0 0 0 0 0 0 0 0 0 0 0.27	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0.19 0 0 0 0 0 0 0.31 0.29	$ \begin{array}{r} 10\\ 16\\ 5\\ 32\\ 10\\ 7\\ 7\\ 24\\ 60\\ 112\\ \end{array} $	$ \begin{array}{r} -2 \\ -3 \\ -4 \\ -4.9 \\ -4 \\ -2 \\ -2 \\ -2 \\ -5 \\ -7 \\ -4.9 \end{array} $

Table S6. Summary of segregation of clinical-stage mAbs into training and test sets. Clinical-stage mAbs (as numbered in Table S1) were divided into ten sets of 80% training mAbs and 20% test mAbs. For each 80/20 split, the training sets of mAbs (80%) was further divided into three groups for threefold cross validation.

80/20 Split	1 Test Turining set					2			3					4		
	Test	Tra	ining	set	Test	Tra	ining	set	Test	Tra	ining	set	Test	Tra	ining	set
	set	Α	В	С	set	Α	В	С	set	Α	В	С	set	Α	В	С
	16	1	2	4	7	1	9	3	1	5	6	2	4	3	5	1
	20	3	8	5	11	2	12	6	4	7	11	3	10	6	7	2
	34	10	11	6	20	4	24	8	9	8	12	15	13	15	8	9
	35	14	12	7	23	5	26	10	10	13	16	25	14	17	11	21
	38	18	17	9	25	14	28	13	14	17	19	26	16	18	12	23
	42	31	19	13	27	15	29	16	24	18	38	28	28	20	19	24
	45	37	25	15	30	18	32	17	35	20	39	29	41	22	27	29
	51	48	27	21	49	31	34	19	43	21	40	30	48	25	30	31
	52	49	29	22	50	33	35	21	57	22	44	33	54	26	32	33
	54	50	33	23	51	37	41	22	58	23	47	36	62	40	34	36
	55	56	36	24	58	38	42	36	60	27	49	37	64	42	35	37
Clinical-	61	59	39	26	59	40	44	39	63	31	50	41	77	46	38	39
stage mAbs	68	63	40	28	62	48	45	43	64	32	51	42	78	50	44	43
with high	70	65	41	30	64	52	54	46	65	34	54	48	80	52	45	51
specificity	71	67	44	32	78	53	63	47	73	45	56	66	88	57	47	53
	76	69	47	43	82	55	69	57	80	46	61	69	89	59	49	55
	80	72	53	46	89	56	71	60	84	52	62	70	93	66	60	56
	82	73	57	60	90	61	72	66	86	53	67	76	94	67	65	58
	94	74	58	62	95	65	75	68	93	55	68	78	95	69	76	61
		77	75	64		67	76	73		59	71	79		73	81	63
		78	79	66		70	79	74		81	72	82		75	82	68
		84	81	86		80	83	77		85	74	83		79	83	70
		88	83	87		84	87	81		87	75	88		84	87	71
		89	85	90		88	91	85		90	77	89		86	90	72
		91	93	96		94	92	86		94	95	91		92	91	74
		92	95	97		96	97	93		96	97	92		97	96	85
	Test		ining		Test		ining		Test		ining		Test		ining	
	set	A	В	С	set	A	В	С	set	A	В	С	set	A	B	С
	98	106	101	99	99	101	107	98	99	100	103	98	105	98	100	99
	100	108	103	105	103	106	109	100	101	102	106	104	113	102	104	101
Clinical-	102	109	107	112	104	108	119	102	108	107	111	105	115	109	116	103
stage mAbs			114			111				112					119	
with low			118			112				116				111		107
specificity				125		116				117				112		108
Specificity			127			117				123					127	
	124		128		134	120			133	124		126	129	118		124
			132				135					131				125
			134	135			136	129			136	134			133	137
		137	136			128	137			135	137			136	134	

80/20 Split		5				6				7				8	Training set A B C 5 1 2 8 23 6 12 24 9 13 28 11		
	Test	Tra	ining	set	Test	Tra	ining	set	Test	Tra	ining	set	Test	Tra	ining	set	
	set	Α	В	С	set	Α	В	С	set	Α	В	С	set				
	3	6	2	1	12	1	3	2	3	6	2	1	3	5	1	2	
	9	8	4	7	21	5	4	16	9	8	4	7	4	8	23	6	
	23	10	5	11	23	6	7	18	23	10	5	11	7	12	24	9	
	24	12	13	14	25	8	10	19	24	12	13	14	10	13	28	11	
	26	16	19	15	34	9	13	20	26	16	19	15	16	14	29	15	
	36	28	20	17	41	11	14	26	36	28	20	17	18	19	30	17	
	39	29	25	18	44	15	17	31	39	29	25	18	26	22	36	20	
	45	30	27	21	45	22	29	33	45	30	27	21	31	27	41	21	
	48	34	31	22	59	24	30	35	48	34	31	22	32	34	45	25	
	51	42	32	37	60	27	36	40	51	42	32	37	40	37	57	33	
	54	44	33	40	62	28	37	42	54	44	33	40	42	38	61	35	
Clinical-	57	47	35	41	63	32	46	48	57	47	35	41	46	43	63	39	
stage mAbs	61	49	38	43	65	38	47	54	49	38	43	61	52	44	65	48	
with high	66	52	53	46	66	39	49	55	52	53	46	66	58	47	66	50	
specificity	71	55	58	50	69	43	51	61	55	58	50	71	59	49	69	53	
	78	59	64	56	75	50	52	64	59	64	56	78	62	51	75	60	
	91	62	65	60	81	56	53	67	62	65	60	91	64	54	76	67	
	94	69	67	63	82	57	58	74	69	67	63	94	68	55	77	70	
	96	76	72	68	92	68	70	76	76	72	68	96	80	56	81	72	
		77	75	70		71	86	78		77	75	70		71	83	78	
		80	82	73		72	87	83		80	82	73		73	87	79	
		81	84	74		73	88	84		81	84	74		74	88	82	
		85	87	79		77	89	85		85	87	79		86	89	84	
		86	88	83		79	93	90		86	88	83		91	95	85	
		89	90	92		80	94	96		89	90	92		92	96	90	
		95	93	97		91	95	97		95	93	97		93	97	94	
	Test		ining		Test		ining		Test		ining		Test	Tra	ining		
	set	A	В	С	set	Α	В	С	set	Α	В	С	set	Α	В	С	
	99	100	101	98	100	99	98	102	99	100	101	98	100	98	104	101	
	105	102	103	104	112	101	105	103	105	102	103	104	102	99	105	107	
Clinical-	117	106	110	108	114	107	106	104	117		110	108			108	110	
stage mAbs			111			109				107				114			
with low			113			122		116		109				116		115	
specificity			116			124				115				117			
specificity			120			126				121		123		121		124	
	134		125		136	129			134	124			137	132		127	
			126				125				126					129	
			130	136			127	133			130	136		135		130	
		131	137			137	130			131	137			136	134		

80/20 Split		9				10		
•	Test	Tra	ining	set	Test		ining	set
	set	А	В	С	set	Α	В	С
Clinical- stage mAbs with high specificity	17 21 32 37 38 39 42 43 66 74 75 77 79 80 81 84 87 93 97	$ \begin{array}{c} 1\\10\\18\\26\\28\\44\\45\\49\\52\\54\\55\\57\\58\\59\\60\\61\\62\\64\\71\\78\\82\\88\\90\\91\\92\\94\end{array} $	$\begin{array}{c} 3\\ 6\\ 12\\ 14\\ 15\\ 19\\ 22\\ 25\\ 29\\ 36\\ 41\\ 47\\ 50\\ 51\\ 53\\ 56\\ 63\\ 65\\ 68\\ 69\\ 70\\ 72\\ 83\\ 86\\ 95\\ 96\end{array}$	$\begin{array}{c} 2\\ 4\\ 5\\ 7\\ 8\\ 9\\ 11\\ 13\\ 16\\ 20\\ 23\\ 24\\ 27\\ 30\\ 31\\ 33\\ 34\\ 35\\ 40\\ 46\\ 48\\ 67\\ 73\\ 76\\ 85\\ 89\end{array}$	2 6 7 11 14 18 20 21 24 30 43 46 55 58 72 73 87 88 89	4 8 9 19 26 32 33 39 40 41 47 49 50 59 63 70 71 75 78 81 83 85 90 92 93 95	$\begin{array}{c} 3\\ 10\\ 12\\ 13\\ 23\\ 25\\ 28\\ 29\\ 34\\ 35\\ 51\\ 52\\ 53\\ 56\\ 64\\ 65\\ 67\\ 69\\ 76\\ 79\\ 80\\ 84\\ 86\\ 91\\ 96\end{array}$	$ \begin{array}{c} 1\\5\\15\\16\\17\\22\\27\\31\\36\\37\\38\\42\\44\\45\\48\\54\\57\\60\\61\\62\\66\\68\\74\\82\\94\\97\end{array} $
	Test set		ining B		Test set		ining B	
Clinical- stage mAbs with low specificity	set 100 105 118 127 129 132 135 137	A 99 107 108 110 112 117 123 124 126 131 133	B 98 102 104 106 109 114 119 120 125 128 130	C 101 103 111 113 115 116 121 122 134 136	set 102 105 108 115 124 125 128 135	A 100 106 107 109 110 116 118 119 120 121 137	B 98 101 111 122 123 126 127 129 130 134 136	99 103 104 112 113 114 117 131 132 133

Table S7. Summary of the constraints used to generate the single and combined sets of rules for flagging mAbs with low specificity.

	Constraints for single rules	1 st round	2 nd round
1	Accuracy for preclinical mAbs (PSR assay)	>55%	>55%
2	% mAbs (preclinical, training set) flagged with low specificity - high specificity (PSR assay)	>0	>0
3	Accuracy of training set (clinical mAbs) in each fold	>55%	>55%
	* Three constraints for each of the ten 80/20 splits		
4	Accuracy of training set (clinical mAbs, two folds) - accuracy of validation set (one fold)	<5%	<5%
	* Three constraints for each of the ten 80/20 splits		
5	% mAbs (clinical, training set) flagged with low specificity - high specificity for each assay	>0	>0
	* Five constraints for each individual assay (PSR, ELISA, BVP, AC-SINS, CSI)		
6	Average validation accuracy for clinical mAbs	>60%	>60%
	* Average validation accuracy is evaluated based on the results for each flag value observed in o	each of the ter	n 80/20 splits
7	Average test accuracy for clinical mAbs	>50%	>50%
	* Average test accuracy is evaluated based on the results for each flag value observed in each of	the ten 80/20) splits

	Constraints for combined rules	1 st round	2 nd round
1	Accuracy for preclinical mAbs (PSR assay)	>60%	>70%
2	% mAbs (preclinical, training set) flagged with high specificity (PSR assay)	<10%	
3	Accuracy of training set (clinical mAbs) in each fold	>60%	>75%
	* Three constraints for each of the ten 80/20 splits		
4	Accuracy of training set (clinical mAbs, two folds) - accuracy of validation set (one fold)	<10%	<10%
	* Three constraints for each of the ten 80/20 splits		
5	% mAbs (clinical, training set) flagged with high specificity	<5%	<10%
6	Accuracy of training set (clinical mAbs) for each assay (PSR, ELISA, BVP, AC-SINS, CSI)	>60%	>70%
	* Five constraints for each individual assay (PSR, ELISA, BVP, AC-SINS, CSI)	-	-
7	Accuracy for training set (clinical mAbs)	>60%	>75%

Table S9. Summary of the best combined sets of rules generated in the first round of analysis that flag mAbs with low specificity. Five sets (A, B, C, D and E) of rules are reported. The rules are numbered as defined in Table S8. mAbs with low and high specificity are defined as in Tables S1 and S2.

Set of flags	# of flags for mAs with low specificity	Indi	vidual 1	ule num	ibers fo	r each se	t of flags	0	alues for set of flags	-	nding ind	ividual rul	e of
А	≥4	1	11	14	21	24	37	5.0	4.0	4.6	4.7	12.2	4.9
В	≥4	7	11	15	19	21	33	3.6	4.0	4.2	3.0	4.8	17.8
С	≥5	9	13	19	21	23	33	3.6	7.5	3.0	4.8	2.1	17.8
D	≥4	7	11	15	19	21	33	3.6	4.0	4.2	3.0	4.8	16.7
Е	≥5	3	7	11	21	23	33	4.7	3.6	4.0	4.8	2.1	17.8

	Clinical mAbs (non-specific and self-interactions, five assays)													
Set of flags	% mAbs flagged (high specificity group)	% mAbs flagged (low specificity group)	Average validation accuracy (%)	Std. dev. of validation accuracy (%)	COV for validation accuracy (%)	Average test accuracy (%)	Test accuracy Stdev (%)	COV for test accuracy (%)	<i>p</i> -value for entire panel of clinical mAbs					
А	2.06	35.00	66.17	0.87	1.32	67.43	3.68	5.45	3.78E-07					
В	2.06	40.00	69.07	0.93	1.35	68.42	3.74	5.46	2.15E-08					
С	2.06	40.00	68.48	0.96	1.41	70.92	3.91	5.51	2.15E-08					
D	0.00	37.50	68.71	1.06	1.55	68.75	4.17	6.06	1.04E-09					
Е	3.09	47.50	72.18	1.22	1.69	72.01	4.98	6.92	1.31E-09					

	Preclinical mAbs (non-specific interactions, PSR assay)											
Set of flags	% mAbs flagged (high specificity group)	% mAbs flagged (low specificity group)	Training accuracy (%)	<i>p</i> -value for preclinical mAbs								
А	9.32	44.44	67.56	7.16E-06								
В	9.07	44.44	67.69	5.61E-06								
С	5.04	33.33	64.15	1.86E-05								
D	6.55	29.63	61.54	5.54E-04								
Е	8.56	40.74	66.09	2.12E-05								

Table S10. Segregation of mAbs that pass the combined specificity rules in the first round of analysis into training and test sets. Clinical-stage mAbs (as numbered in Table S1) that pass the combined rules in Set A (<4 flags, 121 out of 137 mAbs; Table S8) were divided into ten sets of 80% training mAbs and 20% test mAbs. For each 80/20 split, the training sets of mAbs (80%) was further divided into three groups for threefold cross validation.

80/20 Split		1				2				3				4		
	Test	Tra	ining	set	Test	Tra	ining	set	Test	Tra	ining	set	Test	Tra	ining	set
	set	Α	В	С	set	Α	В	С	set	Α	В	С	set	Α	В	С
	9	4	1	2	2	6	3	1	3	1	6	2	9	1	2	4
	10	5	3	16	4	12	5	8	13	5	7	4	11	6	3	5
	11	6	7	20	7	13	16	9	28	9	11	8	14	13	8	7
	18	13	8	22	11	19	17	10	29	12	18	10	23	16	20	10
	23	14	12	25	14	20	23	15	35	15	19	14	25	21	24	12
	26	17	15	27	18	25	30	22	43	17	20	16	29	33	26	15
	28	19	24	29	21	26	35	24	53	26	21	22	35	37	28	17
	39	21	31	34	34	27	42	28	54	33	27	23	38	42	32	18
	42	30	33	38	40	29	45	33	55	38	30	24	39	47	34	19
	47	32	35	40	51	31	52	41	57	40	32	25	41	49	36	22
	51	37	36	41	59	32	56	43	63	41	37	31	43	50	44	27
Clinical-	58	44	45	43	61	36	58	47	65	42	46	34	51	52	45	30
stage mAbs	64	54	46	48	66	37	68	48	71	44	47	36	53	54	46	31
with high	68	55	49	50	74	38	71	49	76	59	48	39	55	61	48	40
specificity	74	56	59	52	76	39	72	50	78	61	51	45	64	63	56	62
	76	57	63	53	86	44	78	53	85	62	73	49	66	65	57	69
	77	65	66	61	87	46	80	55	87	64	74	50	81	67	58	70
	90	71	70	62	91	54	81	57	91	66	77	52	84	72	59	74
	94	75	73	67	96	63	82	62	96	67	79	56	91	79	68	76
		78	83	69		65	83	64		68	80	58		83	71	77
		80	84	72		73	84	67		70	83	69		85	73	80
		81	85	79		79	85	69		72	88	75		86	75	82
		86	87	82		89	88	70		82	92	81		90	78	87
		91	88	89		95	90	75		86	94	84		92	89	88
		96	92	95		97	94	77		89	97	90		95	96	94
				97				92				95				97
	Test		ining		Test		ining		Test		ining		Test		ining	
	set	A	B	C	set	A	B	C	set	A	B	C	set	A	B	C
Clinical-	102	99	98	107	103	102	110	98	108	102	99	98	107	102	110	98
stage mAbs	103	108	115	110	107	118	111	99 106	113	103	106	112	112	103	111	99 109
with low	106	111	121	112	113	119	117	106	115	107	110	117	117	106	118	108
specificity	118	113	127	129	115	121	128	108	134	119	111	121	135	115	119	113
1 5	122	117	128	131	135	122	131	112	137	122	118	127	136	127	121	122
		119	134	135		133	134	127		128	129	133		128	134	129
	L	133	136	137		137	136	129		131	136	135		131	137	133

80/20 Split		5				6				7				8		
	Test	Tra	ining	set	Test	Tra	ining	set	Test	Tra	ining	set	Test	Tra	ining	set
	set	Α	В	С	set	Α	В	С	set	Α	В	С	set	Α	В	С
	6	8	2	1	4	5	1	2	3	2	1	5	11	2	1	9
	9	10	11	3	7	8	6	3	6	8	4	12	19	3	4	12
	13	14	12	4	14	17	9	10	7	10	9	13	20	5	7	13
	19	17	15	5	15	19	13	11	11	15	20	14	23	6	8	17
	20	23	16	7	39	20	23	12	22	21	29	16	27	14	10	22
	25	33	21	18	44	21	24	16	25	24	33	17	29	15	16	24
	28	36	26	22	48	22	25	18	27	26	35	18	30	18	21	28
	31	37	27	24	56	26	29	27	30	28	36	19	38	32	25	31
	38	47	29	30	59	37	32	28	32	31	38	23	40	34	26	36
	43	48	32	35	72	40	33	30	43	37	40	34	48	39	33	42
C1' ' 1	56	49	34	40	73	49	41	31	50	41	42	39	49	41	35	46
Clinical-	62	58	39	50	78	50	42	34	52	47	53	44	58	43	37	47
stage mAbs	65	61	41	52	80	51	47	35	58	48	55	45	62	53	44	50
with high	66	64	42	53	81	53	61	36	63	59	57	46	63	54	45	56
specificity	80	67	44	54	83	55	63	38	68	61	64	49	67	55	51	61
	81	69	45	55	86	58	64	43	73	66	70	51	77	57	52	64
	82	70	46	63	87	62	65	45	85	67	75	54	81	59	66	71
	88	71	51	68	90	66	74	46	86	71	76	56	89	65	69	72
	92	72	57	75	92	67	76	52	94	72	80	62	95	68	75	74
		73	59	78		69	82	54		74	83	65		70	76	78
		76	74	83		70	84	57		79	84	69		73	79	80
		77	84	86		79	89	68		87	88	77		82	91	83
		79	89	87		85	91	71		92	90	78		84	94	85
		85	91	90		96	94	75		96	91	81		87	96	86
		95	94	96		97	95	77		97	95	82		92	97	88
	Test	т		97	Treat	T		88	Trut	T		89	Test	T		90
		A	ining B	set C	Test	A I ra	ining B	set C	Test	A I ra	ining B	set C	Test	A	ining B	set C
	set 99	A 107	<u>Б</u> 102	<u>98</u>	set 108	A 102	<u>Б</u> 99	<u>98</u>	set 99	A 98	<u>Б</u> 107	102	set 106	A 98	ь 103	<u> </u>
Clinical-	108	1107	102	106	108	102	113	106	119	112	1107	102	113	98 108	105	102
stage mAbs	108	112	118	115	111	103	115	110	128	112	111	105	113	110	117	102
with low	111	112	122	119	118	117	121	112	128	115	118	100	110	112	127	122
specificity	121	128	122	127	133	131	121	112	131	121	122	108	119		127	122
	1 4 1	128	131	135	155	131	122	128	134	121	122	127	1 4 1		133	128
		135	134	137		130	135	129		137	135	127			134	129
		130	134	137		137	133	134		13/	133	130		130	134	137

80/20 Split		9				10		
	Test	Tra	ining	set	Test	Tra	ining	set
	set	Α	В	С	set	Α	В	С
	2	3	1	9	4	10	2	1
	14	6	4	10	7	11	3	5
	22	11	5	13	8	15	13	6
	23	12	7	17	9	17	19	16
	38	19	8	18	12	18	25	20
	42	20	15	24	14	24	27	21
	46	26	16	25	22	30	31	23
	51	28	21	27	28	37	32	26
	56	32	35	29	34	40	36	29
	58	33	37	30	35	41	38	33
	61	36	40	31	39	48	46	42
Clinical-	63	44	41	34	43	58	47	45
stage mAbs	69	48	43	39	44	59	50	53
with high	70	52	45	49	49	67	52	56
specificity	83	53	47	50	51	69	54	57
	84	55	54	67	55	70	61	63
	87	57	64	68	72	74	62	64
	91	59	65	76	85	78	66	65
	96	62	71	77	87	79	68	76
		66	74	78		80	71	77
		72	80	79		83	73	81
		73	85	81		86	75	82
		75	92	82		88	84	90
		86	94	89		91	89	92
		88	95	90		95	96	94
				97				97
	Test	Tra	ining	set	Test	Tra	ining	set
	set	Α	В	С	set	Α	В	С
Clinical-	103	106	98	111	103	102	98	106
stage mAbs	108	107	99	113	108	107	99	110
with low	115	112	102	118	113	111	112	118
	122	117	110	119	127	117	115	121
specificity	129	121	131	127	136	122	119	134
		134	133	128		128	129	135
		135	136	137		131	133	137

Table S12. Summary of the best combined sets of rules generated after the second round of analysis that identify mAbs with low specificity. Each of the reported sets of rules generated in the second round of analysis (F, G, H, I and J) were derived in combination with Set A from the first round of analysis (as defined in Table S8). The rules are numbered as defined in Table S11. mAbs with low and high specificity are defined as in Tables S1 and S2.

Set of flags	# of flags for mAbs with low specificity	Indiv	vidual ru	ıle numl	bers for	each set	of flags	Flag va set of fl	lues for co ags	rrespondin	ng individ	ual rule of	each
F	≥8	11	18	31	32	36	39	23.2	2.8	2.2	3.9	19.2	19.8
G	≥ 8	11	18	31	32	36	42	23.2	2.8	2.2	3.9	19.2	19.8
Н	≥ 8	10	21	30	31	36	41	25.5	35.7	2.9	2.2	19.9	19.0
Ι	≥ 8	10	18	21	31	36	41	25.5	2.8	35.7	2.2	19.9	19.0
J	≥ 8	6	21	31	32	36	37	24.3	35.7	2.2	3.9	19.3	3.6

			Clinical m	Abs (non-specif	fic and self-inte	ractions, five	assays)		
Set of flags	% mAbs flagged (high specificity group)	% mAbs flagged (low specificity group)	Average validation accuracy (%)	Std. dev. of validation accuracy (%)	COV for validation accuracy (%)	Average test accuracy (%)	Test accuracy Stdev (%)	COV for test accuracy (%)	<i>p</i> -value for entire panel of clinical mAbs
F	8.25	77.50	83.20	1.44	1.73	90.16	5.84	6.48	1.55E-15
G	8.25	77.50	83.20	1.44	1.73	90.16	5.84	6.48	1.55E-15
Н	7.22	77.50	83.59	1.72	2.06	91.22	6.97	7.64	3.50E-16
Ι	7.22	77.50	83.52	1.73	2.08	91.48	7.06	7.72	3.50E-16
J	7.22	77.50	83.71	1.76	2.10	90.69	7.18	7.91	3.50E-16

	Preclinical	mAbs (non-specif	ic interactions	, PSR assay)
Set of flags	% mAbs flagged (high specificity group)	% mAbs flagged (low specificity group)	Training accuracy (%)	<i>p</i> -value for preclinical mAbs
F	16.22	55.00	70.27	1.71E-05
G	16.52	55.00	70.02	2.27E-05
Н	19.47	60.00	70.11	3.04E-05
Ι	18.58	60.00	70.74	1.56E-05
J	17.70	55.00	70.99	1.18E-05

Table S15. Sets of four mutations in Fab sub-libraries of emibetuzumab that are most strongly correlated with reduced binding to polyspecificity reagents [PSR and ovalbumin (OVA)]. The libraries were designed and evaluated as described in Fig. 8. The *p*-values are for the Spearman's correlation coefficients (ρ).

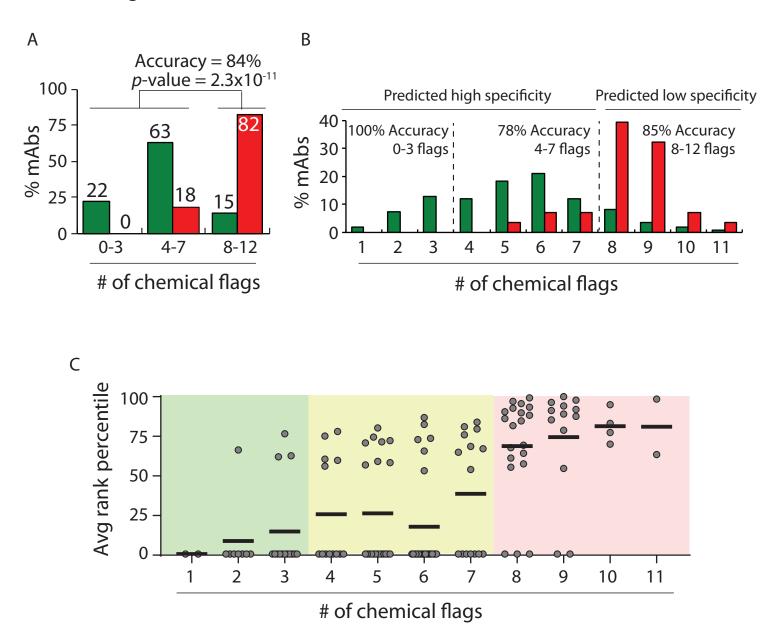
												Spearm	an's cor	relation	coeffici	ent and	<i>p</i> -value		
CDR	H1		Н	[2			H3		# of c	lones		Rep	eat 1			Rep	eat 2		
CDR	33	50	54	55	56	95	97	102				<i>p</i> -		<i>p</i> -		<i>p</i> -		<i>p</i> -	
	1								with	with	ρ	value	ρ	value	ρ	value	ρ	value	Avg
WT	Y	R	R	R	G	Α	W	Y	4WT	4MT	(PSR)	(PSR)	(OVA)	(OVA)	(PSR)	(OVA)	(OVA)	(OVA)	ρ
1	F		Т		D			Α	10	12	0.81	1E-05	0.83	6E-05	0.71	2E-03	0.83	1E-06	0.80
2	F		Т		D			D	10	14	0.73	3E-04	0.87	4E-05	0.76	7E-05	0.78	7E-06	0.79
3	V		Т	G	D				26	24	0.69	5E-05	0.85	9E-10	0.61	4E-05	0.76	1E-08	0.73
4					D	S	L	V	10	10	0.75	2E-04	0.69	2E-03	0.75	7E-04	0.69	7E-04	0.72
5	V				D		L	D	13	16	0.68	2E-04	0.70	4E-04	0.85	3E-08	0.65	2E-04	0.72
6		K			D		L	D	14	17	0.67	2E-04	0.73	7E-05	0.83	1E-08	0.63	3E-04	0.71
7	V		Т		D			D	10	14	0.64	4E-03	0.75	3E-04	0.73	6E-04	0.72	2E-04	0.71
8	F			G	D		G		42	21	0.63	2E-06	0.81	3E-11	0.68	7E-08	0.64	3E-08	0.69
9				G	D		L	V	10	16	0.66	5E-04	0.72	4E-04	0.70	3E-04	0.68	2E-04	0.69
10	F			G	D		L		42	16	0.66	2E-06	0.75	1E-07	0.63	6E-07	0.69	1E-08	0.68
11				G	D	S	L		41	39	0.64	1E-07	0.69	1E-07	0.63	2E-08	0.73	3E-13	0.67
12				G	D		S	S	10	18	0.66	2E-04	0.62	1E-03	0.67	1E-04	0.67	9E-05	0.65
13					D	S	S	S	10	23	0.64	3E-04	0.66	3E-04	0.62	2E-04	0.63	8E-05	0.64

Table S16. Theoretical net charges and isoelectric points for the high specific clinical-stage antibodies in this study. The net charges (pH 7.4) were calculated by assigning values of +1 for R and K, +0.1 for H, and -1 for D and E. The CDRs were defined using a combination of Chothia and Kabat numbering, and heavy chain CDR3 was defined to also include two additional N-terminal residues. The values are averages with their corresponding standard deviations. These ranges (average ± standard deviation) are defined only for the high specific mAbs (97 of 137 mAbs), while the ranges in Table S5 (minimum and maximum) are defined for both high and low specific mAbs (137 mAbs). Antibodies with charge and isoelectric properties outside of these ranges are not expected to be well described by the chemical rules. In particular, antibodies with more negatively charged CDRs or variable regions as well as lower isoelectric points than those for the high specific antibodies in this study are at risk for abnormal behavior, such as viscous behavior at high antibody concentrations.

		net charge
Antibody	pI	(pH 7.4)
region	avg ± stdev	$avg \pm stdev$
H1		-0.17±0.54
H2		0.01±1.32
H3		-0.45 ± 1.07
H123		-0.61±1.71
L1		0.43±1.16
L2		0.12±0.97
L3		0.01±0.79
L123		0.56±1.90
CDR		-0.05±2.44
VH	7.4±1.4	0.75±1.89
VL	7.5±1.4	0.79±1.97
Fv	7.7±1.3	1.54 ± 2.48
framework	7.9±1.0	1.59±1.52

Table S17. Number of chemical flags for the clinical-stage antibodies calculated using two different SASA machine learning models. The two models for calculating solvent-accessible surface areas were generated using a published method [Jain et al., *Bioinformatics*, 33, 3758-3766 (2017)]. Model A is used for calculating the chemical rules for the clinical-stage antibodies in Table S1, and Model B is used for calculating the chemical rules for preclinical antibodies in Table S2 and S13.

		# of	# of			# of	# of
		chemical	chemical			chemical	chemical
		flags from	flags from			flags from	flags from
Antibody	Specificity	model A	model B	Antibody	Specificity	model A	model B
abituzumab	high	7	7	mepolizumab	high	4	5
abrilumab	high	6	6	mogamulizumab	high	2	2
adalimumab	high			motavizumab	high	3	3
alemtuzumab	high	3	3	muromonab	high	8	8
alirocumab	high	1	1	natalizumab	high	7	7
anifrolumab	high	6	6	necitumumab	high	6	7
bapineuzumab	high	5	5	nimotuzumab	high	4	4
benralizumab	high	7	7	nivolumab	high	3	3
bevacizumab	high	5	5	obinutuzumab	high	5	5
brentuximab	high	3	3	ocrelizumab	high	7	7
brodalumab	high	9	9	ofatumumab	high	6	6
canakinumab	high	7	7	olaratumab	high	9	9
certolizumab	high	6	6	olokizumab	high	3	3
cetuximab	high	3	3	omalizumab	high	6	6
clazakizumab	high	2	1	onartuzumab	high	3	3
crenezumab	high	4	3	otelixizumab	high	3	3
dacetuzumab	high	6	6	otlertuzumab	high	5	5
daclizumab	high	6	6	palivizumab	high	3	3
daratumumab	high	6	6	panitumumab	high	3	4
dinutuximab	high	7	8	panobacumab	high	5	5
eculizumab	high	2	2	pembrolizumab	high	5	5
efalizumab	high	5	6	pertuzumab	high	7	7
eldelumab	high	5	5	pinatuzumab	high	6	6
elotuzumab	high	1	1	polatuzumab	high	5	5
enokizumab	high	8	9	radretumab	high	4	4
epratuzumab	high	4	4	ramucirumab	high	4	4
evolocumab	high	5	6	ranibizumab	high	6	6
farletuzumab	high	6	6	reslizumab	high	4	4
fasinumab	high	5	6	rilotumumab	high	7	8
fezakinumab	high	4	4	rituximab	high	6	6
ficlatuzumab	high	6	6	romosozumab	high	5	5
fletikumab	high	5	5	sarilumab	high	4	4
fresolimumab	high	5	5	secukinumab	high	6	7
fulranumab	high	5	5	seribantumab	high	4	5
galiximab	high	3	2	sifalimumab	high	7	7
gemtuzumab	high	2	2	siltuximab	high	6	6
gevokizumab	high	6	6	tabalumab	high	8	8
girentuximab	high	4	4	tanezumab	high	6	6
glembatumumab	high	8	8	tigatuzumab	high	5	4
golimumab	high	7	7	tildrakizumab	high	6	6
ibalizumab	high	4	4	tocilizumab	high	5	5
ipilimumab	high	5	4	tovetumab	high	9	9
lampalizumab			2	tralokinumab	high	2	2
ampalizumab high ebrikizumab high		2 3	3	trastuzumab	high	3	2 3
lintuzumab	high	6	6	tremelimumab	high	11	11
lumiliximab	high	3	3	vedolizumab	high	7	7
matuzumab mavrilimumab	high high	5 2	5 2	veltuzumab zalutumumab	high high	7 6	7 6


		# of	# of
		-	-
		chemical	chemical
	~	flags from	flags from
Antibody	Specificity	model A	model B
zanolimumab	high	5	5
atezolizumab	low	9	9
basiliximab	low	9	9
bavituximab	low	10	10
belimumab	low	8	9
bimagrumab	low	9	9
blosozumab	low	5	5
bococizumab	low	11	11
briakinumab	low	9	8
carlumab	low	6	6
cixutumumab	low	8	8
codrituzumab	low	7	7
dalotuzumab	low	8	8
denosumab	low	6	7
drozitumab	low	4	4
duligotuzumab	low	6	6
dupilumab	low	8	7
emibetuzumab	low	8	8
etrolizumab	low	8	8
figitumumab	low	8	8
foralumab	low	9	9
ganitumab	low	8	8
gantenerumab	low	8	8
guselkumab	low	8	8
imgatuzumab	low	8	8
infliximab	low	7	7
inotuzumab	low	10	10
ixekizumab	low	9	9
lenzilumab	low	9	9
lirilumab	low	10	10
ozanezumab	low	8	8
parsatuzumab	low	8	8
patritumab	low	9	9
ponezumab	low	8	8
robatumumab	low	7	7
simtuzumab	low	10	10
sirukumab	low	8	8
teplizumab	low	8	8
urelumab	low	9	9
ustekinumab	low	6	6
visilizumab	low	9	9

	H1		Н	2			H3	
	33	50	54	55	56	95	97	102
Degenerate codon	KHY	RVR	RVR	RVR	RVY	КНҮ	KBG	KHY
WT	Y	R	R	R	G	А	W	Y
1	F	К	K	Κ	А	F	V	F
2	V	А	А	А	D	Y	L	V
3	А	G	G	G	Ν	V	А	А
4	D	Е	Е	Е	S	D	G	D
5	S	Т	Т	Т	Т	S	S	S

Figure S1. Design of a mutant V_{H} library for single-chain Fab fragments of emibetuzumab aimed at reducing the number of chemical flags. Eight sites in the CDRs flagged by the maximum chemical rules in Fig. 4 were mutated using degenerate codons that are designed to sample the wild-type residue and five mutations that reduce the number of chemical flags.

Biophysical Assay: PSR

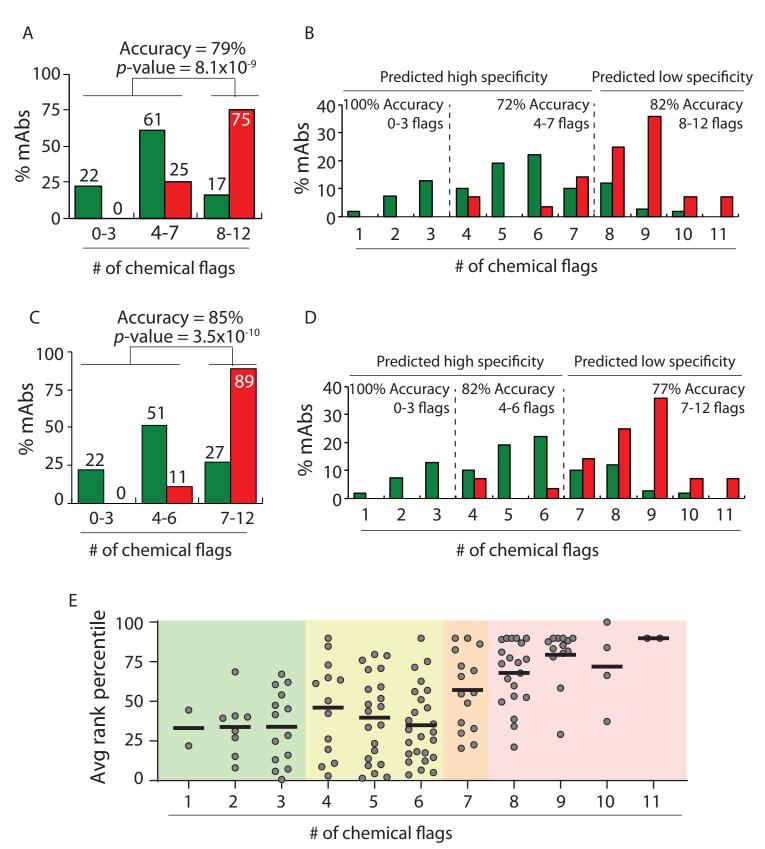

Clinical-stage mAbs: $\blacksquare \le 0.27 \blacksquare > 0.27$

Figure S2. Performance of combined chemical rules for identifying clinical-stage mAbs with high levels of non-specific interactions detected using the PSR assay. (A, B) Evaluation of the percentage of mAbs with high and low specificity flagged by the combined set of chemical rules for (A) grouped numbers of chemical flags and (B) individual numbers of chemical flags. (C) Comparison of the rank for clinical-stage mAbs based on PSR measurements and the corresponding number of chemical flags. In (A) and (B), the *p*-values were calculated using a 2x2 contingency table (Fisher's exact test). In (C), three regions are shown, one with predicted high specificity (0-3 chemical flags), a second one with intermediate specificity (4-7 chemical flags), and a third one with low specificity (8-12 chemical flags).

Biophysical Assay: AC-SINS

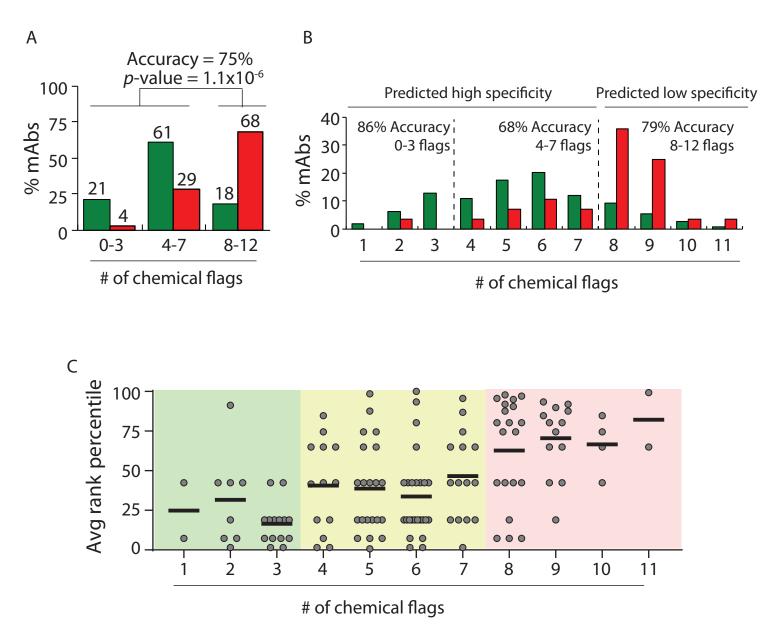

Clinical-stage mAbs: ■ ≤11.8 nm ■ >11.8 nm

Figure S3. Performance of combined chemical rules for identifying clinical-stage mAbs with high levels of self-interactions detected using the AC-SINS assay. (A-D) Evaluation of the percentage of mAbs with high and low specificity flagged by the combined set of chemical rules for (A, C) grouped numbers of chemical flags and (B, D) individual numbers of chemical flags. (E) Comparison of the rank for clinical-stage mAbs based on AC-SINS measurements and the corresponding number of chemical flags. In (A-D), the *p*-values were calculated using a 2x2 contingency table (Fisher's exact test). In (E), three regions are shown, one with predicted high specificity (0-3 chemical flags), a second one with intermediate specificity (4-6 or 4-7 flags chemical flags), and a third one with low specificity (7-12 or 8-12 chemical flags).

Biophysical Assay: CSI

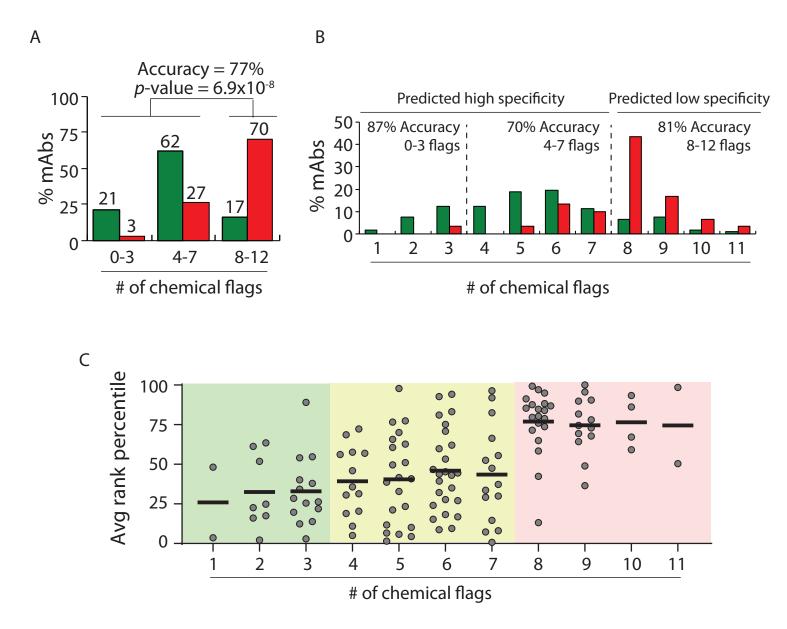

Clinical-stage mAbs: ■ ≤0.01 response unit ■ >0.01 response unit

Figure S4. Performance of combined chemical rules for identifying clinical-stage mAbs with high levels of self-interactions detected using the CSI assay. (A, B) Evaluation of the percentage of mAbs with high and low specificity flagged by the combined set of chemical rules for (A) grouped numbers of chemical flags and (B) individual numbers of chemical flags. (C) Comparison of the rank for clinical-stage mAbs based on CSI measurements and the corresponding number of chemical flags. In (A) and (B), the *p*-values were calculated using a 2x2 contingency table (Fisher's exact test). In (C), three regions are shown, one with predicted high specificity (0-3 chemical flags), a second one with intermediate specificity (4-7 chemical flags), and a third one with low specificity (8-12 chemical flags).

Biophysical Assay: ELISA

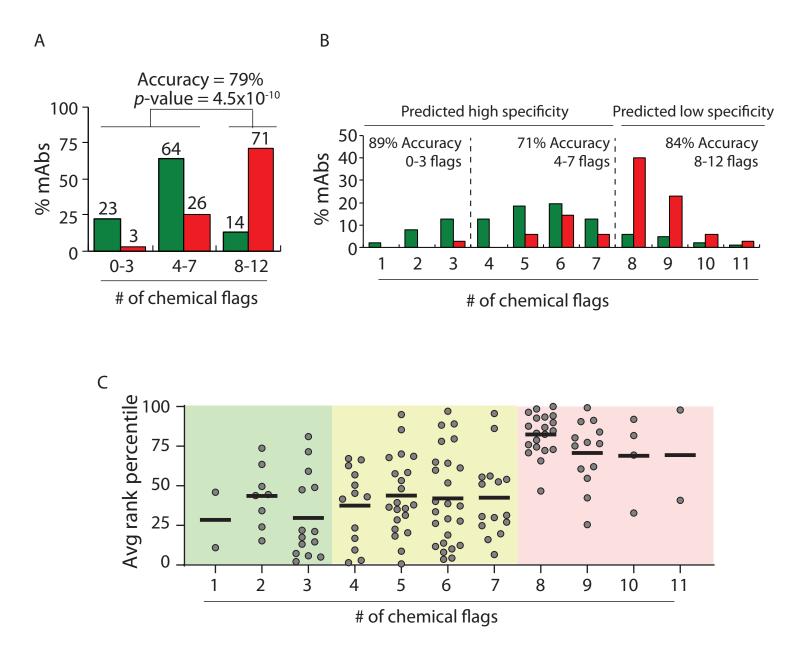

Clinical-stage mAbs: ■ ≤1.9 signal/background ■ >1.9 signal/background

Figure S5. Performance of combined chemical rules for identifying clinical-stage mAbs with high levels of non-specific interactions detected using the ELISA non-specific binding assay. (A, B) Evaluation of the percentage of mAbs with high and low specificity flagged by the combined set of chemical rules for (A) grouped numbers of chemical flags and (B) individual numbers of chemical flags. (C) Comparison of the rank for clinical-stage mAbs based on ELISA measurements and the corresponding number of chemical flags. In (A) and (B), the *p*-values were calculated using a 2x2 contingency table (Fisher's exact test). In (C), three regions are shown, one with predicted high specificity (0-3 chemical flags), a second one with intermediate specificity (4-7 chemical flags), and a third one with low specificity (8-12 chemical flags).

Biophysical Assay: **BVP**

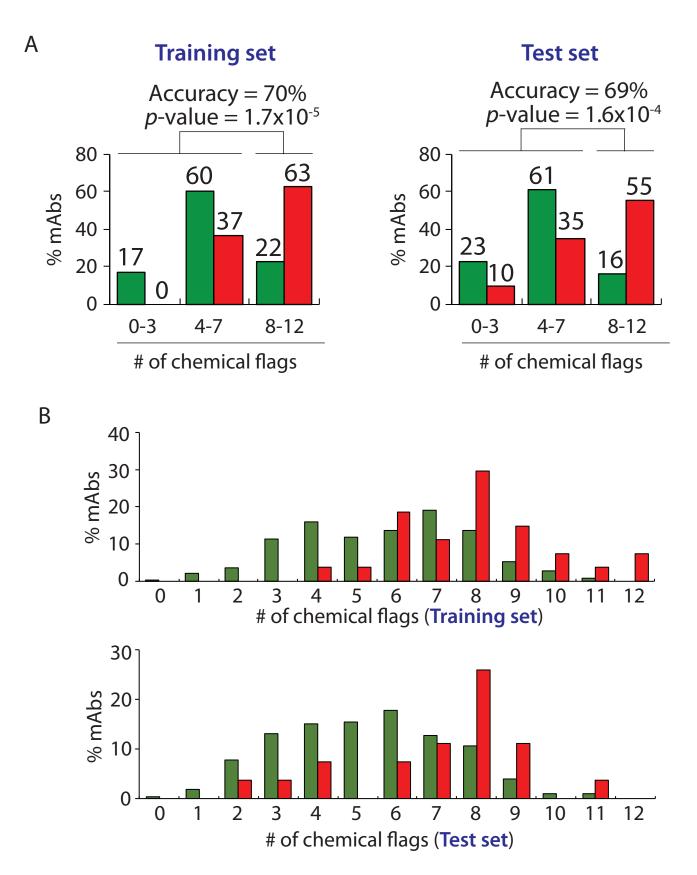

Clinical-stage mAbs: ■ ≤4.3 signal/background ■ >4.3 signal/background

Figure S6. Performance of combined chemical rules for identifying clinical-stage mAbs with high levels of non-specific interactions detected using the BVP assay. (A, B) Evaluation of the percentage of mAbs with high and low specificity flagged by the combined set of chemical rules for (A) grouped numbers of chemical flags and (B) individual numbers of chemical flags. (C) Comparison of the rank for clinical-stage mAbs based on BVP measurements and the corresponding number of chemical flags. In (A) and (B), the *p*-values were calculated using a 2x2 contingency table (Fisher's exact test). In (C), three regions are shown, one with predicted high specificity (0-3 chemical flags), a second one with intermediate specificity (4-7 chemical flags), and a third one with low specificity (8-12 chemical flags).

Biophysical Assay: PSR

Preclinical mAbs: $\blacksquare \le 0.27 \blacksquare > 0.27$

Figure S7. Combined chemical rules selectively flag preclinical mAbs with high levels of non-specific interactions. Antibodies with predicted high specificity (as described in Fig. 4) display reduced levels of non-specific binding to a poly-specificity reagent (PSR). (A) The selectivity of the combined chemical rules is similar for the training and test sets of preclinical antibodies. (B) Distributions of the number of flags for the training and test sets of antibodies with low and high specificity. The *p*-value was calculated using a 2x2 contingency table (Fisher's exact test).